Plan for Today & Next time (B) Machine Learning Theory. 2-Player Zero-Sum games. Game Theory terminolgy. Minimax-optimal strategies

Size: px
Start display at page:

Download "Plan for Today & Next time (B) Machine Learning Theory. 2-Player Zero-Sum games. Game Theory terminolgy. Minimax-optimal strategies"

Transcription

1 5-859(B) Machine Learning Theory Learning and Game Theory Avrim Blum Plan for Today & Ne ime 2-player zero-sum games 2-player general-sum games Nash equilibria Correlaed equilibria Inernal/swap regre and connecion o correlaed equilibria Many-player games wih srucure: congesion games / eac poenial games Bes-response dynamics Price of anarchy, Price of sabiliy 2-Player Zero-Sum games Two players R and C. Zero-sum means ha wha s good for one is bad for he oher. Game defined by mari wih a row for each of R s opions and a column for each of C s opions. Mari ells who wins how much. an enry (,y) means: = payoff o row player, y = payoff o column player. Zero sum means ha y = -. E.g., penaly sho: goalie Game Theory erminolgy Rows and columns are called pure sraegies. Randomized algs called mied sraegies. Zero sum means ha game is purely compeiive. (,y) saisfies +y=0. (Game doesn have o be fair). goalie shooer shooer (,-) (0,0) (,-) (0,0) Minima-opimal sraegies Minima opimal sraegy is a (randomized) sraegy ha has he bes guaranee on is epeced gain, over choices of he opponen. [maimizes he minimum] I.e., he hing o play if your opponen knows you well. goalie Minima-opimal sraegies Can solve for minima-opimal sraegies using Linear programming No-regre sraegies will do nearly as well or beer. I.e., he hing o play if your opponen knows you well. goalie shooer shooer (,-) (0,0) (,-) (0,0)

2 Minima Theorem (von Neumann 928) Every 2-player zero-sum game has a unique value V. Minima opimal sraegy for R guaranees R s epeced gain a leas V. Minima opimal sraegy for C guaranees C s epeced loss a mos V. Eisence of no-regre sraegies gives one way of proving he heorem. Ineresing game o hink abou Graph G, source s, sink. Player A chooses pah P from s o. Player B chooses edge e in G. If e is in P, B wins. Else A wins. Wha is minima opimal sraegy for B, A? Noe ha can run RWM for B, and besresponse for A (shores pah alg on B s weighs) o ge ap-minima-opimal. General-sum games Now, o General-Sum games In general-sum games, can ge win-win and lose-lose siuaions. E.g., wha side of sidewalk o walk on? : you (,) (-,-) person walking owards you (-,-) (,) General-sum games In general-sum games, can ge win-win and lose-lose siuaions. E.g., which movie should we go o? : Bully Hunger games Nash Equilibrium A Nash Equilibrium is a sable pair of sraegies (could be randomized). Sable means ha neiher player has incenive o deviae on heir own. E.g., wha side of sidewalk o walk on : Bully (8,2) (0,0) (,) (-,-) Hunger games (0,0) (2,8) (-,-) (,) No longer a unique value o he game. NE are: boh lef, boh righ, or boh 50/50. 2

3 Uses Economiss use games and equilibria as models of ineracion. E.g., polluion / prisoner s dilemma: (imagine polluion conrols cos $4 bu improve everyone s environmen by $3) don pollue don pollue pollue pollue (2,2) (-,3) (3,-) (0,0) Need o add era incenives o ge good overall behavior. NE can do srange hings Braess parado: Road nework, raffic going from s o. ravel ime as funcion of fracion of raffic on a given edge. ravel ime =, indep of raffic s Fine. NE is 50/50. Travel ime =.5 ravel ime ()=. NE can do srange hings Braess parado: Road nework, raffic going from s o. ravel ime as funcion of fracion of raffic on a given edge. ravel ime =, indep of raffic s 0 Add new superhighway. NE: everyone uses zig-zag pah. Travel ime = 2. ravel ime ()=. Eisence of NE Nash (950) proved: any general-sum game mus have a leas one such equilibrium. Migh require mied sraegies. This also yields minima hm as a corollary. Pick some NE and le V = value o row player in ha equilibrium. Since i s a NE, neiher player can do beer even knowing he (randomized) sraegy heir opponen is playing. So, hey re each playing minima opimal. Eisence of NE in 2-player games Proof will be non-consrucive. Unlike case of zero-sum games, we do no know any polynomial-ime algorihm for finding Nash Equilibria in n n general-sum games. [known o be PPAD-hard ] Noaion: Assume an nn mari. Use (p,...,p n ) o denoe mied sraegy for row player, and (q,...,q n ) o denoe mied sraegy for column player. Proof We ll sar wih Brouwer s fied poin heorem. Le S be a compac conve region in R n and le f:s! S be a coninuous funcion. Then here mus eis 2 S such ha f()=. is called a fied poin of f. Simple case: S is he inerval [0,]. We will care abou: S = {(p,q): p,q are legal probabiliy disribuions on,...,n}. I.e., S = simple n simple n 3

4 Proof (con) S = {(p,q): p,q are mied sraegies}. Wan o define f(p,q) = (p,q ) such ha: f is coninuous. This means ha changing p or q a lile bi shouldn cause p or q o change a lo. Any fied poin of f is a Nash Equilibrium. Then Brouwer will imply eisence of NE. Try # Wha abou f(p,q) = (p,q ) where p is bes response o q, and q is bes response o p? Problem: no necessarily well-defined: E.g., penaly sho: if p = (0.5,0.5) hen q could be anyhing. (,-) (0,0) Try # Wha abou f(p,q) = (p,q ) where p is bes response o q, and q is bes response o p? Problem: also no coninuous: E.g., if p = (0.5, 0.49) hen q = (,0). If p = (0.49,0.5) hen q = (0,). Insead we will use... f(p,q) = (p,q ) such ha: q maimizes [(epeced gain wr p) - q-q 2 ] p maimizes [(epeced gain wr q) - p-p 2 ] (,-) (0,0) p p Noe: quadraic + linear = quadraic. Insead we will use... f(p,q) = (p,q ) such ha: q maimizes [(epeced gain wr p) - q-q 2 ] p maimizes [(epeced gain wr q) - p-p 2 ] p p Noe: quadraic + linear = quadraic. Insead we will use... f(p,q) = (p,q ) such ha: q maimizes [(epeced gain wr p) - q-q 2 ] p maimizes [(epeced gain wr q) - p-p 2 ] f is well-defined and coninuous since quadraic has unique maimum and small change o p,q only moves his a lile. Also fied poin = NE. (even if iny incenive o move, will move lile bi). So, ha s i! 4

5 Wha if all players minimize regre? Inernal regre and correlaed equilibria In zero-sum games, empirical frequencies quickly approaches minima opimal. In general-sum games, does behavior quickly (or a all) approach a Nash equilibrium? (afer all, a Nash Eq is eacly a se of disribuions ha are no-regre wr each oher). Well, unforunaely, no. A bad eample for general-sum games Augmened Shapley game from [Z04]: RPSF Firs 3 rows/cols are Shapley game (rock / paper / scissors bu if boh do same acion hen boh lose). 4 h acion play foosball has sligh negaive if oher player is sill doing r/p/s bu posiive if oher player does 4 h acion oo. NR algs will cycle among firs 3 and have no regre, bu do worse han only Nash Equilibrium of boh playing foosball. We didn really epec his o work given how hard NE can be o find Wha can we say? If algorihms minimize inernal or swap regre, hen empirical disribuion of play approaches correlaed equilibrium. Foser & Vohra, Har & Mas-Colell, Though doesn imply play is sabilizing. Wha are inernal regre and correlaed equilibria? More general forms of regre. bes eper or eernal regre: Given n sraegies. Compee wih bes of hem in hindsigh. 2. sleeping eper or regre wih ime-inervals : Given n sraegies, k properies. Le S i be se of days saisfying propery i (migh overlap). Wan o simulaneously achieve low regre over each S i. 3. inernal or swap regre: like (2), ecep ha S i = se of days in which we chose sraegy i. Inernal/swap-regre E.g., each day we pick one sock o buy shares in. Don wan o have regre of he form every ime I bough IBM, I should have bough Microsof insead. Formally, regre is wr opimal funcion f:{,,n}!{,,n} such ha every ime you played acion j, i plays f(j). Moivaion: connecion o correlaed equilibria. 5

6 Inernal/swap-regre Correlaed equilibrium Disribuion over enries in mari, such ha if a rused pary chooses one a random and ells you your par, you have no incenive o deviae. E.g., Shapley game. R P S R P S -,- -,,-,- -,- -, -,,- -,- Inernal/swap-regre If all paries run a low inernal/swap regre algorihm, hen empirical disribuion of play is an ap correlaed equilibrium. Correlaor chooses random ime 2 {,2,,T}. Tells each player o play he acion j hey played in ime (bu does no reveal value of ). Epeced incenive o deviae: j Pr(j)(Regre j) = swap-regre of algorihm So, his says ha correlaed equilibria are a naural hing o see in muli-agen sysems where individuals are opimizing for hemselves Inernal/swap-regre, cond Algorihms for achieving low regre of his form: Foser & Vohra, Har & Mas-Colell, Fudenberg & Levine. Can also conver any bes eper algorihm ino one achieving low swap regre. Unforunaely, ime o achieve low regre is linear in n raher han log(n). Inernal/swap-regre, cond Can conver any bes eper algorihm A ino one achieving low swap regre. Idea: Insaniae one copy A i responsible for epeced regre over imes we play i. Each ime sep, if we play p=(p,,p n ) and ge cos vecor c=(c,,c n ), hen A i ges cos-vecor p i c. If each A i proposed o play q i, so all ogeher we have mari Q, hen define p = pq. Allows us o view p i as prob we chose acion i or prob we chose algorihm A i. Congesion games Many muli-agen ineracions have srucure. One nice class: Congesion Games Always have a pure-sraegy equilibrium. Have a poenial funcion s.. whenever a player swiches, poenial drops by eacly ha player s improvemen. So, bes-response dynamics always gives an equilibrium. Le s sar wih an eample. Fair cos-sharing Fair cos-sharing: n players in weighed direced graph G. Player i wans o ge from s i o i, and hey share cos of edges hey use wih ohers. G 6

7 Good equilibria, Bad equilibria Fair cos-sharing: n players in weighed direced graph G. Player i wans o ge from s i o i, and hey share cos of edges hey use wih ohers. Good equilibria, Bad equilibria Fair cos-sharing: n players in weighed direced graph G. Player i wans o ge from s i o i, and hey share cos of edges hey use wih ohers. n s Good equilibrium: all use edge of cos. (cos /n per player) Bad equilibrium: all use edge of cos n. (cos per player) Cos(bad equilib) = n Cos(good equilib) Noe ha here, bad equilb is wha you d epec from naural dynamics (players enering one a ime, ec) cars s s n Shared ransi k n Price of Anarchy and Price of Sabiliy Price of Anarchy: raio of wors equilibrium o social opimum. (wors-case over games in class) We saw for cos-sharing PoA = (n). Also O(n). Price of Sabiliy: raio of bes equilibrium o social opimum. (wors-case over games in class) For cos-sharing, PoS = (log n). Eac Poenial funcion: Funcion s.. if player moves, poenial changes by eacly as much as cos of player who moved. Guaranees ha bes-response dynamics will reach Nash equilibrium Poenial funcions and PoS For cos-sharing, PoS = O(log n): Given sae S, le n e = # players on edge e. Cos(S) = Define poenial (S) = So, cos(s) (S) log(n) cos(s). Now consider bes-response dynamics saring from OPT. can only decrease. So, if could ell people o play OPT, and everyone wen along, hen BR dynamics would lead o good sae. cars s s n Shared ransi k n Congesion games more generally Game defined by n players and m resources. Each player i choses a se of resources (e.g., a pah) from collecion S i of allowable ses of resources (e.g., pahs from s i o i ). Cos of a resource j is a funcion f j (n j ) of he number n j of players using i. Cos incurred by player i is he sum, over all resources being used, of he cos of he resource. Generic poenial funcion: Bes-response dynamics may ake a long ime o reach equil, bu if gap beween and cos is small, can ge o ap-equilib fas. Curren/recen research direcions (esp in relaion o machine learning) How much effor needed o nudge simple bes-response dynamics from bad equilibrium o a good one? Are here naural dynamics ha can manage o reach good equilibria on heir own? Can one say anyhing ineresing abou combining eper advice ypes of problems where he qualiy of an eper depends on wha he oher players are doing? (In paricular, in comparison o bes equilibrium) 7

Topics in Machine Learning Theory

Topics in Machine Learning Theory Topics in Machine Learning Theory The Adversarial Muli-armed Bandi Problem, Inernal Regre, and Correlaed Equilibria Avrim Blum 10/8/14 Plan for oday Online game playing / combining exper advice bu: Wha

More information

Online Learning, Regret Minimization, Minimax Optimality, and Correlated Equilibrium

Online Learning, Regret Minimization, Minimax Optimality, and Correlated Equilibrium Algorihm Online Learning, Regre Minimizaion, Minimax Opimaliy, and Correlaed Equilibrium High level Las ime we discussed noion of Nash equilibrium Saic concep: se of prob Disribuions (p,q, ) such ha nobody

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Recap. Online Learning RWM. Avrim Blum. [ACFS02]: applying RWM to bandits

Recap. Online Learning RWM. Avrim Blum. [ACFS02]: applying RWM to bandits Algorihm Online Learning Recap Noregre algorihms for repeaed decisions: Algorihm has N opions World chooses cos vecor Can view as marix like his (maybe infinie # cols) World life fae Your guide: Avrim

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Product differentiation

Product differentiation differeniaion Horizonal differeniaion Deparmen of Economics, Universiy of Oslo ECON480 Spring 010 Las modified: 010.0.16 The exen of he marke Differen producs or differeniaed varians of he same produc

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

Competitive and Cooperative Inventory Policies in a Two-Stage Supply-Chain

Competitive and Cooperative Inventory Policies in a Two-Stage Supply-Chain Compeiive and Cooperaive Invenory Policies in a Two-Sage Supply-Chain (G. P. Cachon and P. H. Zipkin) Presened by Shruivandana Sharma IOE 64, Supply Chain Managemen, Winer 2009 Universiy of Michigan, Ann

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

HOTELLING LOCATION MODEL

HOTELLING LOCATION MODEL HOTELLING LOCATION MODEL THE LINEAR CITY MODEL The Example of Choosing only Locaion wihou Price Compeiion Le a be he locaion of rm and b is he locaion of rm. Assume he linear ransporaion cos equal o d,

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Online Learning Applications

Online Learning Applications Online Learning Applicaions Sepember 19, 2016 In he las lecure we saw he following guaranee for minimizing misakes wih Randomized Weighed Majoriy (RWM). Theorem 1 Le M be misakes of RWM and M i he misakes

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Lecture 2 October ε-approximation of 2-player zero-sum games

Lecture 2 October ε-approximation of 2-player zero-sum games Opimizaion II Winer 009/10 Lecurer: Khaled Elbassioni Lecure Ocober 19 1 ε-approximaion of -player zero-sum games In his lecure we give a randomized ficiious play algorihm for obaining an approximae soluion

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

Fishing limits and the Logistic Equation. 1

Fishing limits and the Logistic Equation. 1 Fishing limis and he Logisic Equaion. 1 1. The Logisic Equaion. The logisic equaion is an equaion governing populaion growh for populaions in an environmen wih a limied amoun of resources (for insance,

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function

STA 114: Statistics. Notes 2. Statistical Models and the Likelihood Function STA 114: Saisics Noes 2. Saisical Models and he Likelihood Funcion Describing Daa & Saisical Models A physicis has a heory ha makes a precise predicion of wha s o be observed in daa. If he daa doesn mach

More information

Solutions Problem Set 3 Macro II (14.452)

Solutions Problem Set 3 Macro II (14.452) Soluions Problem Se 3 Macro II (14.452) Francisco A. Gallego 04/27/2005 1 Q heory of invesmen in coninuous ime and no uncerainy Consider he in nie horizon model of a rm facing adjusmen coss o invesmen.

More information

Expert Advice for Amateurs

Expert Advice for Amateurs Exper Advice for Amaeurs Ernes K. Lai Online Appendix - Exisence of Equilibria The analysis in his secion is performed under more general payoff funcions. Wihou aking an explici form, he payoffs of he

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

Economics 8105 Macroeconomic Theory Recitation 6

Economics 8105 Macroeconomic Theory Recitation 6 Economics 8105 Macroeconomic Theory Reciaion 6 Conor Ryan Ocober 11h, 2016 Ouline: Opimal Taxaion wih Governmen Invesmen 1 Governmen Expendiure in Producion In hese noes we will examine a model in which

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

The Fundamental Theorems of Calculus

The Fundamental Theorems of Calculus FunamenalTheorems.nb 1 The Funamenal Theorems of Calculus You have now been inrouce o he wo main branches of calculus: ifferenial calculus (which we inrouce wih he angen line problem) an inegral calculus

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

Differential Geometry: Numerical Integration and Surface Flow

Differential Geometry: Numerical Integration and Surface Flow Differenial Geomery: Numerical Inegraion and Surface Flow [Implici Fairing of Irregular Meshes using Diffusion and Curaure Flow. Desbrun e al., 1999] Energy Minimizaion Recall: We hae been considering

More information

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time +v Today: Graphing v (miles per hour ) 9 8 7 6 5 4 - - Time Noe: I hope his joke will be funnier (or a leas make you roll your eyes and say ugh ) afer class. Do yourself a favor! Prof Sarah s fail-safe

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

Section 5: Chain Rule

Section 5: Chain Rule Chaper The Derivaive Applie Calculus 11 Secion 5: Chain Rule There is one more ype of complicae funcion ha we will wan o know how o iffereniae: composiion. The Chain Rule will le us fin he erivaive of

More information

Optima and Equilibria for Traffic Flow on a Network

Optima and Equilibria for Traffic Flow on a Network Opima and Equilibria for Traffic Flow on a Nework Albero Bressan Deparmen of Mahemaics, Penn Sae Universiy bressan@mah.psu.edu Albero Bressan (Penn Sae) Opima and equilibria for raffic flow 1 / 1 A Traffic

More information

Assignment 6. Tyler Shendruk December 6, 2010

Assignment 6. Tyler Shendruk December 6, 2010 Assignmen 6 Tyler Shendruk December 6, 1 1 Harden Problem 1 Le K be he coupling and h he exernal field in a 1D Ising model. From he lecures hese can be ransformed ino effecive coupling and fields K and

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC his documen was generaed a 1:4 PM, 9/1/13 Copyrigh 213 Richard. Woodward 4. End poins and ransversaliy condiions AGEC 637-213 F z d Recall from Lecure 3 ha a ypical opimal conrol problem is o maimize (,,

More information

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k Challenge Problems DIS 03 and 0 March 6, 05 Choose one of he following problems, and work on i in your group. Your goal is o convince me ha your answer is correc. Even if your answer isn compleely correc,

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information

Seminar 4: Hotelling 2

Seminar 4: Hotelling 2 Seminar 4: Hoelling 2 November 3, 211 1 Exercise Par 1 Iso-elasic demand A non renewable resource of a known sock S can be exraced a zero cos. Demand for he resource is of he form: D(p ) = p ε ε > A a

More information

Lecture 4 Notes (Little s Theorem)

Lecture 4 Notes (Little s Theorem) Lecure 4 Noes (Lile s Theorem) This lecure concerns one of he mos imporan (and simples) heorems in Queuing Theory, Lile s Theorem. More informaion can be found in he course book, Bersekas & Gallagher,

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

CHAPTER 2: Mathematics for Microeconomics

CHAPTER 2: Mathematics for Microeconomics CHAPTER : Mahemaics for Microeconomics The problems in his chaper are primarily mahemaical. They are inended o give sudens some pracice wih he conceps inroduced in Chaper, bu he problems in hemselves offer

More information

INCENTIVE COMPATIBILITY AND MECHANISM DESIGN

INCENTIVE COMPATIBILITY AND MECHANISM DESIGN Essenial Microeconomics -- INCENTIVE COMPATIBILITY AND MECHANISM DESIGN Signaling games 2 Incenive Compaibiliy 7 Spence s example: Educaional signaling 9 Single Crossing Propery Mechanism Design 7 Local

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information

Random Processes 1/24

Random Processes 1/24 Random Processes 1/24 Random Process Oher Names : Random Signal Sochasic Process A Random Process is an exension of he concep of a Random variable (RV) Simples View : A Random Process is a RV ha is a Funcion

More information

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Sections 2.2 & 2.3 Limit of a Function and Limit Laws Mah 80 www.imeodare.com Secions. &. Limi of a Funcion and Limi Laws In secion. we saw how is arise when we wan o find he angen o a curve or he velociy of an objec. Now we urn our aenion o is in general

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

Supplementary Material

Supplementary Material Dynamic Global Games of Regime Change: Learning, Mulipliciy and iming of Aacks Supplemenary Maerial George-Marios Angeleos MI and NBER Chrisian Hellwig UCLA Alessandro Pavan Norhwesern Universiy Ocober

More information

This document was generated at 7:34 PM, 07/27/09 Copyright 2009 Richard T. Woodward

This document was generated at 7:34 PM, 07/27/09 Copyright 2009 Richard T. Woodward his documen was generaed a 7:34 PM, 07/27/09 Copyrigh 2009 Richard. Woodward 15. Bang-bang and mos rapid approach problems AGEC 637 - Summer 2009 here are some problems for which he opimal pah does no

More information

The Brock-Mirman Stochastic Growth Model

The Brock-Mirman Stochastic Growth Model c December 3, 208, Chrisopher D. Carroll BrockMirman The Brock-Mirman Sochasic Growh Model Brock and Mirman (972) provided he firs opimizing growh model wih unpredicable (sochasic) shocks. The social planner

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15. SMT Calculus Tes Soluions February 5,. Le f() = and le g() =. Compue f ()g (). Answer: 5 Soluion: We noe ha f () = and g () = 6. Then f ()g () =. Plugging in = we ge f ()g () = 6 = 3 5 = 5.. There is a

More information

Some Ramsey results for the n-cube

Some Ramsey results for the n-cube Some Ramsey resuls for he n-cube Ron Graham Universiy of California, San Diego Jozsef Solymosi Universiy of Briish Columbia, Vancouver, Canada Absrac In his noe we esablish a Ramsey-ype resul for cerain

More information

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power Alpaydin Chaper, Michell Chaper 7 Alpaydin slides are in urquoise. Ehem Alpaydin, copyrigh: The MIT Press, 010. alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/ ehem/imle All oher slides are based on Michell.

More information

t dt t SCLP Bellman (1953) CLP (Dantzig, Tyndall, Grinold, Perold, Anstreicher 60's-80's) Anderson (1978) SCLP

t dt t SCLP Bellman (1953) CLP (Dantzig, Tyndall, Grinold, Perold, Anstreicher 60's-80's) Anderson (1978) SCLP Coninuous Linear Programming. Separaed Coninuous Linear Programming Bellman (1953) max c () u() d H () u () + Gsusds (,) () a () u (), < < CLP (Danzig, yndall, Grinold, Perold, Ansreicher 6's-8's) Anderson

More information

Lecture 10: The Poincaré Inequality in Euclidean space

Lecture 10: The Poincaré Inequality in Euclidean space Deparmens of Mahemaics Monana Sae Universiy Fall 215 Prof. Kevin Wildrick n inroducion o non-smooh analysis and geomery Lecure 1: The Poincaré Inequaliy in Euclidean space 1. Wha is he Poincaré inequaliy?

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

Testing What You Know Now

Testing What You Know Now Tesing Wha You Know Now To bes each you, I need o know wha you know now Today we ake a well-esablished quiz ha is designed o ell me his To encourage you o ake he survey seriously, i will coun as a clicker

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

The Arcsine Distribution

The Arcsine Distribution The Arcsine Disribuion Chris H. Rycrof Ocober 6, 006 A common heme of he class has been ha he saisics of single walker are ofen very differen from hose of an ensemble of walkers. On he firs homework, we

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts)

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts) HW6: MRI Imaging Pulse Sequences (7 Problems for 100 ps) GOAL The overall goal of HW6 is o beer undersand pulse sequences for MRI image reconsrucion. OBJECTIVES 1) Design a spin echo pulse sequence o image

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

From Complex Fourier Series to Fourier Transforms

From Complex Fourier Series to Fourier Transforms Topic From Complex Fourier Series o Fourier Transforms. Inroducion In he previous lecure you saw ha complex Fourier Series and is coeciens were dened by as f ( = n= C ne in! where C n = T T = T = f (e

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Final Exam. Tuesday, December hours

Final Exam. Tuesday, December hours San Francisco Sae Universiy Michael Bar ECON 560 Fall 03 Final Exam Tuesday, December 7 hours Name: Insrucions. This is closed book, closed noes exam.. No calculaors of any kind are allowed. 3. Show all

More information

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

RL Lecture 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 RL Lecure 7: Eligibiliy Traces R. S. Suon and A. G. Baro: Reinforcemen Learning: An Inroducion 1 N-sep TD Predicion Idea: Look farher ino he fuure when you do TD backup (1, 2, 3,, n seps) R. S. Suon and

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

In Game Theory and Applications, Volume X WITH MIGRATION: RESERVED TERRITORY APPROACH. Vladimir V. Mazalov. Anna N. Rettieva

In Game Theory and Applications, Volume X WITH MIGRATION: RESERVED TERRITORY APPROACH. Vladimir V. Mazalov. Anna N. Rettieva In Game Theory and Applicaions, Volume X Edied by L.A. Perosjan and V.V. Mazalov, pp.97{10 ISBN 1-59033-34-X c 004 Nova Science Publishers, Inc. A FISHERY GAME MODEL WITH MIGRATION: RESERVED TERRITORY

More information

Problem Set 7-7. dv V ln V = kt + C. 20. Assume that df/dt still equals = F RF. df dr = =

Problem Set 7-7. dv V ln V = kt + C. 20. Assume that df/dt still equals = F RF. df dr = = 20. Assume ha df/d sill equals = F + 0.02RF. df dr df/ d F+ 0. 02RF = = 2 dr/ d R 0. 04RF 0. 01R 10 df 11. 2 R= 70 and F = 1 = = 0. 362K dr 31 21. 0 F (70, 30) (70, 1) R 100 Noe ha he slope a (70, 1) is

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information