Digital Communications III (ECE 154C) Introduction to Coding and Information Theory

Size: px
Start display at page:

Download "Digital Communications III (ECE 154C) Introduction to Coding and Information Theory"

Transcription

1 Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Tara Javidi These lecture notes were originally developed by late Prof. J. K. Wolf. UC San Diego Spring / 14

2 Statement Proof Sketch Noiseless Fundamental Limits 2 / 14

3 Fundamental Limit Statement Proof Sketch [Lossless ] For any U.D.n-ary code corresponding to then th extension of the I.I.D. SourceS, for everyn = 1,2,... L N N H n(s) Furthermore for ann-ary Huffman Code corresponding to the N th extension of the I.I.D. SourceS H n (S)+ 1 N > L N N H n(s) But this implies that Huffman coding is asymptotically optimal, i.e. lim N L N N H n(s) 3 / 14

4 Sketch of the Proof Statement Proof Sketch If one can construct a U.D. code such thatl i = will have H n (S)+1 > L H n (S). log n 1 p i, we 1 But is it always possible to construct such a code? If it is, is it good enough? Can we do better? To do this, we first prove useful conditions on a set of integers if they are the length of U.D. codewords. These conditions are called Kraft and McMillan inequalities. 1 Note that x is the unique integer in the interval[x,x+1). 4 / 14

5 Proof of 5 / 14

6 Codeword Lengths: Necessary and Sufficient Condition [Kraft Inequality] A necessary and sufficient condition for the construction of an instantaneousn-ary code withm code words of lengthsl 1,l 2,..,l M where the code symbols take onndifferent values is that PROOF OF SUFFICIENCY: n l i 1 We construct an instantaneous code with these code word lengths. Let there bem j code words of lengthj for j = 1,2,...,l = maxl i. Then n l i = l j=1 m j n j 6 / 14

7 Kraft Inequality: Proof of sufficiency M In other words, if n l i l 1, then j=1 m jn l 1 n l. Or, m l +m (l 1)n+m (l 2)n m 1 n l 1 n l, and, equivalently m l n l m 1 n l 1 m 2 n l 2 t... m l 1n (1) But sincem l 0 we then have 0 n l m 1 n l 1 m 2 n l 2 t... m l 1n and can repeat the procedure to arrive at m l 1 n l 1 m 1 n l 2 m 2 n l 3... m l 2n (2) 7 / 14

8 Codeword Lengths: Necessary and Sufficient Condition But dividing bynand noting thatm l 1 0 we have equivalently 0 n l 2 m 1 n l 3 m 2 n l 4... m l 2 m l 2 n l 2 m 1 n l 3 m 2 n l 4... (3) Continuing we get 0 m 3 n 3 m 1 n 2 m 2 n (4) 0 m 2 n 2 m 1 n (5) m 1 n (6) Note that if n l i 1 then them j satisfy (1)-(6). 8 / 14

9 Kraft Inequality: Proof of sufficiency Note thatm 1 n. Ifm 1 = n then we are done (assigning each codeword a letter). Ifm 1 < n, we have(n m 1 ) unused prefixes to form code words of length2for which the code words of length1are not prefixes. This means that there are(n m 1 )n phrases of length2to select the codewords from. But this is larger than or equal to the number of codewords of length 2,m 2 according to equation (5). So we can construct our code by selectingm 2 of the(n m 1 )n prefix-free phrases of length2 Ifm 2 = (n m 1 )n we are done. Ifm 2 < n 2 m 1 n, there are (n 2 m 1 n m 2 )n code words of length3which satisfy the prefix condition. etc. 9 / 14

10 Kraft Inequality: Proof of necessity Proof of necessity follows from McMillan inequality [McMillan Inequality] A necessary and a sufficient condition for the existence of a U.D. code withm code words of lengthl 1,l 2,...,l M where the code symbols take onndifferent values is: n l i 1. Here we sketch the proof of necessity of McMillan Inequality (enough to prove the necessity of Kraft inequality). Proof by contradiction: 1. Assume ( M n l i = A > 1 and a U.D. code exists. ) [ M 2. If n l i > 1, then n l i] N A N. 10 / 14

11 Kraft Inequality: Proof of necessity 3. ( M N n i) l = N k = l j=1 m j n j i 1 +i i N =k N = Nl k=n m i1 m i2 m in N k n k where and it denotes the # of strings ofn code words that are the length of exactlyk. 4. If the code is U.D.,N k n k. But then for a U.D. code ( M N n i) l = ( Nl N k n k ) Nl 1 = Nl N +1 k=n k=n Which grows linearly withn, not exponentially withn, contradicting bullet point / 14

12 Proof Proof Complete Proof 12 / 14

13 Proof of Proof Proof Lower bound forlfor a U.D. Code : For any instantaneous code 2,L H n (S). Furthermore,L = H n (S) iffp i = n l i. Proof: Letp i = n l i. Notep i 0 M and p i = 1. From before: j=1 n l j H n (S) = p i log n 1 p i p i log n 1 p i 2 HereL = Average length of the U.D. Code andn = number of symbols in code alphabet. 13 / 14

14 Proof of Proof Proof Then: But for a U.D. code, H n (S) p i l i + p i log n n l j 1, solog n j=1 j=1 j=1 n l j n l j 0 Equality occurs if and only if H n (S) L n l j = 1 andp i = p i. j=1 But both of these conditions hold ifp i = n l i,l i is an integer. 14 / 14

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Digital Communications III (ECE 54C) Introduction to Coding and Information Theory Tara Javidi These lecture notes were originally developed by late Prof. J. K. Wolf. UC San Diego Spring 204 / 2 Noiseless

More information

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Tara Javidi These lecture notes were originally developed by late Prof. J. K. Wolf. UC San Diego Spring 2014 1 / 8 I

More information

COMM901 Source Coding and Compression. Quiz 1

COMM901 Source Coding and Compression. Quiz 1 German University in Cairo - GUC Faculty of Information Engineering & Technology - IET Department of Communication Engineering Winter Semester 2013/2014 Students Name: Students ID: COMM901 Source Coding

More information

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code Chapter 3 Source Coding 3. An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code 3. An Introduction to Source Coding Entropy (in bits per symbol) implies in average

More information

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code Chapter 2 Date Compression: Source Coding 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code 2.1 An Introduction to Source Coding Source coding can be seen as an efficient way

More information

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1 Kraft s inequality An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if N 2 l i 1 Proof: Suppose that we have a tree code. Let l max = max{l 1,...,

More information

10-704: Information Processing and Learning Fall Lecture 10: Oct 3

10-704: Information Processing and Learning Fall Lecture 10: Oct 3 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 0: Oct 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Chapter 2: Source coding

Chapter 2: Source coding Chapter 2: meghdadi@ensil.unilim.fr University of Limoges Chapter 2: Entropy of Markov Source Chapter 2: Entropy of Markov Source Markov model for information sources Given the present, the future is independent

More information

Variable-to-Variable Codes with Small Redundancy Rates

Variable-to-Variable Codes with Small Redundancy Rates Variable-to-Variable Codes with Small Redundancy Rates M. Drmota W. Szpankowski September 25, 2004 This research is supported by NSF, NSA and NIH. Institut f. Diskrete Mathematik und Geometrie, TU Wien,

More information

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16 EE539R: Problem Set 4 Assigned: 3/08/6, Due: 07/09/6. Cover and Thomas: Problem 3.5 Sets defined by probabilities: Define the set C n (t = {x n : P X n(x n 2 nt } (a We have = P X n(x n P X n(x n 2 nt

More information

Lecture 6: Kraft-McMillan Inequality and Huffman Coding

Lecture 6: Kraft-McMillan Inequality and Huffman Coding EE376A/STATS376A Information Theory Lecture 6-0/25/208 Lecture 6: Kraft-McMillan Inequality and Huffman Coding Lecturer: Tsachy Weissman Scribe: Akhil Prakash, Kai Yee Wan In this lecture, we begin with

More information

Chapter 5: Data Compression

Chapter 5: Data Compression Chapter 5: Data Compression Definition. A source code C for a random variable X is a mapping from the range of X to the set of finite length strings of symbols from a D-ary alphabet. ˆX: source alphabet,

More information

PART III. Outline. Codes and Cryptography. Sources. Optimal Codes (I) Jorge L. Villar. MAMME, Fall 2015

PART III. Outline. Codes and Cryptography. Sources. Optimal Codes (I) Jorge L. Villar. MAMME, Fall 2015 Outline Codes and Cryptography 1 Information Sources and Optimal Codes 2 Building Optimal Codes: Huffman Codes MAMME, Fall 2015 3 Shannon Entropy and Mutual Information PART III Sources Information source:

More information

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28 10-704: Information Processing and Learning Fall 2016 Lecturer: Siheng Chen Lecture 9: Sept 28 Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy

More information

Multimedia Communications. Mathematical Preliminaries for Lossless Compression

Multimedia Communications. Mathematical Preliminaries for Lossless Compression Multimedia Communications Mathematical Preliminaries for Lossless Compression What we will see in this chapter Definition of information and entropy Modeling a data source Definition of coding and when

More information

Chapter 5. Data Compression

Chapter 5. Data Compression Chapter 5 Data Compression Peng-Hua Wang Graduate Inst. of Comm. Engineering National Taipei University Chapter Outline Chap. 5 Data Compression 5.1 Example of Codes 5.2 Kraft Inequality 5.3 Optimal Codes

More information

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria Source Coding Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Asymptotic Equipartition Property Optimal Codes (Huffman Coding) Universal

More information

Ch. 2 Math Preliminaries for Lossless Compression. Section 2.4 Coding

Ch. 2 Math Preliminaries for Lossless Compression. Section 2.4 Coding Ch. 2 Math Preliminaries for Lossless Compression Section 2.4 Coding Some General Considerations Definition: An Instantaneous Code maps each symbol into a codeord Notation: a i φ (a i ) Ex. : a 0 For Ex.

More information

Coding for Discrete Source

Coding for Discrete Source EGR 544 Communication Theory 3. Coding for Discrete Sources Z. Aliyazicioglu Electrical and Computer Engineering Department Cal Poly Pomona Coding for Discrete Source Coding Represent source data effectively

More information

Chapter 9 Fundamental Limits in Information Theory

Chapter 9 Fundamental Limits in Information Theory Chapter 9 Fundamental Limits in Information Theory Information Theory is the fundamental theory behind information manipulation, including data compression and data transmission. 9.1 Introduction o For

More information

1 Ex. 1 Verify that the function H(p 1,..., p n ) = k p k log 2 p k satisfies all 8 axioms on H.

1 Ex. 1 Verify that the function H(p 1,..., p n ) = k p k log 2 p k satisfies all 8 axioms on H. Problem sheet Ex. Verify that the function H(p,..., p n ) = k p k log p k satisfies all 8 axioms on H. Ex. (Not to be handed in). looking at the notes). List as many of the 8 axioms as you can, (without

More information

Lecture 1: Shannon s Theorem

Lecture 1: Shannon s Theorem Lecture 1: Shannon s Theorem Lecturer: Travis Gagie January 13th, 2015 Welcome to Data Compression! I m Travis and I ll be your instructor this week. If you haven t registered yet, don t worry, we ll work

More information

ECE 587 / STA 563: Lecture 5 Lossless Compression

ECE 587 / STA 563: Lecture 5 Lossless Compression ECE 587 / STA 563: Lecture 5 Lossless Compression Information Theory Duke University, Fall 2017 Author: Galen Reeves Last Modified: October 18, 2017 Outline of lecture: 5.1 Introduction to Lossless Source

More information

ECE 587 / STA 563: Lecture 5 Lossless Compression

ECE 587 / STA 563: Lecture 5 Lossless Compression ECE 587 / STA 563: Lecture 5 Lossless Compression Information Theory Duke University, Fall 28 Author: Galen Reeves Last Modified: September 27, 28 Outline of lecture: 5. Introduction to Lossless Source

More information

Lecture 5: Asymptotic Equipartition Property

Lecture 5: Asymptotic Equipartition Property Lecture 5: Asymptotic Equipartition Property Law of large number for product of random variables AEP and consequences Dr. Yao Xie, ECE587, Information Theory, Duke University Stock market Initial investment

More information

Entropy as a measure of surprise

Entropy as a measure of surprise Entropy as a measure of surprise Lecture 5: Sam Roweis September 26, 25 What does information do? It removes uncertainty. Information Conveyed = Uncertainty Removed = Surprise Yielded. How should we quantify

More information

4. Quantization and Data Compression. ECE 302 Spring 2012 Purdue University, School of ECE Prof. Ilya Pollak

4. Quantization and Data Compression. ECE 302 Spring 2012 Purdue University, School of ECE Prof. Ilya Pollak 4. Quantization and Data Compression ECE 32 Spring 22 Purdue University, School of ECE Prof. What is data compression? Reducing the file size without compromising the quality of the data stored in the

More information

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have EECS 229A Spring 2007 * * Solutions to Homework 3 1. Problem 4.11 on pg. 93 of the text. Stationary processes (a) By stationarity and the chain rule for entropy, we have H(X 0 ) + H(X n X 0 ) = H(X 0,

More information

SIGNAL COMPRESSION Lecture Shannon-Fano-Elias Codes and Arithmetic Coding

SIGNAL COMPRESSION Lecture Shannon-Fano-Elias Codes and Arithmetic Coding SIGNAL COMPRESSION Lecture 3 4.9.2007 Shannon-Fano-Elias Codes and Arithmetic Coding 1 Shannon-Fano-Elias Coding We discuss how to encode the symbols {a 1, a 2,..., a m }, knowing their probabilities,

More information

Data Compression. Limit of Information Compression. October, Examples of codes 1

Data Compression. Limit of Information Compression. October, Examples of codes 1 Data Compression Limit of Information Compression Radu Trîmbiţaş October, 202 Outline Contents Eamples of codes 2 Kraft Inequality 4 2. Kraft Inequality............................ 4 2.2 Kraft inequality

More information

CSCI 2570 Introduction to Nanocomputing

CSCI 2570 Introduction to Nanocomputing CSCI 2570 Introduction to Nanocomputing Information Theory John E Savage What is Information Theory Introduced by Claude Shannon. See Wikipedia Two foci: a) data compression and b) reliable communication

More information

Basic Principles of Lossless Coding. Universal Lossless coding. Lempel-Ziv Coding. 2. Exploit dependences between successive symbols.

Basic Principles of Lossless Coding. Universal Lossless coding. Lempel-Ziv Coding. 2. Exploit dependences between successive symbols. Universal Lossless coding Lempel-Ziv Coding Basic principles of lossless compression Historical review Variable-length-to-block coding Lempel-Ziv coding 1 Basic Principles of Lossless Coding 1. Exploit

More information

lossless, optimal compressor

lossless, optimal compressor 6. Variable-length Lossless Compression The principal engineering goal of compression is to represent a given sequence a, a 2,..., a n produced by a source as a sequence of bits of minimal possible length.

More information

ECE Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE)

ECE Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE) ECE 74 - Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE) 1. A Huffman code finds the optimal codeword to assign to a given block of source symbols. (a) Show that cannot be a Huffman

More information

Lecture 4 : Adaptive source coding algorithms

Lecture 4 : Adaptive source coding algorithms Lecture 4 : Adaptive source coding algorithms February 2, 28 Information Theory Outline 1. Motivation ; 2. adaptive Huffman encoding ; 3. Gallager and Knuth s method ; 4. Dictionary methods : Lempel-Ziv

More information

Exercises with solutions (Set B)

Exercises with solutions (Set B) Exercises with solutions (Set B) 3. A fair coin is tossed an infinite number of times. Let Y n be a random variable, with n Z, that describes the outcome of the n-th coin toss. If the outcome of the n-th

More information

Communications Theory and Engineering

Communications Theory and Engineering Communications Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 AEP Asymptotic Equipartition Property AEP In information theory, the analog of

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2011, 28 November 2011 Memoryless Sources Arithmetic Coding Sources with Memory 2 / 19 Summary of last lecture Prefix-free

More information

10-704: Information Processing and Learning Spring Lecture 8: Feb 5

10-704: Information Processing and Learning Spring Lecture 8: Feb 5 10-704: Information Processing and Learning Spring 2015 Lecture 8: Feb 5 Lecturer: Aarti Singh Scribe: Siheng Chen Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

More information

Homework Set #2 Data Compression, Huffman code and AEP

Homework Set #2 Data Compression, Huffman code and AEP Homework Set #2 Data Compression, Huffman code and AEP 1. Huffman coding. Consider the random variable ( x1 x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0.11 0.04 0.04 0.03 0.02 (a Find a binary Huffman code

More information

Information Theory and Statistics Lecture 2: Source coding

Information Theory and Statistics Lecture 2: Source coding Information Theory and Statistics Lecture 2: Source coding Łukasz Dębowski ldebowsk@ipipan.waw.pl Ph. D. Programme 2013/2014 Injections and codes Definition (injection) Function f is called an injection

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

Introduction to Information Theory. By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar

Introduction to Information Theory. By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar Introduction to Information Theory By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar Introduction [B.P. Lathi] Almost in all the means of communication, none produces error-free communication.

More information

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Tara Javidi These lecture notes were originally developed by late Prof. J. K. Wolf. UC San Diego Spring 2014 1 / 26 Lossy

More information

arxiv: v1 [cs.it] 5 Sep 2008

arxiv: v1 [cs.it] 5 Sep 2008 1 arxiv:0809.1043v1 [cs.it] 5 Sep 2008 On Unique Decodability Marco Dalai, Riccardo Leonardi Abstract In this paper we propose a revisitation of the topic of unique decodability and of some fundamental

More information

Information Theory and Coding Techniques

Information Theory and Coding Techniques Information Theory and Coding Techniques Lecture 1.2: Introduction and Course Outlines Information Theory 1 Information Theory and Coding Techniques Prof. Ja-Ling Wu Department of Computer Science and

More information

Introduction to information theory and coding

Introduction to information theory and coding Introduction to information theory and coding Louis WEHENKEL Set of slides No 4 Source modeling and source coding Stochastic processes and models for information sources First Shannon theorem : data compression

More information

Source Coding: Part I of Fundamentals of Source and Video Coding

Source Coding: Part I of Fundamentals of Source and Video Coding Foundations and Trends R in sample Vol. 1, No 1 (2011) 1 217 c 2011 Thomas Wiegand and Heiko Schwarz DOI: xxxxxx Source Coding: Part I of Fundamentals of Source and Video Coding Thomas Wiegand 1 and Heiko

More information

Lecture 1 : Data Compression and Entropy

Lecture 1 : Data Compression and Entropy CPS290: Algorithmic Foundations of Data Science January 8, 207 Lecture : Data Compression and Entropy Lecturer: Kamesh Munagala Scribe: Kamesh Munagala In this lecture, we will study a simple model for

More information

ELEC 515 Information Theory. Distortionless Source Coding

ELEC 515 Information Theory. Distortionless Source Coding ELEC 515 Information Theory Distortionless Source Coding 1 Source Coding Output Alphabet Y={y 1,,y J } Source Encoder Lengths 2 Source Coding Two coding requirements The source sequence can be recovered

More information

EE376A - Information Theory Midterm, Tuesday February 10th. Please start answering each question on a new page of the answer booklet.

EE376A - Information Theory Midterm, Tuesday February 10th. Please start answering each question on a new page of the answer booklet. EE376A - Information Theory Midterm, Tuesday February 10th Instructions: You have two hours, 7PM - 9PM The exam has 3 questions, totaling 100 points. Please start answering each question on a new page

More information

Lecture 3. Mathematical methods in communication I. REMINDER. A. Convex Set. A set R is a convex set iff, x 1,x 2 R, θ, 0 θ 1, θx 1 + θx 2 R, (1)

Lecture 3. Mathematical methods in communication I. REMINDER. A. Convex Set. A set R is a convex set iff, x 1,x 2 R, θ, 0 θ 1, θx 1 + θx 2 R, (1) 3- Mathematical methods in communication Lecture 3 Lecturer: Haim Permuter Scribe: Yuval Carmel, Dima Khaykin, Ziv Goldfeld I. REMINDER A. Convex Set A set R is a convex set iff, x,x 2 R, θ, θ, θx + θx

More information

Lecture 16. Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code

Lecture 16. Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code Lecture 16 Agenda for the lecture Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code Variable-length source codes with error 16.1 Error-free coding schemes 16.1.1 The Shannon-Fano-Elias

More information

1 Introduction to information theory

1 Introduction to information theory 1 Introduction to information theory 1.1 Introduction In this chapter we present some of the basic concepts of information theory. The situations we have in mind involve the exchange of information through

More information

Summary of Last Lectures

Summary of Last Lectures Lossless Coding IV a k p k b k a 0.16 111 b 0.04 0001 c 0.04 0000 d 0.16 110 e 0.23 01 f 0.07 1001 g 0.06 1000 h 0.09 001 i 0.15 101 100 root 1 60 1 0 0 1 40 0 32 28 23 e 17 1 0 1 0 1 0 16 a 16 d 15 i

More information

Lec 03 Entropy and Coding II Hoffman and Golomb Coding

Lec 03 Entropy and Coding II Hoffman and Golomb Coding CS/EE 5590 / ENG 40 Special Topics Multimedia Communication, Spring 207 Lec 03 Entropy and Coding II Hoffman and Golomb Coding Zhu Li Z. Li Multimedia Communciation, 207 Spring p. Outline Lecture 02 ReCap

More information

Tight Bounds on Minimum Maximum Pointwise Redundancy

Tight Bounds on Minimum Maximum Pointwise Redundancy Tight Bounds on Minimum Maximum Pointwise Redundancy Michael B. Baer vlnks Mountain View, CA 94041-2803, USA Email:.calbear@ 1eee.org Abstract This paper presents new lower and upper bounds for the optimal

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 2

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 2 582487 Data Compression Techniques (Spring 22) Model Solutions for Exercise 2 If you have any feedback or corrections, please contact nvalimak at cs.helsinki.fi.. Problem: Construct a canonical prefix

More information

Coding of memoryless sources 1/35

Coding of memoryless sources 1/35 Coding of memoryless sources 1/35 Outline 1. Morse coding ; 2. Definitions : encoding, encoding efficiency ; 3. fixed length codes, encoding integers ; 4. prefix condition ; 5. Kraft and Mac Millan theorems

More information

Entropy and Ergodic Theory Lecture 3: The meaning of entropy in information theory

Entropy and Ergodic Theory Lecture 3: The meaning of entropy in information theory Entropy and Ergodic Theory Lecture 3: The meaning of entropy in information theory 1 The intuitive meaning of entropy Modern information theory was born in Shannon s 1948 paper A Mathematical Theory of

More information

APC486/ELE486: Transmission and Compression of Information. Bounds on the Expected Length of Code Words

APC486/ELE486: Transmission and Compression of Information. Bounds on the Expected Length of Code Words APC486/ELE486: Transmission and Compression of Information Bounds on the Expected Length of Code Words Scribe: Kiran Vodrahalli September 8, 204 Notations In these notes, denotes a finite set, called the

More information

Solutions to Set #2 Data Compression, Huffman code and AEP

Solutions to Set #2 Data Compression, Huffman code and AEP Solutions to Set #2 Data Compression, Huffman code and AEP. Huffman coding. Consider the random variable ( ) x x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0. 0.04 0.04 0.03 0.02 (a) Find a binary Huffman code

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2013, 29 November 2013 Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 2 / 21 Encoding the output

More information

Motivation for Arithmetic Coding

Motivation for Arithmetic Coding Motivation for Arithmetic Coding Motivations for arithmetic coding: 1) Huffman coding algorithm can generate prefix codes with a minimum average codeword length. But this length is usually strictly greater

More information

On Unique Decodability, McMillan s Theorem and the Expected Length of Codes

On Unique Decodability, McMillan s Theorem and the Expected Length of Codes 1 On Unique Decodability, McMillan s Theorem and the Expected Length of Codes Technical Report R.T. 200801-58, Department of Electronics for Automation, University of Brescia, Via Branze 38-25123, Brescia,

More information

A One-to-One Code and Its Anti-Redundancy

A One-to-One Code and Its Anti-Redundancy A One-to-One Code and Its Anti-Redundancy W. Szpankowski Department of Computer Science, Purdue University July 4, 2005 This research is supported by NSF, NSA and NIH. Outline of the Talk. Prefix Codes

More information

UNIT I INFORMATION THEORY. I k log 2

UNIT I INFORMATION THEORY. I k log 2 UNIT I INFORMATION THEORY Claude Shannon 1916-2001 Creator of Information Theory, lays the foundation for implementing logic in digital circuits as part of his Masters Thesis! (1939) and published a paper

More information

Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018

Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018 Lecture 13: Orthogonal projections and least squares (Section 3.2-3.3) Thang Huynh, UC San Diego 2/9/2018 Orthogonal projection onto subspaces Theorem. Let W be a subspace of R n. Then, each x in R n can

More information

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for MARKOV CHAINS A finite state Markov chain is a sequence S 0,S 1,... of discrete cv s from a finite alphabet S where q 0 (s) is a pmf on S 0 and for n 1, Q(s s ) = Pr(S n =s S n 1 =s ) = Pr(S n =s S n 1

More information

Entropy Coding. Connectivity coding. Entropy coding. Definitions. Lossles coder. Input: a set of symbols Output: bitstream. Idea

Entropy Coding. Connectivity coding. Entropy coding. Definitions. Lossles coder. Input: a set of symbols Output: bitstream. Idea Connectivity coding Entropy Coding dd 7, dd 6, dd 7, dd 5,... TG output... CRRRLSLECRRE Entropy coder output Connectivity data Edgebreaker output Digital Geometry Processing - Spring 8, Technion Digital

More information

Intro to Information Theory

Intro to Information Theory Intro to Information Theory Math Circle February 11, 2018 1. Random variables Let us review discrete random variables and some notation. A random variable X takes value a A with probability P (a) 0. Here

More information

Introduction to algebraic codings Lecture Notes for MTH 416 Fall Ulrich Meierfrankenfeld

Introduction to algebraic codings Lecture Notes for MTH 416 Fall Ulrich Meierfrankenfeld Introduction to algebraic codings Lecture Notes for MTH 416 Fall 2014 Ulrich Meierfrankenfeld December 9, 2014 2 Preface These are the Lecture Notes for the class MTH 416 in Fall 2014 at Michigan State

More information

(Classical) Information Theory II: Source coding

(Classical) Information Theory II: Source coding (Classical) Information Theory II: Source coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract The information content of a random variable

More information

Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet)

Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet) Compression Motivation Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet) Storage: Store large & complex 3D models (e.g. 3D scanner

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

54 D. S. HOODA AND U. S. BHAKER Belis and Guiasu [2] observed that a source is not completely specied by the probability distribution P over the sourc

54 D. S. HOODA AND U. S. BHAKER Belis and Guiasu [2] observed that a source is not completely specied by the probability distribution P over the sourc SOOCHOW JOURNAL OF MATHEMATICS Volume 23, No. 1, pp. 53-62, January 1997 A GENERALIZED `USEFUL' INFORMATION MEASURE AND CODING THEOREMS BY D. S. HOODA AND U. S. BHAKER Abstract. In the present communication

More information

DCSP-3: Minimal Length Coding. Jianfeng Feng

DCSP-3: Minimal Length Coding. Jianfeng Feng DCSP-3: Minimal Length Coding Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Automatic Image Caption (better than

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE General e Image Coder Structure Motion Video x(s 1,s 2,t) or x(s 1,s 2 ) Natural Image Sampling A form of data compression; usually lossless, but can be lossy Redundancy Removal Lossless compression: predictive

More information

Lossless Source Coding

Lossless Source Coding Chapter 2 Lossless Source Coding We begin this chapter by describing the general source coding scenario in Section 2.1. Section 2.2 introduces the most rudimentary kind of source codes, called fixed-length

More information

Reserved-Length Prefix Coding

Reserved-Length Prefix Coding Reserved-Length Prefix Coding Michael B. Baer Ocarina Networks 42 Airport Parkway San Jose, California 95110-1009 USA Email:icalbear@ 1eee.org arxiv:0801.0102v1 [cs.it] 30 Dec 2007 Abstract Huffman coding

More information

Information Theory with Applications, Math6397 Lecture Notes from September 30, 2014 taken by Ilknur Telkes

Information Theory with Applications, Math6397 Lecture Notes from September 30, 2014 taken by Ilknur Telkes Information Theory with Applications, Math6397 Lecture Notes from September 3, 24 taken by Ilknur Telkes Last Time Kraft inequality (sep.or) prefix code Shannon Fano code Bound for average code-word length

More information

The Optimal Fix-Free Code for Anti-Uniform Sources

The Optimal Fix-Free Code for Anti-Uniform Sources Entropy 2015, 17, 1379-1386; doi:10.3390/e17031379 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article The Optimal Fix-Free Code for Anti-Uniform Sources Ali Zaghian 1, Adel Aghajan

More information

Information Theory. M1 Informatique (parcours recherche et innovation) Aline Roumy. January INRIA Rennes 1/ 73

Information Theory. M1 Informatique (parcours recherche et innovation) Aline Roumy. January INRIA Rennes 1/ 73 1/ 73 Information Theory M1 Informatique (parcours recherche et innovation) Aline Roumy INRIA Rennes January 2018 Outline 2/ 73 1 Non mathematical introduction 2 Mathematical introduction: definitions

More information

Information and Entropy

Information and Entropy Information and Entropy Shannon s Separation Principle Source Coding Principles Entropy Variable Length Codes Huffman Codes Joint Sources Arithmetic Codes Adaptive Codes Thomas Wiegand: Digital Image Communication

More information

Efficient On-line Schemes for Encoding Individual Sequences with Side Information at the Decoder

Efficient On-line Schemes for Encoding Individual Sequences with Side Information at the Decoder Efficient On-line Schemes for Encoding Individual Sequences with Side Information at the Decoder Avraham Reani and Neri Merhav Department of Electrical Engineering Technion - Israel Institute of Technology

More information

Lecture 1: September 25, A quick reminder about random variables and convexity

Lecture 1: September 25, A quick reminder about random variables and convexity Information and Coding Theory Autumn 207 Lecturer: Madhur Tulsiani Lecture : September 25, 207 Administrivia This course will cover some basic concepts in information and coding theory, and their applications

More information

Lecture 3 : Algorithms for source coding. September 30, 2016

Lecture 3 : Algorithms for source coding. September 30, 2016 Lecture 3 : Algorithms for source coding September 30, 2016 Outline 1. Huffman code ; proof of optimality ; 2. Coding with intervals : Shannon-Fano-Elias code and Shannon code ; 3. Arithmetic coding. 1/39

More information

Block 2: Introduction to Information Theory

Block 2: Introduction to Information Theory Block 2: Introduction to Information Theory Francisco J. Escribano April 26, 2015 Francisco J. Escribano Block 2: Introduction to Information Theory April 26, 2015 1 / 51 Table of contents 1 Motivation

More information

CSE 20. Lecture 4: Introduction to Boolean algebra. CSE 20: Lecture4

CSE 20. Lecture 4: Introduction to Boolean algebra. CSE 20: Lecture4 CSE 20 Lecture 4: Introduction to Boolean algebra Reminder First quiz will be on Friday (17th January) in class. It is a paper quiz. Syllabus is all that has been done till Wednesday. If you want you may

More information

Generalized Kraft Inequality and Arithmetic Coding

Generalized Kraft Inequality and Arithmetic Coding J. J. Rissanen Generalized Kraft Inequality and Arithmetic Coding Abstract: Algorithms for encoding and decoding finite strings over a finite alphabet are described. The coding operations are arithmetic

More information

Universal Loseless Compression: Context Tree Weighting(CTW)

Universal Loseless Compression: Context Tree Weighting(CTW) Universal Loseless Compression: Context Tree Weighting(CTW) Dept. Electrical Engineering, Stanford University Dec 9, 2014 Universal Coding with Model Classes Traditional Shannon theory assume a (probabilistic)

More information

Tight Upper Bounds on the Redundancy of Optimal Binary AIFV Codes

Tight Upper Bounds on the Redundancy of Optimal Binary AIFV Codes Tight Upper Bounds on the Redundancy of Optimal Binary AIFV Codes Weihua Hu Dept. of Mathematical Eng. Email: weihua96@gmail.com Hirosuke Yamamoto Dept. of Complexity Sci. and Eng. Email: Hirosuke@ieee.org

More information

EE5585 Data Compression January 29, Lecture 3. x X x X. 2 l(x) 1 (1)

EE5585 Data Compression January 29, Lecture 3. x X x X. 2 l(x) 1 (1) EE5585 Data Compression January 29, 2013 Lecture 3 Instructor: Arya Mazumdar Scribe: Katie Moenkhaus Uniquely Decodable Codes Recall that for a uniquely decodable code with source set X, if l(x) is the

More information

CS 229r Information Theory in Computer Science Feb 12, Lecture 5

CS 229r Information Theory in Computer Science Feb 12, Lecture 5 CS 229r Information Theory in Computer Science Feb 12, 2019 Lecture 5 Instructor: Madhu Sudan Scribe: Pranay Tankala 1 Overview A universal compression algorithm is a single compression algorithm applicable

More information

Information Theory CHAPTER. 5.1 Introduction. 5.2 Entropy

Information Theory CHAPTER. 5.1 Introduction. 5.2 Entropy Haykin_ch05_pp3.fm Page 207 Monday, November 26, 202 2:44 PM CHAPTER 5 Information Theory 5. Introduction As mentioned in Chapter and reiterated along the way, the purpose of a communication system is

More information

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 Please submit the solutions on Gradescope. EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 1. Optimal codeword lengths. Although the codeword lengths of an optimal variable length code

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

COMMUNICATION SCIENCES AND ENGINEERING

COMMUNICATION SCIENCES AND ENGINEERING COMMUNICATION SCIENCES AND ENGINEERING X. PROCESSING AND TRANSMISSION OF INFORMATION Academic and Research Staff Prof. Peter Elias Prof. Robert G. Gallager Vincent Chan Samuel J. Dolinar, Jr. Richard

More information

CHAPTER 3. P (B j A i ) P (B j ) =log 2. j=1

CHAPTER 3. P (B j A i ) P (B j ) =log 2. j=1 CHAPTER 3 Problem 3. : Also : Hence : I(B j ; A i ) = log P (B j A i ) P (B j ) 4 P (B j )= P (B j,a i )= i= 3 P (A i )= P (B j,a i )= j= =log P (B j,a i ) P (B j )P (A i ).3, j=.7, j=.4, j=3.3, i=.7,

More information

Guess & Check Codes for Deletions, Insertions, and Synchronization

Guess & Check Codes for Deletions, Insertions, and Synchronization Guess & Check Codes for Deletions, Insertions, and Synchronization Serge Kas Hanna, Salim El Rouayheb ECE Department, Rutgers University sergekhanna@rutgersedu, salimelrouayheb@rutgersedu arxiv:759569v3

More information