Lecture 07. Fundamentals of Lidar Remote Sensing (5) Physical Processes in Lidar

Size: px
Start display at page:

Download "Lecture 07. Fundamentals of Lidar Remote Sensing (5) Physical Processes in Lidar"

Transcription

1 Lecture 07. Fundamentals of Lidar Remote Sensing (5) Physical Processes in Lidar Light interaction with objects (continued) Polarization of light Polarization in scattering Comparison of lidar equations Comparison of backscatter cross-sections Light transmission through the atmosphere Summary and question 1

2 LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, FALL 2014 Polarization of Light Light, as a photon stream, is also an electromagnetic wave - Wave-particle duality. It is a transverse EM wave. There are both electric and magnetic fields associated with the light wave vector. The electric field E defines the polarization of light. 2

3 Polarization of Light For every single photon regarded as a plane wave, its complex amplitude vector can be written as For unpolarized light the phases ϕ x and ϕ y are uncorrelated and their difference fluctuates statistically. For linearly polarized light in x, A oy = 0; in a direction α against x, ϕ x = ϕ y and tanα = A oy /A ox. For circular polarization A ox = A oy and ϕ x = ϕ y ± π/2. The different states of polarization can be characterized by their Jones a vectors, which are defined as where the normalized vectore {a, b} E = E x is the Jones vector. E y = E b ei(ωt kz) The Jones representation shows its advantages when we consider the transmission of light through optical elements such as polarizers, wave plates, or beam splitters that can be described by 2x2 Jones matrices. The polarization state of the transmitted light is then obtained by multiplication of the Jones vector of the incident wave by the Jones matrix b of the optical element. E x and E y form the orthogonal basis. E = A o e i(ωt kz) A o = A ox eiφ x A oy e iφ y E t = E xt E yt = a c d E xo E yo 3

4 Jones Vectors and Jones Matrices 4

5 Stokes Vectors and Mueller Matrices Jones vectors and Jones matrices are used in laser spectroscopy to describe the polarization state of light, which is usually coherent light. They are good descriptions of the single photon behaviors. Stokes vectors and Mueller Matrices are formulated to represent incoherent (and coherent) light consisting of many photons, in terms of its total intensity (I), degree of polarization (p), and polarization ellipse. 5

6 Stokes Vectors and Mueller Matrices Stokes parameters do not form a preferred basis of the space, but rather were chosen for easy to be measured or calculated. Linearly polarized (horizontal) Linearly polarized (vertical) Linearly polarized (+45 ) Linearly polarized (-45 ) Right-hand circularly polarized Left-hand circularly polarized Unpolarized 6

7 Polarization Lidar Equation Obeying the same physics picture of lidar remote sensing as scalar lidar equations, polarization lidar equation uses Stockes vectors and Mueller matrices to describe the polarization states and changes along with the instrument properties on polarization, etc. Due to the matrix calculation, the polarization lidar equation is written from right to left.

8 LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, FALL 2014 Polarization in Scattering Depolarization is the phenomenon that the scattered photons possess polarizations different than that of the original incident laser photons. Usually the incident laser beam has a linear polarization. Depolarization means that the return photons may have polarization other than this linear polarization, e.g., linear polarizations in other directions, or elliptical polarization. Note that every photon possesses certain polarization, i.e., every photon is polarized. Non-polarized light or depolarized light is talked about on the statistical point of view of a large number of photons. The range-resolved linear depolarization ratio is defined from lidar or optical observations as below in many lidar applications. Detailed sophisticated treatment of lidar depolarization needs to consider the optical matrix for polarization. δ(r) = P P = I I where P and I are the light power and intensity detected. 8

9 LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, FALL 2014 Depolarization in Scattering Rayleigh scattering from air molecules can cause depolarization but only a few percent or less. Mie scattering from spherical particles at exactly 180 will not introduce depolarization. Depolarization can be resulted from (1) Spherical particle scattering at near 180 but not exact (2) Non-spherical particle shape (true for both aerosol/cloud and atmosphere molecules) (3) Inhomogeneous refraction index (4) Multiple scattering inside fog, cloud or rain. 9

10 Scattering, Absorption, Fluorescence Mie Rayleigh λ ON, λ OFF Cabannes PR Raman VR Raman hν hν = E k -E i E k E i Absorption & Resonance Fluorescence Absorption Line ON OFF λ Differential Absorption Transceiver 10

11 Rayleigh Backscatter Coefficient β Rayleigh (λ,z,θ = π) = P(z) T(z) 1 λ ( m 1 sr 1 ) P in mbar and T in Kelvin at altitude z, λ in meter. β(θ) = β T 4π P(θ) = β T 4π ( cos2 θ) Rayleigh Backscatter Cross Section dσ m (λ) dω = λ ( m 2 sr 1 ) where λ is the wavelength in nm. For Rayleigh lidar, λ = 532 nm, 6.22 x m 2 sr -1 11

12 Scattering Form of Lidar Equation Rayleigh, Mie, and Raman scattering processes are instantaneous scattering processes, so there are no finite relaxation effects involved, but infinitely short duration. For Rayleigh and Mie scattering, there is no frequency shift when the atmospheric particles are at rest. The lidar equation is written as N S (λ,r) = P L (λ)δt ( β(λ,r)δr) hc λ N S (λ,r) = P L(λ L )Δt ( β(λ,λ L,R)ΔR) hc λ L A R 2 A R 2 T 2 (λ,r)( η(λ)g(r) )+ N B For Raman scattering, there is a large frequency shift. Raman lidar equation may be written as T(λ L,R)T(λ,R) ( ) η(λ,λ L )G(R) ( )+ N B λ λ L, p i (λ) 1, p i (λ) <1 T(λ,R) = exp R 0 α(λ,r)dr 12

13 Differential Absorption/Scattering Form of Lidar Equation For the laser with wavelength λ on on the molecular absorption line [ ] N S (λ on,r) = N L (λ on ) β sca (λ on,r)δr A R 2 exp 2 z exp 2 σ abs (λ on, r ʹ )n c ( r ʹ )dr ʹ 0 η(λ on)g(r) 0 α (λ on, r ʹ )dr ʹ z [ ] + N B For the laser with wavelength λ off off the molecular absorption line A z N S (λ off,r) = N L (λ off )[ β sca (λ off,r)δr] R 2 exp 2 α (λ off, r ʹ )dr ʹ 0 z exp 2 σ abs (λ off, r ʹ )n c ( r ʹ )dr ʹ 0 [ η(λ off )G(R)] + N B Differential absorption cross-section Δσ abs (R) = σ abs (λ ON,R) σ abs (λ OFF,R) 13

14 Fluorescence Form of Lidar Equation Resonance fluorescence and laser-induced-fluorescence are NOT instantaneous processes, but have delays due to the radiative lifetime of the excited states. It contains two steps - absorption and then emission. The lidar equation in fluorescence form is given by N S (λ,r) = P L (λ)δt hc λ ( σ eff (λ,r)n c (z)r B (λ)δr) A 4πR 2 T 2 a (λ,r)t 2 c (λ,r) ( ) η(λ)g(r) ( )+ N B Here, T C (R) is the transmission caused by the constituent absorption. T c (R) = exp( R σ eff (λ, r ʹ )n c ( r ʹ )d r ʹ ) = exp R α c(λ, r ʹ )d r ʹ R bottom ( ) R bottom Here, α(λ,r) is the extinction coefficient caused by the absorption. α c (λ,r) = σ eff (λ,r)n c (R) 14

15 Backscatter Cross-Section Comparison Physical Process Backscatter Cross-Section Mechanism Mie (Aerosol) Scattering cm 2 sr -1 Two-photon process Atomic Absorption and Resonance Fluorescence Elastic scattering, instantaneous cm 2 sr -1 Two single-photon process (absorption and spontaneous emission) Delayed (radiative lifetime) Molecular Absorption cm 2 sr -1 Single-photon process Fluorescence from molecule, liquid, solid Rayleigh Scattering (Wavelength Dependent) Raman Scattering (Wavelength Dependent) cm 2 sr -1 Two single-photon process Inelastic scattering, delayed (lifetime) cm 2 sr -1 Two-photon process Elastic scattering, instantaneous cm 2 sr -1 Two-photon process Inelastic scattering, instantaneous The total absorption cross-section is 4π times backscatter cross-section. 15

16 Light Propagation through the Atmosphere When light propagates through the atmosphere or medium, it experiences attenuation (extinction) caused by absorption and scattering of molecules and aerosol particles. # #Transmission + Extinction = 1 I 0 (ν) P 0 (ν) Atmosphere or Medium I T (ν) P T (ν) Transmission = I T (ν) I 0 (ν) Transmission = P T (ν) P 0 (ν) Extinction = I 0(ν) I T (ν) I 0 (ν) Extinction = P 0 (ν) P T (ν) P 0 (ν) The power/energy loss of a laser beam propagating through the atmosphere is due to molecular absorption, molecular scattering, aerosol scattering and aerosol absorption. 16

17 I 0 (λ) LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, FALL 2014 Atomic and Molecular Absorption Molecules I T (λ) hν hν = E k -E i E k The intensity change di of a light propagating through an absorbing sample is determined by the absorption coefficient α mol,abs in the following manner: di(λ) = I(λ)α(λ)dz = Iσ ik (λ)(n i N k )dz α(λ) = # σ ik (λ)(n i # N k ) is absorption coefficient caused by transition E i E k Here, σ ik is the absorption cross section, N i and N k are the populations on the energy levels of E i and E k, respectively. If ΔN = N i N k is independent of the light intensity I, the absorbed intensity di is proportional to the incident intensity I (linear absorption). Solving the above equation, we obtain I(λ,z) = I 0 exp 0 σ ik (λ)(n i N k )dz I(λ,z) = I 0 e σ (λ)(n i N k )L = I 0 e z L -- Lambert-Beer s Law E i α (λ)l 17

18 Light Transmission through the Atmosphere Transmission T(λ,R) = I T (λ,r) I 0 (λ) R = exp α(λ,r)dr 0 = exp R 0 σ(λ)δn(r)dr (5.6) Taken from Absorption cross section, scatter concentration, and path length all matter to the light transmission. Zenith angle is related to path length. MODTRAN provides a good resource for calculating light transmission. 18

19 Light Transmission through the Atmosphere For λ<200nm, atmosphere is totally opaque due to Schumann-Runge absorption of O 2 For 200nm<λ<350nm, significant attenuation due to O 3 absorption For nm, visible light good transmission ( nm) For near IR, mid-ir, far-ir, CO 2 and H 2 O have strong absorption bands. Taken from Laser Remote Sensing book by Measures 19

20 Molecular Absorption, Molecular Scattering, Aerosol Scattering, and Aerosol Absorption α = α mol,abs + α mol,sca + α aer,sca + α aer,abs Here, the scattering extinction coefficients are the scattering coefficient integrated over the entire 4π solid angle, as all-direction scatterings are attenuation to the laser light. The extinction coefficient has the meaning of the percentage change of laser intensity per unit distance In approximation of constant α over distance, the laser transmission is given by Total scattering cross section of atm molecular for z < 100 km is given by α = di /I dz T = e αl 550 σ m,total (λ) = 4.56 λ(nm) m 2 Given a sea-level N m = cm -3, the molecular scattering extinction coefficient is α m = km 1 -- a sea-level visibility exceeding 250 km! The main attenuation of mid-visible light is due to the presence in the atmosphere of various solid and liquid particles aerosols. 20

21 Atmospheric Attenuation Coefficient Empirical formula for atmospheric extinction coefficient κ Mie (λ) 3.91 q 550 km 1 R v λ 1/3 q = 0.585R v for R v 6km Taken from Laser Remote Sensing book by Measures 21

22 General Case of Light Transmission ν 2 ν 1 I 0 (ν) I 0 (ν)dν z 1 = 0 z 2 = z Radiation propagation through an medium I T (ν,z) ν 2 ν 1 I T (ν,z)dν Transmission for single-frequency radiation propagation through an inhomogeneous medium T(ν,z) = I T (ν,z) I 0 (ν) z = exp 2 α(ν,z)dz z1 = exp z 2 σ(ν,z)δn(z)dz z1 Transmission for the general case of radiation propagation through an inhomogeneous medium in the spectral interval [ν 1, ν 2 ]: T(z) = ν 2 ν 1 ν 2 ν 1 I T (ν,z)dν I 0 (ν)dν = ν 2 ν 1 z I 0 (ν)exp 2 σ(ν,z)δn(z)dz z1 dν ν 2 ν 1 I 0 (ν)dν 22

23 General Case of Light Transmission Extinction/Attenuation for the general case of radiation propagation through an inhomogeneous medium in the spectral interval [ν 1, ν 2 ]: A(z) =1 T(z) = ν 2 ν 1 z I 0 (ν) 1 exp 2 σ(ν,z)δn(z)dz z1 dν ν 2 ν 1 I 0 (ν)dν In the case of homogeneous spectral dependence of the source intensity over the spectral interval [ν 1, ν 2 ]: ν z T(z) = exp 2 2 σ(ν,z)δn(z)dz z1 dν (ν 2 ν 1 ) T(z) = ν 1 In the case of homogeneous absorbing medium: ν 2 ν 1 I 0 (ν)exp[ ΔNσ(ν)L ]dν ν 1 ν 2 ν 1 I 0 (ν)dν In the case of homogeneous absorbing medium and homogeneous source spectral dependence: ν T(z) = 2 exp[ ΔNσ(ν)L]dν (ν 2 ν 1 ) 23

24 Summary (1) Numerous physical processes are involved in lidars, including the interactions between light and objects, and the light transmission through the atmosphere or other medium. The fundamentals to understand atomic structures and energy levels are related to the interactions inside and outside an atom, including electrostatic interactions, electron spin, spin-orbit angular momentum coupling, nuclear spin, mass and volume, external fields, etc. Molecular structures and energy levels further include interactions among atoms within a molecule. Liquids and solids further involve intermolecular interactions. Main physical processes for interactions between light and objects include elastic and inelastic scattering, absorption and differential absorption, resonance fluorescence, laser induced fluorescence, Doppler effects, Boltzmann distribution, reflection from surfaces, multiple scattering, and depolarization. There are large differences in scattering cross sections for various physical processes involved in lidar. 24

25 Summary (2) Doppler effects, Boltzmann distribution, polarization properties, etc, all can be utilized in lidar applications to infer atmospheric parameters like wind, temperature, aerosol properties, etc. Multiple scattering should be considered in lower atmosphere studies, especially for cloud and aerosol research. Light transmission through the atmosphere is mainly attenuated by molecular and aerosol absorption and scattering. When wavelengths fall in a strong molecular absorption bands, the attenuation could be significant, e.g., UV light below 200 nm or mid-infrared around 6.2 μm the Earth s atmosphere becomes total opaque. The visibility of atmosphere is mainly dominated by aerosol scattering and absorption, therefore varies dramatically under different meteorological conditions. Molecular oxygen O 2 in the Earth s atmosphere has strong absorptions centered at 760 nm and 687 nm with O 2 A- and B-bands, respectively. 25

26 Summary (3) and Questions Interactions between light and objects are the basis of lidar remote sensing, because it is these interactions that modify light properties so that the light can carry away the information of the objects. Understanding these physical processes precisely is the key to successful lidar simulations, design, development, and applications. Lidar equations are developed according to these physical processes. Lidar equation may change its form to best fit for each particular physical process and lidar application. Can you use the Boltzmann distribution in pure rotational Raman spectroscopy to measure temperatures? If yes, how? Our Textbook Chapter 3 for elastic scattering and polarization Chapter 4 for differential absorption Chapters 5 & 7 for resonance fluorescence, Boltzmann, Doppler Chapter 6 for laser-induced fluorescence Laser monitoring of the atmosphere (Hinkley) Ch. 3 and 4 Laser Remote Sensing (Measures) Chapter 4 Lidar (Ed. Weitkamp) Chapters 2 and 3 26

Lecture 05. Fundamentals of Lidar Remote Sensing (3)

Lecture 05. Fundamentals of Lidar Remote Sensing (3) Lecture 05. Fundamentals of Lidar Remote Sensing (3) Physical Processes in Lidar Overview of physical processes in lidar Light transmission through the atmosphere Light interaction with objects Elastic

More information

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Light interactions with objects (continued) Resonance fluorescence Laser induced fluorescence Doppler effect (Doppler shift

More information

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Physical processes in lidar (continued) Doppler effect (Doppler shift and broadening) Boltzmann distribution Reflection

More information

Lecture 10. Lidar Classification and Envelope Estimation

Lecture 10. Lidar Classification and Envelope Estimation Lecture 10. Lidar Classification and Envelope Estimation Various Lidar Classifications Lidar Classification by Topics Temperature lidar technologies Wind lidar technologies Constituent lidar technologies

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Lecture 31. Constituent Lidar (3)

Lecture 31. Constituent Lidar (3) Lecture 31. Constituent Lidar (3) otational Vibrational-otational (V) aman DIAL Multiwavelength DIAL Comparison of Constituent Lidar Techniques Summary for Constituent Lidar Conventional aman DIAL for

More information

Lecture 17. Temperature Lidar (6) Integration Technique

Lecture 17. Temperature Lidar (6) Integration Technique Lecture 17. Temperature Lidar (6) Integration Technique Doppler effects in absorption/backscatter coefficient Integration technique for temperature Searchlight integration lidar Rayleigh integration temperature

More information

Lecture 11. Classification of Lidar by Topics

Lecture 11. Classification of Lidar by Topics Lecture 11. Classification of Lidar by Topics Effective cross section for resonance fluorescence Various lidar classifications What are topical lidars and why? Temperature techniques Wind techniques Aerosol

More information

Lecture 15. Temperature Lidar (4) Doppler Techniques

Lecture 15. Temperature Lidar (4) Doppler Techniques Lecture 15. Temperature Lidar (4) Doppler Techniques q Doppler effects in absorption and backscatter coefficient vs. cross-section q Doppler Technique to Measure Temperature and Wind Ø Doppler Shift and

More information

Lecture 21. Constituent Lidar (3)

Lecture 21. Constituent Lidar (3) Lecture 21. Constituent Lidar (3) Motivations to study atmosphere constituents Lidar detection of atmospheric constituents (spectroscopic signatures to distinguish species) Metal atoms by resonance fluorescence

More information

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p =

Laser Beam Interactions with Solids In absorbing materials photons deposit energy hc λ. h λ. p = Laser Beam Interactions with Solids In absorbing materials photons deposit energy E = hv = hc λ where h = Plank's constant = 6.63 x 10-34 J s c = speed of light Also photons also transfer momentum p p

More information

Lecture 12. Temperature Lidar (1) Overview and Physical Principles

Lecture 12. Temperature Lidar (1) Overview and Physical Principles Lecture 2. Temperature Lidar () Overview and Physical Principles q Concept of Temperature Ø Maxwellian velocity distribution & kinetic energy q Temperature Measurement Techniques Ø Direct measurements:

More information

Lecture 08. Solutions of Lidar Equations

Lecture 08. Solutions of Lidar Equations Lecture 08. Solutions of Lidar Equations HWK Report #1 Solution for scattering form lidar equation Solution for fluorescence form lidar equation Solution for differential absorption lidar equation Solution

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing in in December 4, 27 Outline in 2 : RTE Consider plane parallel Propagation of a signal with intensity (radiance) I ν from the top of the to a receiver on Earth Take a layer of thickness dz Layer will

More information

Lecture 33. Aerosol Lidar (2)

Lecture 33. Aerosol Lidar (2) Lecture 33. Aerosol Lidar (2) Elastic Scattering, Raman, HSRL q Elastic-scattering lidar for aerosol detection q Single-channel vs multi-channel aerosol lidars q Measurement of aerosol extinction from

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Chapter 2 Electromagnetic Radiation Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Electromagnetic waves do not need a medium to

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Lecture 32. Lidar Error and Sensitivity Analysis

Lecture 32. Lidar Error and Sensitivity Analysis Lecture 3. Lidar Error and Sensitivity Analysis Introduction Accuracy in lidar measurements Precision in lidar measurements Error analysis for Na Doppler lidar Sensitivity analysis Summary 1 Errors vs.

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

Absorption and scattering

Absorption and scattering Absorption and scattering When a beam of radiation goes through the atmosphere, it encounters gas molecules, aerosols, cloud droplets, and ice crystals. These objects perturb the radiation field. Part

More information

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect.

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect. Lecture 11: Polarized Light Outline 1 Fundamentals of Polarized Light 2 Descriptions of Polarized Light 3 Scattering Polarization 4 Zeeman Effect 5 Hanle Effect Fundamentals of Polarized Light Electromagnetic

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

Lecture 13. Temperature Lidar (2) Resonance Fluorescence Doppler Tech

Lecture 13. Temperature Lidar (2) Resonance Fluorescence Doppler Tech LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, FALL 01 Lecture 13. Temperature Lidar () Resonance Fluorescence Doppler Tech Resonance Fluorescence Na Doppler Lidar Na Structure and Spectroscopy Scanning

More information

Lecture 4* Inherent optical properties, IOP Theory. Loss due to absorption. IOP Theory 12/2/2008

Lecture 4* Inherent optical properties, IOP Theory. Loss due to absorption. IOP Theory 12/2/2008 Lecture 4* Inherent optical properties, part I IOP Theory What properties of a medium affect the radiance field as it propagate through it? 1. Sinks of photons (absorbers) 2. Sources of photons (internal

More information

Lecture 12. Temperature Lidar (2) Resonance Fluorescence Doppler Lidar

Lecture 12. Temperature Lidar (2) Resonance Fluorescence Doppler Lidar LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, FALL 04 Lecture. Temperature Lidar () Resonance Fluorescence Doppler Lidar Resonance Fluorescence Na Doppler Lidar Na Structure and Spectroscopy Scanning

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

THREE MAIN LIGHT MATTER INTERRACTION

THREE MAIN LIGHT MATTER INTERRACTION Chapters: 3and 4 THREE MAIN LIGHT MATTER INTERRACTION Absorption: converts radiative energy into internal energy Emission: converts internal energy into radiative energy Scattering; Radiative energy is

More information

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik Laserphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet Angewandte Nanophysik, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Heisenbergbau V 202, Unterpörlitzer Straße

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

I. Rayleigh Scattering. EE Lecture 4. II. Dipole interpretation

I. Rayleigh Scattering. EE Lecture 4. II. Dipole interpretation I. Rayleigh Scattering 1. Rayleigh scattering 2. Dipole interpretation 3. Cross sections 4. Other approximations EE 816 - Lecture 4 Rayleigh scattering is an approximation used to predict scattering from

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization Satellite Remote Sensing SIO 135/SIO 236 Electromagnetic Radiation and Polarization 1 Electromagnetic Radiation The first requirement for remote sensing is to have an energy source to illuminate the target.

More information

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction

FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT. 1. Introduction FUNDAMENTALS OF REMOTE SENSING FOR RISKS ASSESSMENT FRANÇOIS BECKER International Space University and University Louis Pasteur, Strasbourg, France; E-mail: becker@isu.isunet.edu Abstract. Remote sensing

More information

Lecture 20. Wind Lidar (2) Vector Wind Determination

Lecture 20. Wind Lidar (2) Vector Wind Determination Lecture 20. Wind Lidar (2) Vector Wind Determination Vector wind determination Ideal vector wind measurement VAD and DBS technique for vector wind Coherent versus incoherent Detection Doppler wind lidar

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization r lim = 0 r e + e - mv 2/r e 2 /(4πε 0 r 2 ) KE } W = ½mv 2 - Electrons e =.6022x0-9 C ε 0 = 8.854x0-2 F/m m 0 = 9.094x0-3 kg PE } e 2 4πε 0 r (PE= F d ) e e W = - =( 2 2 -e 2 8πε 0 r 4πε 0 r ) mv 2 e

More information

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases Radiation in the Earth's Atmosphere Part 1: Absorption and Emission by Atmospheric Gases Electromagnetic Waves Electromagnetic waves are transversal. Electric and magnetic fields are perpendicular. In

More information

Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements

Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements Review of single- and multi-channel aerosol lidars Principle of High Spectral Resolution Lidar (HSRL) HSRL instrumentation University of Wisconsin

More information

Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds.

Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds. Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds. 1. Optical interactions of relevance to lasers. 2. General principles of lidars. 3. Lidar equation.

More information

p(θ,φ,θ,φ) = we have: Thus:

p(θ,φ,θ,φ) = we have: Thus: 1. Scattering RT Calculations We come spinning out of nothingness, scattering stars like dust. - Jalal ad-din Rumi (Persian Poet, 1207-1273) We ve considered solutions to the radiative transfer equation

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Laser Detection Techniques

Laser Detection Techniques Laser Detection Techniques K.-H. Gericke Institute for Physical Chemistry University Braunschweig E 2 E 1 = hn, λ = c /n Lambert-Beer Law Transmittance of the sample:: T = I / I 0 T = e -snl = e -α, where

More information

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light Polarimetry in the E-ELT era Fundamentals of Polarized Light 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

More information

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline Lecture 8: Polarimetry 2 Outline 1 Polarizers and Retarders 2 Polarimeters 3 Scattering Polarization 4 Zeeman Effect Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation (wave) description: Wavelength λ Velocity v Electric Field Strength 0 Amplitude A Time t or Distance x Period p Frequency ν time for 1

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Mie vs Rayleigh. Sun

Mie vs Rayleigh. Sun Mie vs Rayleigh Sun Chemists Probe Various Energy Levels of Molecules With Appropiate Energy Radiation It is convenient (and accurate enough for our purposes) to treat a molecule or system of molecules

More information

Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation

Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation Klaus Jockers November 11, 2014 Max-Planck-Institut für Sonnensystemforschung

More information

Lecture 16. Temperature Lidar (5) Resonance Doppler Techniques

Lecture 16. Temperature Lidar (5) Resonance Doppler Techniques LIDAR REMOTE SENSING PROF. XINZHAO CHU CU-BOULDER, SPRING 06 Lecture 6. Temperature Lidar (5) Resonance Doppler Techniques q Resonance Fluorescence Na Doppler Lidar Ø Na Structure and Spectroscopy Ø Scanning

More information

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives Module 4 : Third order nonlinear optical processes Lecture 28 : Inelastic Scattering Processes Objectives In this lecture you will learn the following Light scattering- elastic and inelastic-processes,

More information

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Objectives: 1. Attenuation of atmospheric radiation by particulates. 2. Haze and Visibility. Readings:

More information

Lecture 26. Wind Lidar (4) Direct Detection Doppler Lidar

Lecture 26. Wind Lidar (4) Direct Detection Doppler Lidar Lecture 26. Wind Lidar (4) Direct Detection Doppler Lidar Considerations (Accuracy and Precision) for DDL Na-DEMOF DDL -- Multi-frequency edge-filter DDL New development of DDL -- DDL based on Fizeau etalon

More information

Lecture 20 Optical Characterization 2

Lecture 20 Optical Characterization 2 Lecture 20 Optical Characterization 2 Schroder: Chapters 2, 7, 10 1/68 Announcements Homework 5/6: Is online now. Due Wednesday May 30th at 10:00am. I will return it the following Wednesday (6 th June).

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions Spin States Molecular Rotations Molecular Vibrations Outer Shell Electrons Inner Shell Electrons Nuclear Transitions NMR EPR Microwave Absorption Spectroscopy Infrared Absorption Spectroscopy UV-vis Absorption,

More information

24 Introduction to Spectrochemical Methods

24 Introduction to Spectrochemical Methods 24 Introduction to Spectrochemical Methods Spectroscopic method: based on measurement of the electromagnetic radiation produced or absorbed by analytes. electromagnetic radiation: include γ-ray, X-ray,

More information

General Considerations 1

General Considerations 1 General Considerations 1 Absorption or emission of electromagnetic radiation results in a permanent energy transfer from the emitting object or to the absorbing medium. This permanent energy transfer can

More information

Principles of active remote sensing: Lidars and lidar sensing of aerosols, gases and clouds.

Principles of active remote sensing: Lidars and lidar sensing of aerosols, gases and clouds. Lecture 14 Principles of active remote sensing: Lidars and lidar sensing of aerosols, gases and clouds. Objectives: 1. Optical interactions of relevance to lasers. 2. General principles of lidars. 3. Lidar

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Lecture 2: principles of electromagnetic radiation

Lecture 2: principles of electromagnetic radiation Remote sensing for agricultural applications: principles and methods Lecture 2: principles of electromagnetic radiation Instructed by Prof. Tao Cheng Nanjing Agricultural University March Crop 11, Circles

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

Jones vector & matrices

Jones vector & matrices Jones vector & matrices Department of Physics 1 Matrix treatment of polarization Consider a light ray with an instantaneous E-vector as shown y E k, t = xe x (k, t) + ye y k, t E y E x x E x = E 0x e i

More information

Dr. Linlin Ge The University of New South Wales

Dr. Linlin Ge  The University of New South Wales GMAT 9600 Principles of Remote Sensing Week2 Electromagnetic Radiation: Definition & Physics Dr. Linlin Ge www.gmat.unsw.edu.au/linlinge Basic radiation quantities Outline Wave and quantum properties Polarization

More information

Why is the sky blue?

Why is the sky blue? Why is the sky blue? Volcanic: June 12, 1991: Mt Pinatubo ejected 20 million tons of sulfur dioxide. Aerosols spread globally Haze lowered a drop of global temperature by 1F Size parameter: Rayleigh

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

Lecture 18. Temperature Lidar (7) Rayleigh Doppler Technique

Lecture 18. Temperature Lidar (7) Rayleigh Doppler Technique Lecture 18. Temperature Lidar (7) Rayleigh Doppler Technique Review of integration technique Resonance fluorescence Doppler technique vs. Rayleigh Doppler technique Rayleigh Doppler lidar High-spectral-resolution

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

Lecture 30. Further Consideration on Lidar Data Inversion

Lecture 30. Further Consideration on Lidar Data Inversion Lecture 30. Further Consideration on Lidar Data Inversion Aerosol and Cloud Lidar -- Finish Remaining of Lecture 9 Resonance Doppler lidar data processing -- Further consideration on T c -- Na density

More information

Principles of Radiative Transfer Principles of Remote Sensing. Marianne König EUMETSAT

Principles of Radiative Transfer Principles of Remote Sensing. Marianne König EUMETSAT - Principles of Radiative Transfer Principles of Remote Sensing Marianne König EUMETSAT marianne.koenig@eumetsat.int Remote Sensing All measurement processes which perform observations/measurements of

More information

Hands-on Mie lab. Emmanuel Boss, U. of Maine, Radiation transfer in the environment, 2008.

Hands-on Mie lab. Emmanuel Boss, U. of Maine, Radiation transfer in the environment, 2008. Hands-on Mie lab. Emmanuel Boss, U. of Maine, Radiation transfer in the environment, 2008. Introduction: Mie theory provides the solution for a plane-parallel EM energy interacting with a homogeneous sphere.

More information

van Quantum tot Molecuul

van Quantum tot Molecuul 10 HC10: Molecular and vibrational spectroscopy van Quantum tot Molecuul Dr Juan Rojo VU Amsterdam and Nikhef Theory Group http://www.juanrojo.com/ j.rojo@vu.nl Molecular and Vibrational Spectroscopy Based

More information

Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal. nomenclature

Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal. nomenclature Monday, Oct. 2: Clear-sky radiation; solar attenuation, Thermal nomenclature Sun Earth Y-axis: Spectral radiance, aka monochromatic intensity units: watts/(m^2*ster*wavelength) Blackbody curves provide

More information

EE485 Introduction to Photonics

EE485 Introduction to Photonics Pattern formed by fluorescence of quantum dots EE485 Introduction to Photonics Photon and Laser Basics 1. Photon properties 2. Laser basics 3. Characteristics of laser beams Reading: Pedrotti 3, Sec. 1.2,

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

FUNDAMENTALS OF POLARIZED LIGHT

FUNDAMENTALS OF POLARIZED LIGHT FUNDAMENTALS OF POLARIZED LIGHT A STATISTICAL OPTICS APPROACH Christian Brosseau University of Brest, France A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New York - Chichester. Weinheim. Brisbane

More information

Polarization. Polarization. Physics Waves & Oscillations 4/3/2016. Spring 2016 Semester Matthew Jones. Two problems to be considered today:

Polarization. Polarization. Physics Waves & Oscillations 4/3/2016. Spring 2016 Semester Matthew Jones. Two problems to be considered today: 4/3/26 Physics 422 Waves & Oscillations Lecture 34 Polarization of Light Spring 26 Semester Matthew Jones Polarization (,)= cos (,)= cos + Unpolarizedlight: Random,, Linear polarization: =,± Circular polarization:

More information

Lecture 29. Lidar Data Inversion (2)

Lecture 29. Lidar Data Inversion (2) Lecture 9. Lidar Data Inversion ) q Pre-process and Profile-process q Main Process Procedure to Derive T and V R Using Ratio Doppler Technique q Derivations of n c from narrowband resonance Doppler lidar

More information

ATM 507 Lecture 4. Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review. Problem Set 1: due Sept.

ATM 507 Lecture 4. Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review. Problem Set 1: due Sept. ATM 507 Lecture 4 Text reading Chapters 3 and 4 Today s topics Chemistry, Radiation and Photochemistry review Problem Set 1: due Sept. 11 Temperature Dependence of Rate Constants Reaction rates change

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition Contents Preface to the Second Edition Preface to the First Edition iii v 1 Introduction 1 1.1 Relevance for Climate and Weather........... 1 1.1.1 Solar Radiation.................. 2 1.1.2 Thermal Infrared

More information

Polarized Light. Second Edition, Revised and Expanded. Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A.

Polarized Light. Second Edition, Revised and Expanded. Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A. Polarized Light Second Edition, Revised and Expanded Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A. ш DEK KER MARCEL DEKKER, INC. NEW YORK BASEL Contents Preface to

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical Sources-LASER

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical Sources-LASER FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 15 Optical Sources-LASER Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical

More information