Regular Expressions (Pre Lecture)

Size: px
Start display at page:

Download "Regular Expressions (Pre Lecture)"

Transcription

1 Regular Expressions (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2017 Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

2 Regular Expressions Outline Regular Expressions Regular Expressions to NFA NFA to Regular Expressions Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

3 Regular Expressions Regular Operator The regular set is closed under such an operator input One or more regular language(s), R... output A regular language, R op : R R... R Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

4 Regular Expressions Regular Language Basis empty set: defines the language {}, containing no members L ( ) = = {} empty string: defines the language {}, containing the empty string L () = {} = {()} single symbol: Any single symbol a Σ defines the language {a}, containing the string (a) L (a) = {a} Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

5 Regular Expressions Basis: Expression vs. Language Regular Expression Language L ( ) {} L () {()} a L (a) {a} Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

6 Regular Expressions Basic Regular Operators concatenation(α, β): αβ denotes L (α) followed by L (β) L (αβ) = {xy x L (α) y L (β)} union(α, β): α β denotes all members of L (α) or L (β) L (α β) = L (α) L (β) = {x x L (α) x L (β)} Kleene-closure(α): α denotes zero or more repetitions of L (α) L (α ) = {x 0... x n (n 0) (x i L (α))} Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

7 Regular Expressions Operators: Expression vs. Language Regular Expression Language αβ concatenate(α, β) L (αβ) {xy x L (α) y L (β)} α β union(α, β) L (α β) L (α) L (β) α kleene-closure(α, β) L (α ) {x 0... x n (n 0) (x i L (α))} Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

8 Regular Expressions Regex Precedence Convention 3: Kleene-Closure (highest/tightest) 2: Concatenation 1: Union (lowest/last) Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

9 Regular Expressions Example: Regex Precedence (01) (10) 01 0(1 ) (1 ) (0(0 )) (1(1 )) Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

10 Regular Expressions Example: Simple Regexes L (01) = {01} L (01 0) = {01, 0} L (0(1 0)) = {01, 00} L (0 ) = {, 0, 00, 000,...} Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

11 Regular Expressions Algebraic Properties Regex concatenation union not commutative L (αβ) L (βα) associative L ((αβ)γ) = L (α(βγ)) commutative L (α β) = L (β α) associative L ((α β) γ) = L (α (β γ)) distributive L (α(β γ)) = L (αβ αγ) Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

12 Regular Expressions Example: Regex Algebra Simplify: L (α ) = L (α) Simplify: L (α) = L (α) Simplify: L (α ) = L (α ) Simplify: L ((0 ) ) = L (0 ) Factor: L ( ) = L ((00 11) 10) Expand: L ((a b)(b c)) = L (a(b c) b(b c)) = L (ab ac bb bc) Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

13 Regular Expressions Historical Interlude Who s this Kleene guy? Alonzo Church Alan Turing Stephen Cole Kleene Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

14 Regular Expressions to NFA Outline Regular Expressions Regular Expressions to NFA NFA to Regular Expressions Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

15 Regular Expressions to NFA Regex to NFA Basis L (a) L () L ( ) a Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

16 Regular Expressions to NFA Concatenation concatenate N 1. N, 2. N 1. N 2. Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

17 Regular Expressions to NFA Concatenation (continued) concatenate N 1. N, 2. N 1 N 2.. Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

18 Regular Expressions to NFA Union union N 1., N 2. N 1 N 2.. Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

19 Regular Expressions to NFA Union (continued) union N 1., N 2. N 1 N 2.. Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

20 Regular Expressions to NFA Kleene-Closure kleene-closure N 1. N 1. Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

21 Regular Expressions to NFA Kleene-Closure (continued) kleene-closure N 1. N 1. Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

22 Regular Expressions to NFA Example: L (01) to NFA L (0) L (1) 0 1 Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

23 Regular Expressions to NFA Example: L (01) to NFA (continued) 0 1 Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

24 Regular Expressions to NFA Example: L (01 0) to NFA L (01) 0 1 L (0) 0 Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

25 Regular Expressions to NFA Example: L (01 0) to NFA (continued) Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

26 Regular Expressions to NFA Example: L (0 ) to NFA L (0) 0 Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

27 Regular Expressions to NFA Example: L (0 ) to NFA (continued) 0 Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

28 Regular Expressions to NFA Example: L (01 0 ) to NFA Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

29 Regular Expressions to NFA Regular Expressions as Trees τ 1 τ 2... τ n CONCATENATION τ 1 τ 2... τ n UNION τ KLEENE-CLOSURE τ 1 τ 2... τ n τ 1 τ 2... τ n τ (:concatenation tau-1... tau-n) (:union tau-1... tau-n) (:kleene-closure tau) Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

30 Regular Expressions to NFA Example: Regex Trees (1 0) 0 CONCATENATION UNION CONCATENATION KLEENE-CLOSURE 0 1 CONCATENATION 0 0 UNION (:concatenation 0 1) (:union (:concatenation 0 1) 0) (:concatenation 0 (:union 0 1)) (:kleene-closure 0) Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

31 Regular Expressions to NFA McNaughton-Yamada-Thompson Algorithm Algorithm 1: Recursive McNaughton-Yamada-Thompson Algorithm Input: (Q, E, s), T ; // NFA states, edges, state, regex tree Output: (Q, E, a) ; // NFA states, edges, end state 1 if root(t) = CONCATENATION then 2 (Q, E, a) fold-left(myt, (Q, E, s), children(t )) ; 3 else if root(t) = UNION then 4 a newstate() ; // New state for accept 5 E E; 6 forall T children(t ) do 7 (Q, E, ã) MYT((Q, E, s), T ) ; // recurse on child { } 8 E E ã a ; // edge from child accept ã to current accept state a 9 else if root(t) = KLEENE-CLOSURE then 10 s newstate() ; // New state for of repetition 11 (Q, E, a) MYT((Q, E, s ), child(t )) ; // Recurse on child 12 E E (s s ) (s a) (a s ) ; 13 else // Base Case 14 a newstate(); 15 E E (s T a) ; Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

32 NFA to Regular Expressions Outline Regular Expressions Regular Expressions to NFA NFA to Regular Expressions Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

33 NFA to Regular Expressions Generalized NFA Intuition: an NFA with regular expressions as edge labels Ñ = (Q, Σ, δ, q, q accept ) Q is the finite set of states Σ is the input alphabet δ : (Q \ {qaccept }) (Q \ {q }) REGEX q Q is the state q Q is the accept state Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

34 NFA to Regular Expressions NFA to Regex: Convert-Rip rip E( q, q) E(q i, q) E( q, q j ) q i q q j E(q i, q j ) q i E(q i, q) (E( q, q)) E( q, q j ) E(q i, q j ) q j Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

35 NFA to Regular Expressions NFA to Regex Algorithm 2: NFA to Regex Input: N = (Q, Σ, E, q 0, F ) ; // NFA states, alphabet, edges,, accept Output: R ; // Regex /* Construct the initial GNFA */ 1 Q Q {q, q accept} ; // add new, accept states 2 E q0 q }{{ } } {q q accept ; edge to new q F }{{} edges to new accept // Merge multiple edges between nodes into union edges 3 forall q i Q do 4 forall q j Q do } 5 e {a σ b E a = q i b = q j ; // set of edges from qi to qj 6 if e = 1 then 7 E E e; 8 else if e > 1 then ( ) 9 l {σ} a b e σ 10 r regex (l 0... l } n); 11 E E r {q i qj ; ; // set of edge labels from qi to qj /* Call Convert() subroutine on the GNFA */ 12 R Convert(Q, E ); Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

36 NFA to Regular Expressions NFA to Regex: Convert Function Convert(Q,E) 1 if Q = 2 then 2 R E(q, q accept ) ; // Extract label of edge from GNFA to accept 3 return R; 4 else 5 q any state in (Q \ {q, q accept }); 6 Q Q \ { q}; 7 E E \ { q q}; 8 forall q i where E(q i, q) do // predecessors of q 9 forall q j where E( q, q j ) do // successors of q 10 r regex (E(q i, q) (E( q, q)) E( q, q j ) E(q i, q j )) ; 11 E E \ {(q i q), ( q q j ), (q i q j ), }; } 12 E E r {q i qj ; 13 return Convert(Q, E ); Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

37 NFA to Regular Expressions Example: NFA to Regex 0. Initial DFA b 1 2 a a,b Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

38 NFA to Regular Expressions Syntactic Sugar α + αα α? α [α 0 α 1... α n ] α 0 α 1... α n. {σ} σ Σ What about a complement operator? Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

39 NFA to Regular Expressions Conversions subset construction NFA DFA McNaughton Yamada Thompson every DFA is an NFA GNFA conversion Regex also possible Dantam (Mines CSCI-561) Regular Expressions (Pre Lecture) Fall / 39

Context-Free Languages (Pre Lecture)

Context-Free Languages (Pre Lecture) Context-Free Languages (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2017 Dantam (Mines CSCI-561) Context-Free Languages (Pre Lecture) Fall 2017 1 / 34 Outline Pumping Lemma

More information

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 43

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 43 Finite Automata Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2018 Dantam (Mines CSCI-561) Finite Automata Fall 2018 1 / 43 Outline Languages Review Traffic Light Example Deterministic Finite

More information

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 35

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 35 Finite Automata Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2017 Dantam (Mines CSCI-561) Finite Automata Fall 2017 1 / 35 Outline Dantam (Mines CSCI-561) Finite Automata Fall 2017 2 / 35

More information

Regular Expressions. Definitions Equivalence to Finite Automata

Regular Expressions. Definitions Equivalence to Finite Automata Regular Expressions Definitions Equivalence to Finite Automata 1 RE s: Introduction Regular expressions are an algebraic way to describe languages. They describe exactly the regular languages. If E is

More information

Regular languages, regular expressions, & finite automata (intro) CS 350 Fall 2018 gilray.org/classes/fall2018/cs350/

Regular languages, regular expressions, & finite automata (intro) CS 350 Fall 2018 gilray.org/classes/fall2018/cs350/ Regular languages, regular expressions, & finite automata (intro) CS 350 Fall 2018 gilray.org/classes/fall2018/cs350/ 1 L = {hello, bonjour, konnichiwa, } Σ = {a, b, c,, y, z}!2 Σ = {a, b, c,, y, z} Σ*

More information

TDDD65 Introduction to the Theory of Computation

TDDD65 Introduction to the Theory of Computation TDDD65 Introduction to the Theory of Computation Lecture 2 Gustav Nordh, IDA gustav.nordh@liu.se 2012-08-31 Outline - Lecture 2 Closure properties of regular languages Regular expressions Equivalence of

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

Deterministic Finite Automaton (DFA)

Deterministic Finite Automaton (DFA) 1 Lecture Overview Deterministic Finite Automata (DFA) o accepting a string o defining a language Nondeterministic Finite Automata (NFA) o converting to DFA (subset construction) o constructed from a regular

More information

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties of Regular Languages Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties Recall a closure property is a statement

More information

Regular expressions and Kleene s theorem

Regular expressions and Kleene s theorem and Kleene s theorem Informatics 2A: Lecture 5 John Longley School of Informatics University of Edinburgh jrl@inf.ed.ac.uk 29 September 2016 1 / 21 1 More closure properties of regular languages Operations

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 3 January 9, 2017 January 9, 2017 CS21 Lecture 3 1 Outline NFA, FA equivalence Regular Expressions FA and Regular Expressions January 9, 2017 CS21 Lecture 3 2

More information

Regular expressions and Kleene s theorem

Regular expressions and Kleene s theorem and Informatics 2A: Lecture 5 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 25 September, 2014 1 / 26 1 More closure properties of regular languages Operations on languages

More information

September 11, Second Part of Regular Expressions Equivalence with Finite Aut

September 11, Second Part of Regular Expressions Equivalence with Finite Aut Second Part of Regular Expressions Equivalence with Finite Automata September 11, 2013 Lemma 1.60 If a language is regular then it is specified by a regular expression Proof idea: For a given regular language

More information

Pushdown Automata (Pre Lecture)

Pushdown Automata (Pre Lecture) Pushdown Automata (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2017 Dantam (Mines CSCI-561) Pushdown Automata (Pre Lecture) Fall 2017 1 / 41 Outline Pushdown Automata Pushdown

More information

Closure under the Regular Operations

Closure under the Regular Operations September 7, 2013 Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have shown this closure

More information

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is,

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is, Recall A deterministic finite automaton is a five-tuple where S is a finite set of states, M = (S, Σ, T, s 0, F ) Σ is an alphabet the input alphabet, T : S Σ S is the transition function, s 0 S is the

More information

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages CS 154 Finite Automata vs Regular Expressions, Non-Regular Languages Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and guessing

More information

Theory of Computation (II) Yijia Chen Fudan University

Theory of Computation (II) Yijia Chen Fudan University Theory of Computation (II) Yijia Chen Fudan University Review A language L is a subset of strings over an alphabet Σ. Our goal is to identify those languages that can be recognized by one of the simplest

More information

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1)

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) Definition 1 (Alphabet) A alphabet is a finite set of objects called symbols. Definition 2 (String)

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

This Lecture will Cover...

This Lecture will Cover... Last Lecture Covered... DFAs, NFAs, -NFAs and the equivalence of the language classes they accept Last Lecture Covered... This Lecture will Cover... Introduction to regular expressions and regular languages

More information

Closure Properties of Regular Languages

Closure Properties of Regular Languages Closure Properties of Regular Languages Lecture 13 Section 4.1 Robb T. Koether Hampden-Sydney College Wed, Sep 21, 2016 Robb T. Koether (Hampden-Sydney College) Closure Properties of Regular Languages

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY THE PUMPING LEMMA FOR REGULAR LANGUAGES and REGULAR EXPRESSIONS TUESDAY Jan 21 WHICH OF THESE ARE REGULAR? B = {0 n 1 n n 0} C = { w w has equal number

More information

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information

Closure Properties of Regular Languages

Closure Properties of Regular Languages of Regulr Lnguges Dr. Neil T. Dntm CSCI-561, Colordo School of Mines Fll 2018 Dntm (Mines CSCI-561) Closure Properties of Regulr Lnguges Fll 2018 1 / 50 Outline Introduction Closure Properties Stte Minimiztion

More information

Formal Languages, Automata and Models of Computation

Formal Languages, Automata and Models of Computation CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 5 School of Innovation, Design and Engineering Mälardalen University 2011 1 Content - More Properties of Regular Languages (RL)

More information

Lecture 3: Nondeterministic Finite Automata

Lecture 3: Nondeterministic Finite Automata Lecture 3: Nondeterministic Finite Automata September 5, 206 CS 00 Theory of Computation As a recap of last lecture, recall that a deterministic finite automaton (DFA) consists of (Q, Σ, δ, q 0, F ) where

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory Decidable Problems of CFLs and beyond Haniel Barbosa Readings for this lecture Chapter 4 of [Sipser 1996], 3rd edition. Section 4.1. Decidable

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation 1/19/2016 LECTURE 3 Last time: DFAs and NFAs Operations on languages Today: Nondeterminism Equivalence of NFAs and DFAs Closure properties of regular languages Sofya Raskhodnikova

More information

Computational Models Lecture 2 1

Computational Models Lecture 2 1 Computational Models Lecture 2 1 Handout Mode Iftach Haitner. Tel Aviv University. October 30, 2017 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 14 : Turing Machines

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 14 : Turing Machines COMP-330 Theory of Computation Fall 2012 -- Prof. Claude Crépeau Lec. 14 : Turing Machines 1 COMP 330 Fall 2012: Lectures Schedule 1. Introduction 1.5. Some basic mathematics 2. Deterministic finite automata

More information

Regular Expressions and Language Properties

Regular Expressions and Language Properties Regular Expressions and Language Properties Mridul Aanjaneya Stanford University July 3, 2012 Mridul Aanjaneya Automata Theory 1/ 47 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

Computational Models Lecture 2 1

Computational Models Lecture 2 1 Computational Models Lecture 2 1 Handout Mode Ronitt Rubinfeld and Iftach Haitner. Tel Aviv University. March 16/18, 2015 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Computational Theory

Computational Theory Computational Theory Finite Automata and Regular Languages Curtis Larsen Dixie State University Computing and Design Fall 2018 Adapted from notes by Russ Ross Adapted from notes by Harry Lewis Curtis Larsen

More information

CS 455/555: Finite automata

CS 455/555: Finite automata CS 455/555: Finite automata Stefan D. Bruda Winter 2019 AUTOMATA (FINITE OR NOT) Generally any automaton Has a finite-state control Scans the input one symbol at a time Takes an action based on the currently

More information

The Pumping Lemma and Closure Properties

The Pumping Lemma and Closure Properties The Pumping Lemma and Closure Properties Mridul Aanjaneya Stanford University July 5, 2012 Mridul Aanjaneya Automata Theory 1/ 27 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

Theory of Computation (IX) Yijia Chen Fudan University

Theory of Computation (IX) Yijia Chen Fudan University Theory of Computation (IX) Yijia Chen Fudan University Review The Definition of Algorithm Polynomials and their roots A polynomial is a sum of terms, where each term is a product of certain variables and

More information

Finite Automata and Regular languages

Finite Automata and Regular languages Finite Automata and Regular languages Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability

Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability Harvard CS 121 and CSCI E-207 Lecture 6: Regular Languages and Countability Salil Vadhan September 20, 2012 Reading: Sipser, 1.3 and The Diagonalization Method, pages 174 178 (from just before Definition

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Ch 4.1 Explain what it means for a problem to be decidable. Justify the use of encoding.

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 4.1 Explain what it means for a problem to be decidable. Justify the use of encoding.

More information

This lecture covers Chapter 7 of HMU: Properties of CFLs

This lecture covers Chapter 7 of HMU: Properties of CFLs This lecture covers Chapter 7 of HMU: Properties of CFLs Chomsky Normal Form Pumping Lemma for CFs Closure Properties of CFLs Decision Properties of CFLs Additional Reading: Chapter 7 of HMU. Chomsky Normal

More information

Languages, regular languages, finite automata

Languages, regular languages, finite automata Notes on Computer Theory Last updated: January, 2018 Languages, regular languages, finite automata Content largely taken from Richards [1] and Sipser [2] 1 Languages An alphabet is a finite set of characters,

More information

Lecture 7 Properties of regular languages

Lecture 7 Properties of regular languages Lecture 7 Properties of regular languages COT 4420 Theory of Computation Section 4.1 Closure properties of regular languages If L 1 and L 2 are regular languages, then we prove that: Union: L 1 L 2 Concatenation:

More information

Chapter 6. Properties of Regular Languages

Chapter 6. Properties of Regular Languages Chapter 6 Properties of Regular Languages Regular Sets and Languages Claim(1). The family of languages accepted by FSAs consists of precisely the regular sets over a given alphabet. Every regular set is

More information

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET Regular Languages and FA A language is a set of strings over a finite alphabet Σ. All languages are finite or countably infinite. The set of all languages

More information

Lexical Analysis. DFA Minimization & Equivalence to Regular Expressions

Lexical Analysis. DFA Minimization & Equivalence to Regular Expressions Lexical Analysis DFA Minimization & Equivalence to Regular Expressions Copyright 26, Pedro C. Diniz, all rights reserved. Students enrolled in the Compilers class at the University of Southern California

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Theory of Regular Expressions DFAs and NFAs Reminders Project 1 due Sep. 24 Homework 1 posted Exam 1 on Sep. 25 Exam topics list posted Practice homework

More information

NFA and regex. the Boolean algebra of languages. regular expressions. Informatics 1 School of Informatics, University of Edinburgh

NFA and regex. the Boolean algebra of languages. regular expressions. Informatics 1 School of Informatics, University of Edinburgh NFA and regex cl the Boolean algebra of languages regular expressions Informatics The intersection of two regular languages is regular L = even numbers L = odd numbers L = mod L = mod Informatics The intersection

More information

1 Alphabets and Languages

1 Alphabets and Languages 1 Alphabets and Languages Look at handout 1 (inference rules for sets) and use the rules on some examples like {a} {{a}} {a} {a, b}, {a} {{a}}, {a} {{a}}, {a} {a, b}, a {{a}}, a {a, b}, a {{a}}, a {a,

More information

Decidability. Human-aware Robotics. 2017/10/31 Chapter 4.1 in Sipser Ø Announcement:

Decidability. Human-aware Robotics. 2017/10/31 Chapter 4.1 in Sipser Ø Announcement: Decidability 2017/10/31 Chapter 4.1 in Sipser Ø Announcement: q q q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/decidability.pdf Happy Hollaween! Delayed

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 3.3, 4.1 State and use the Church-Turing thesis. Give examples of decidable problems.

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures and Instructions 23.10. 3.11. 17.11. 24.11. 1.12. 11.12.

More information

Concatenation. The concatenation of two languages L 1 and L 2

Concatenation. The concatenation of two languages L 1 and L 2 Regular Expressions Problem Problem Set Set Four Four is is due due using using a late late period period in in the the box box up up front. front. Concatenation The concatenation of two languages L 1

More information

Equivalence of DFAs and NFAs

Equivalence of DFAs and NFAs CS 172: Computability and Complexity Equivalence of DFAs and NFAs It s a tie! DFA NFA Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: L.von Ahn, L. Blum, M. Blum What we ll do today Prove that DFAs

More information

CMSC 330: Organization of Programming Languages. Theory of Regular Expressions Finite Automata

CMSC 330: Organization of Programming Languages. Theory of Regular Expressions Finite Automata : Organization of Programming Languages Theory of Regular Expressions Finite Automata Previous Course Review {s s defined} means the set of string s such that s is chosen or defined as given s A means

More information

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 16 : Turing Machines

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 16 : Turing Machines COMP-330 Theory of Computation Fall 2017 -- Prof. Claude Crépeau Lec. 16 : Turing Machines COMP 330 Fall 2017: Lectures Schedule 1-2. Introduction 1.5. Some basic mathematics 2-3. Deterministic finite

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

UNIT-III REGULAR LANGUAGES

UNIT-III REGULAR LANGUAGES Syllabus R9 Regulation REGULAR EXPRESSIONS UNIT-III REGULAR LANGUAGES Regular expressions are useful for representing certain sets of strings in an algebraic fashion. In arithmetic we can use the operations

More information

Inf2A: Converting from NFAs to DFAs and Closure Properties

Inf2A: Converting from NFAs to DFAs and Closure Properties 1/43 Inf2A: Converting from NFAs to DFAs and Stuart Anderson School of Informatics University of Edinburgh October 13, 2009 Starter Questions 2/43 1 Can you devise a way of testing for any FSM M whether

More information

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is Abstraction of Problems Data: abstracted as a word in a given alphabet. Σ: alphabet, a finite, non-empty set of symbols. Σ : all the words of finite length built up using Σ: Conditions: abstracted as a

More information

Outline. Nondetermistic Finite Automata. Transition diagrams. A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F)

Outline. Nondetermistic Finite Automata. Transition diagrams. A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F) Outline Nondeterminism Regular expressions Elementary reductions http://www.cs.caltech.edu/~cs20/a October 8, 2002 1 Determistic Finite Automata A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F) Q is a finite

More information

Chapter Five: Nondeterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata Chapter Five: Nondeterministic Finite Automata From DFA to NFA A DFA has exactly one transition from every state on every symbol in the alphabet. By relaxing this requirement we get a related but more

More information

Lecture 4 Nondeterministic Finite Accepters

Lecture 4 Nondeterministic Finite Accepters Lecture 4 Nondeterministic Finite Accepters COT 4420 Theory of Computation Section 2.2, 2.3 Nondeterminism A nondeterministic finite automaton can go to several states at once. Transitions from one state

More information

Finite Automata and Languages

Finite Automata and Languages CS62, IIT BOMBAY Finite Automata and Languages Ashutosh Trivedi Department of Computer Science and Engineering, IIT Bombay CS62: New Trends in IT: Modeling and Verification of Cyber-Physical Systems (2

More information

Name: Student ID: Instructions:

Name: Student ID: Instructions: Instructions: Name: CSE 322 Autumn 2001: Midterm Exam (closed book, closed notes except for 1-page summary) Total: 100 points, 5 questions, 20 points each. Time: 50 minutes 1. Write your name and student

More information

컴파일러입문 제 3 장 정규언어

컴파일러입문 제 3 장 정규언어 컴파일러입문 제 3 장 정규언어 목차 3.1 정규문법과정규언어 3.2 정규표현 3.3 유한오토마타 3.4 정규언어의속성 Regular Language Page 2 정규문법과정규언어 A study of the theory of regular languages is often justified by the fact that they model the lexical

More information

Foundations of

Foundations of 91.304 Foundations of (Theoretical) Computer Science Chapter 1 Lecture Notes (Section 1.3: Regular Expressions) David Martin dm@cs.uml.edu d with some modifications by Prof. Karen Daniels, Spring 2012

More information

Lecture 2: Connecting the Three Models

Lecture 2: Connecting the Three Models IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 2: Connecting the Three Models David Mix Barrington and Alexis Maciel July 18, 2000

More information

Functions on languages:

Functions on languages: MA/CSSE 474 Final Exam Notation and Formulas page Name (turn this in with your exam) Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet Σ; while a, b, c, d are individual alphabet

More information

Homework 1 Due September 20 M1 M2

Homework 1 Due September 20 M1 M2 Homework 1 Due September 20 1. Consider the state diagrams for two DFAs, M1 and M2 M1 M2 a. Give the formal descriptions of the two machines above specifically, specify the elements of the 5-tuple (Q,

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 2 January 5, 2018 January 5, 2018 CS21 Lecture 2 1 Outline Finite Automata Nondeterministic Finite Automata Closure under regular operations NFA, FA equivalence

More information

Complexity (Pre Lecture)

Complexity (Pre Lecture) Complexity (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2018 Dantam (Mines CSCI-561) Complexity (Pre Lecture) Fall 2018 1 / 70 Why? What can we always compute efficiently? What

More information

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT.

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT. Recap DFA,NFA, DTM Slides by Prof. Debasis Mitra, FIT. 1 Formal Language Finite set of alphabets Σ: e.g., {0, 1}, {a, b, c}, { {, } } Language L is a subset of strings on Σ, e.g., {00, 110, 01} a finite

More information

Properties of Context-Free Languages

Properties of Context-Free Languages Properties of Context-Free Languages Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I Internal Examination 2017-18 B.Tech III Year VI Semester Sub: Theory of Computation (6CS3A) Time: 1 Hour 30 min. Max Marks: 40 Note: Attempt all three

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

UNIT II REGULAR LANGUAGES

UNIT II REGULAR LANGUAGES 1 UNIT II REGULAR LANGUAGES Introduction: A regular expression is a way of describing a regular language. The various operations are closure, union and concatenation. We can also find the equivalent regular

More information

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harry Lewis October 8, 2013 Reading: Sipser, pp. 119-128. Pushdown Automata (review) Pushdown Automata = Finite automaton

More information

Finite Universes. L is a fixed-length language if it has length n for some

Finite Universes. L is a fixed-length language if it has length n for some Finite Universes Finite Universes When the universe is finite (e.g., the interval 0, 2 1 ), all objects can be encoded by words of the same length. A language L has length n 0 if L =, or every word of

More information

Text Search and Closure Properties

Text Search and Closure Properties Text Search and Closure Properties CSCI 330 Formal Languages and Automata Theory Siu On CHAN Fall 208 Chinese University of Hong Kong /28 Text Search grep program grep -E regex file.txt Searches for an

More information

Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties

Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties Salil Vadhan September 13, 2012 Reading: Sipser, 1.2. How to simulate NFAs? NFA accepts w if there is at least one accepting computational

More information

Outline. Theorem 1. For every regular expression E, there exists an ε-nfa A such that L(E)=L(A).

Outline. Theorem 1. For every regular expression E, there exists an ε-nfa A such that L(E)=L(A). Outline We have two results to prove: Theorem 1. For every regular expression E, there exists an ε-nfa A such that L(E)=L(A). Theorem 2. For every DFA A, there exists a regular expression E such that L(A)=L(E).

More information

acs-04: Regular Languages Regular Languages Andreas Karwath & Malte Helmert Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages Regular Languages Andreas Karwath & Malte Helmert Informatik Theorie II (A) WS2009/10 Regular Languages Andreas Karwath & Malte Helmert 1 Overview Deterministic finite automata Regular languages Nondeterministic finite automata Closure operations Regular expressions Nonregular languages

More information

CS 154 Formal Languages and Computability Assignment #2 Solutions

CS 154 Formal Languages and Computability Assignment #2 Solutions CS 154 Formal Languages and Computability Assignment #2 Solutions Department of Computer Science San Jose State University Spring 2016 Instructor: Ron Mak www.cs.sjsu.edu/~mak Assignment #2: Question 1

More information

Non-deterministic Finite Automata (NFAs)

Non-deterministic Finite Automata (NFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Non-deterministic Finite Automata (NFAs) Part I NFA Introduction Lecture 4 Thursday, September 7, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 39 Sariel

More information

Regular Expression Unit 1 chapter 3. Unit 1: Chapter 3

Regular Expression Unit 1 chapter 3. Unit 1: Chapter 3 Unit 1: Chapter 3 (Regular Expression (RE) and Language) In previous lectures, we have described the languages in terms of machine like description-finite automata (DFA or NFA). Now we switch our attention

More information

} Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops.

} Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops. and their languages } Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops. } Some languages are Turing-recognizable, but not

More information

Properties of Regular Languages (2015/10/15)

Properties of Regular Languages (2015/10/15) Chapter 4 Properties of Regular Languages (25//5) Pasbag, Turkey Outline 4. Proving Languages Not to e Regular 4.2 Closure Properties of Regular Languages 4.3 Decision Properties of Regular Languages 4.4

More information

Regular Languages. Problem Characterize those Languages recognized by Finite Automata.

Regular Languages. Problem Characterize those Languages recognized by Finite Automata. Regular Expressions Regular Languages Fundamental Question -- Cardinality Alphabet = Σ is finite Strings = Σ is countable Languages = P(Σ ) is uncountable # Finite Automata is countable -- Q Σ +1 transition

More information

Recap from Last Time

Recap from Last Time Regular Expressions Recap from Last Time Regular Languages A language L is a regular language if there is a DFA D such that L( D) = L. Theorem: The following are equivalent: L is a regular language. There

More information

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2 5-25 Great Theoretical Ideas in Computer Science Lecture 4: Deterministic Finite Automaton (DFA), Part 2 January 26th, 27 Formal definition: DFA A deterministic finite automaton (DFA) M =(Q,,,q,F) M is

More information

CSE 355 Homework One Sample Solutions

CSE 355 Homework One Sample Solutions CSE 355 Homework One Sample Solutions Question Give a transition diagram and the transition table, for a DFA to recognize. Part (a) {w {, } : w contains an even number of s and an odd number of s} Solution:

More information

CS375 Midterm Exam Solution Set (Fall 2017)

CS375 Midterm Exam Solution Set (Fall 2017) CS375 Midterm Exam Solution Set (Fall 2017) Closed book & closed notes October 17, 2017 Name sample 1. (10 points) (a) Put in the following blank the number of strings of length 5 over A={a, b, c} that

More information

Foundations of Informatics: a Bridging Course

Foundations of Informatics: a Bridging Course Foundations of Informatics: a Bridging Course Week 3: Formal Languages and Semantics Thomas Noll Lehrstuhl für Informatik 2 RWTH Aachen University noll@cs.rwth-aachen.de http://www.b-it-center.de/wob/en/view/class211_id948.html

More information

Theory of computation: initial remarks (Chapter 11)

Theory of computation: initial remarks (Chapter 11) Theory of computation: initial remarks (Chapter 11) For many purposes, computation is elegantly modeled with simple mathematical objects: Turing machines, finite automata, pushdown automata, and such.

More information

Chapter 5. Finite Automata

Chapter 5. Finite Automata Chapter 5 Finite Automata 5.1 Finite State Automata Capable of recognizing numerous symbol patterns, the class of regular languages Suitable for pattern-recognition type applications, such as the lexical

More information