ON VAN DE LUNE ALZER S INEQUALITY

Size: px
Start display at page:

Download "ON VAN DE LUNE ALZER S INEQUALITY"

Transcription

1 Joual o Mathematical Iequalities Volume, Numbe ), ON VAN DE LUNE ALZER S INEQUALITY S. ABRAMOVICH, J. BARIĆ, M. MATIĆ AND J. PEČARIĆ commuicated by N. Elezović) Abstact. I this pape it is show that the iequality kow i the liteatue as Alze s iequality 993), has aleady bee kow sice 975. ad is due to Ja va de Lue. A eview o dieet methods i povig Va de Lue - Alze s iequality ad geealizatios i a seveal diectios, is give. It is show how some esults ad poos ca be coected, eied ad exteded. New esults, ispied by the geealizatio o Va de Lue - Alze s iequality o iceasig covex sequeces peseted by N. Elezović ad J. Pečaić, ae obtaied.. Itoductio I 964. H. Mic ad L. Sathe i [24] poved that, o N the iequality + <!)..) + )!) + holds. I 988. J. S. Matis, i [23], gave aothe lowe boud o the atio!) / + )!) + om.): Let be a positive eal umbe ad let be a atual umbe. The + ) i=!)..2) + )!) + + i= So, H. Alze came to the idea to compae the let-had sides o.) ad.2) ad, i 993 i [2], he poved the ext theoem. THEOREM. I is a positive eal umbe ad i is a positive itege, the + + ) i= + i=!) + )!) + Mathematics subject classiicatio 2000): 26A5, 26D5, 26D20. Key wods ad phases: sequeces, covex uctios, iequalities...3) c D l,zageb Pape JMI

2 564 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ Sice the, the let-had side o the iequality.3) is called Alze s iequality. Alze s poo uses iteestig techiques, but its complexity have ivoked the iteest o seveal mathematicias. The ist easy poo o Alze s iequality is due to J. Sádo who used i his poo Cauchy mea value theoem ad mathematical iductio, see [33]. Also,J.Sádo used i [36] the method o Lagage mea value theoem ad mathematical iductio. The secod elemetay poo is give by J. S. Ume i [38] usig dieetiatio ad iductio. Ad, ially, C.-P. Che ad F. Qi, i [6],peseted two othe simple poos o Alze s iequality usig Lagage s mea value theoem, mootoicity ad covexity o uctios, ad mathematical iductio. Howeve, i 975, i [], J. va de Lue stated Poblem 399., which was solved by seveal mathematicias, ad which easily implicates Alze s iequality. The pupose o this pape is to show that what is called sice 993 "Alze s iequality" is the esult o Ja va de Lue s wok,kow aleady sice 975. Accodig to that, i this pape the let-had side o the iequality.3) will be called Va de Lue - Alze s iequality. We also give some geealizatios o Alze s iequality as well as coectios ad eiemets o alteative poos o oe o the iequalities i a aticle by H. Alze [2]). 2. Ja va de Lue s esults The iequality, which we ecogize as Alze s iequality, has aleady bee kow at least sice 975 ad is due to J. va de Lue. I this sectio we peset J. va de Lue s Poblem 399, see [, p. 254]), it s coectio with Alze s iequality ad ou coclusios i the COMMENTS. PROBLEM 399. Fo N ad s R let σ s) := k s, U s) := s σ s), L s) := s σ s), k= whee σ 0 s) =0. Pove that i s is positive, U s) is deceasig i ad L s) is iceasig i. The mathematicias F. J. Baig, R. Doobos, A. A. Jages, J. H. va Lit, J. va de Lue ad G. R. Veldkamp gave solutios o Ja va de Lue s Poblem 399. F. J. M. Baig, J. va de Lue, G. R. Veldkamp ad R. Doobos this poo ca be see i []) used mathematical iductio ad J. H. va Lit showed that the poblem is a special case o a moe geeal situatio i the ollowig way: Let be iceasig ad covex o [0, ]. Let us coside S = k= ) k 2.) ad s = k=0 ) k. 2.2)

3 ON VAN DE LUNE -ALZER S INEQUALITY 565 Usig covexity o o [0, ] J. va de Lit poved that S ) N is a deceasig ad s ) N is a iceasig sequece, i.e. S + S, 2.3) ad s s ) By applyig the esult to the uctio g deied by gx) = x) it is easy to see that 2.3) ad 2.4) also hold i is iceasig ad cocave. By applyig the esult to x) =x s, s > 0), the assetio o the Poblem 399 ollows. COMMENTS. I the cosideed uctio is stictly iceasig ad covex o stictly iceasig ad cocave o [0, ] the S is stictly deceasig ad s is stictly iceasig sequece. Now applyig J. H. va Lit s esults o uctio x) =x s, s > 0, we obtai that U is stictly iceasig ad L is stictly deceasig uctio i N. The act that U s) is stictly deceasig i is equivalet to i.e. U s) > U + s), s s + 2 s + + s ) > + ) s s + 2 s ) s ), s + 2 s + + s s > s + 2 s ) s + ) s, + ) s + ) i s + ) s < i=, + i s + < whee s is positive eal umbe. I 993. Host Alze poved + i= + ) i= + i s i= + ) i= + i= i s s, 2.5), 2.6) whee N ad is positive eal umbe. It is obvious that Ja va de Lue s iequality 2.5) diectly implies iequality 2.6) i.e. 2.5) holds with stict iequality " < " i place o " ". Povig iequality 2.6),J.Sádo, [33]), adj.s.ume,[38]), also came to coclusio that 2.6) is tue o stict iequality.

4 566 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ We omulate J. H. va Lit s esults i the ollowig theoem: THEOREM 2. Let be a iceasig ad covex o a iceasig ad cocave uctio o [0, ].LetS ad s be deied by 2.) ad 2.2), espectively. The S is a deceasig sequece ad s is a iceasig sequece i.e. ad + + k=0 k= ) k + ) k + k=0 k= ) k 2.7) ) k. 2.8) + I is stictly iceasig ad covex uctio o stictly iceasig ad cocave uctio o [0, ] the S is stictly deceasig ad s is stictly iceasig sequece ad 2.7) ad 2.8) holds with stict iequality. Applyig Theoem 2 to x) =x s, s > 0, we get ollowig coollaies: COROLLARY. Let σ s) = k s,o N ad σ 0 s) =0.The k= is stictly deceasig uctio i ad is stictly iceasig uctio i. U s) = s σ s), L s) = s σ s), COROLLARY 2. Let x) =x s,whee s R,s> 0. The o N it holds + < + ) k= + k s k= k s s. 3. Alteative poos I 995. J. Sádo, i a shot pape [33], gave a alteative poo o H. Alze s iequality + ) + i=, 3.) + i=

5 ON VAN DE LUNE -ALZER S INEQUALITY 567 based o mathematical iductio ad Cauchy s mea value theoem o dieetial calculus. I act, he poved eve shape statemet, discoveed by Ja va de Lue i 975, that 3.) holds with stict iequality. I 996 J.S. Ume gave aothe elemetay poo o iequality 3.), see [38]), usig iductio ad dieetiatio. Howeve, his poo ca be modiied, i the ollowig way, to get stict iequality i 3.). We give J.S. Ume s Lemma ad it s poo with ou coectios. LEMMA. I is a positive eal umbe, the Poo. Fo x [0, ],deie < + x) [ x + x) +], 0 < x. 3.2) x) = + x) [ x + x) +]. The uctio is cotiuous o [0, ] ad 0) =0. To pove iequality 3.2) it suices to show x) > 0,o 0 < x <. Dieetiatio o yields x) = + x) { [ x + x) +] + + x)[ + ) x) ] }. Fo x [0, ],let sset gx) = [ x + x) +] + + x)[ + ) x) ]. The uctio g is cotiuous o [0, ] ad g0) =0. Nowwehave g x) = + ){ x) + [ + x) x) x) ] }. Sice x) < ad x) < + x) x) o 0 < x <, it ollows g x) > 0, o > 0 ad 0 < x <. Theeoe gx) > g0) which implies x) > 0, o 0 < x <. Now, 3.) ca be easily poved o stict iequality usig mathematical iductio ad Lemma see [38]). I C.-P. Che ad F. Qi showed, i [6], thatj.sádo s ad J. S. Ume s poos o 3.) ca be completed i othe ways usig Lagage s mea value theoem, mootoicity ad covexity o uctio s, ad mathematical iductio. 4. Geealizatios o Va de Lue - Alze s iequality I 999 F. Qi poved the ext theoem. THEOREM 3. Let ad m be atual umbes, k a oegative itege. The +k + k + m + k < i=k+, 4.) +m+k +m i=k+ whee is ay give positive eal umbe. The lowe boud is best possible.

6 568 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ Theoem 3 is poved i [26] applyig mathematical iductio ad Cauchy mea value theoem. Some uthe esults elated to this ca be oud i [32] ad [9]. I J. S. Ume, i [39], showed how the esult o H. Alze ca be exteded usig suitable mappig. His maesult cotaied i the ollowig theoem) is poved usig two lemmas i which we made some impovemets. Let us quote the ist lemma. LEMMA 2. Let a, b, c ad d be eal umbes satisyig < a, c, 0 < b, d <, 0 < ab, I x) := c )a x + dab) x,the < 2 c + d) ad ac ab) d. < x), o all x [0, ). COMMENT. By caeul ispectio o Ume s poo o the above Lemma we see that the sig " < "i< 2 c + d) ca be eplaced with " " ad still it ca be poved that x) > 0) =c )+d > oallx 0, + ), which is cucial o the the est o Ume s esults i [39]. Fom Lemma 2 ollows the ext lemma. LEMMA 3. Let ϕ : 0, ) 0, ) be a uctio such that ϕ is stictly iceasig o 0, ), 4.2) ad o all ϕ exists o 0, ), 4.3) ϕ is stictly iceasig o 0, ), 4.4) ϕx) ϕx + ) ϕx + ), o all x 0, ), 4.5) ϕx + 2) [ ] ϕu + 2) ϕv+2) ϕv+) [ ] ϕu) ϕu + 2) ϕv) ϕv+), 4.6) ϕu + ) ϕu + ) ϕu + ) u, v 0, ). The ϕv+) < [ϕv+2) ϕv+)] { } { ϕu+2) ϕu) +ϕv) ϕu+) ϕu+) ϕu+2) }, 4.7) ϕu+) o all u, v 0, ) ad > 0. COMMENT. Cosideig the chages we made i Lemma 2 assetio 4.4) is chaged to ϕ is iceasig o 0, ), i.e., the uctio ϕ is covex o 0, ).

7 ON VAN DE LUNE -ALZER S INEQUALITY 569 THEOREM 4. Let ϕ : 0, ) 0, ) be a uctio satisyig coditios 4.2), 4.3), 4.4), 4.5) ad { } ϕ+m+k+2) ϕ+m+2) ϕ+m+) { ϕ+m+k) ϕ+m+k+) ϕ+m+k+) ϕ+m+k+2) } ϕ+m) ϕ+m+), ϕ+m+k+) o all N,m, k N {0} ad ϕ) 2ϕ2).The ϕ + k) ϕ + m + k) < ϕ) +k i=k+ +m+k ϕ+m) i=k+ [ϕi)] [ϕi)] 4.8), 4.9) o all, m N,k N 0ad > 0. Applyig the above theoem to the uctio ϕx) =a x,oall x 0, ),J.S. Ume poved the ollowig coollay. COROLLARY 3. Let, m N,k N {0},> 0 ad a 2.The a m < +k a a i i=k+ +m+k a +m a i i=k+. 4.0) I the ext coollay J.S. Ume gave a geealizatio o H. Alze s iequality. COROLLARY 4. I p = o p 2 the ) p + k < + m + k whee, m N,k N {0} ad > 0. +k p i p i=k+ +m+k +m) p i p i=k+, 4.) I F. Qi, i [27], peseted the iequality which geealizes Alze s esult, as well as oe esult poved by J.-C. Kuag ad iequality 4.). Namely, i 999, J.-C. Kuag, i [20], poved the ollowig iequality k= ) k > + + k= ) k > x)dx, 4.2) + 0 o a stictly iceasig covex o cocave) uctio o 0, ]. Motivated by iequalities i 4.) ad 4.2), cosideig covexity, F. Qi poved the ext theoem.

8 570 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ THEOREM 5. Let be a stictly iceasig covex o cocave) uctio i 0, ]. The the sequece +k ) i +k is deceasig i ad k ad has a lowe boud i=k+ t)dt, that is 0 +k i=k+ ) i > +k+ + k + i=k+ ) i + k + > 0 t)dt, 4.3) whee k is a oegative itege ad is a atual umbe. Applyig Theoem 5 to x) =x,o > 0adk = 0 it ollows i.e ) < i= + < + ) < + ) i= + i= i=, + ) i= + i=, ad that is Alze s iequality with " < " istead o " ". Futhemoe, applyig Theoem 5 o x) =x,o > 0 it ollows i.e. +k i=k+ +k+ i=k+ + k) > + ) + k + ), 4.4) +k i=k+ +k+m i=k+ + k) > + m) + k + m), which is equivalet to iequality 4.). Fok = 0 iequality 4.3) becomes equivalet to 4.2). COMMENT. Notice that the let-had iequality i 4.2) is equivalet to J. H. va Lit s esult i.e. to iequality 2.7) i Theoem 2 o stictly iceasig covex o cocave) uctio.,

9 ON VAN DE LUNE -ALZER S INEQUALITY 57 I 200 F. Qi, i [28], poved a algebaic iequality which is a itegal aalogue o the ollowig iequality + k + m + k < +m +k i=k+ +m+k i=k+, 4.5) poved i [26]. A extesio o this Qi s esult ca be oud i pape [4]). THEOREM 6. Let b > a > 0 ad δ > 0 be eal umbes. The o ay give positive R we have [ b + δ a b + a + ] b a b + δ) + a + The lowe boud i 4.6) is best possible. The iequality 4.6) ca be ewitte as b b + δ < b a b+δ a b x dx x dx a b+δ a > b b + δ. 4.6). 4.7) Fo a = k, b = + k ad δ = m, iequality4.7) is itegal aalogue o the 4.5). Iequality 4.7) was geealized by B. Gavea ad I. Gavea i [8], toai- equality o liea positive uctioals. Usig a completely dieet uexpected appoach, I. Gavea impoved Va de Lue - Alza s iequality ad some elated iequalities poved i [4]. Gavea used Bestei ad Bestei - Stacu opeatos to get his may ew esults [7]. Byusig Bestei polyomials o degee he impoved iequality 2.3) o iceasig covex uctios. He got the ollowig iequalities: [ k 6 + ) mi k=0,, k + +, k + ] ; + k=0 ) k + ) k k=0 ]. [ k 6 + ) max k=0,, k + +, k + ; Usig Bestei-Stacu type opeatos Gavea poved some geeal iequalities om which he got 0 6 k=0 ) k + + [, + ; 2 ) k + k=0 ] [ ]), + ;

10 572 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ as well as [ ] β + β 2 + β) + β + ) + β, β + + β + ; ) i + β + ) i + β + β + + β + i= i= [ ] β + + β 2 + β) + β + ) + β +, ; o β 0, whee [x, x 2 ; ] := x 2) x ) ; [x, x 2, x 3; ; ] := [x 2, x 3 ; ] [x, x 2 ; ]. x 2 x x 3 x Also by usig iequalities esultig om Bestei-Stacu opeatos he got as a special case the kow iequality poved by F. Qi ad B-N. Guo i [30]: k= ak a ) + + k= ak which holds o a iceasig sequece a ) N, a [0, ], such that a a + )) N is also a iceasig sequece, ad o iceasig covex uctio o [0, ]. a + 5. Applicatios to sequeces I 998 N. Elezović adj.pečaić, i [6], showed that Alze s iequality is satisied o a lage class o iceasig covex sequeces. They gave a geealizatio o 3.) cotaied i the ext theoem. THEOREM 7. o 0,a 0 = 0, R +,the I the sequece a ), o positive eal umbes satisies ) [ ) ] + a+2 a +2 a +, 5.) a + a + a + a a + a + a i i= + a a i i= ). 5.2) N. Elezović adj.pečaić poved Theoem 7 usig mathematical iductio ad Lemma. I [6] they also gave a simpliicatio o poo o Lemma as well as the ollowig examples ad coollaies o Theoem 7 o sequeces o positive eal umbes.

11 ON VAN DE LUNE -ALZER S INEQUALITY 573 COROLLARY 5. Let the sequece a ) o positive eal umbes satisy The 5.2) holds. a ) a 2 +, a a 2 5.3) a 2a + + a +2 0,. 5.4) EXAMPLE. The sequece a = satisies 5.3) ad 5.4). Hece, Theoem 7 geealizes Alze s iequality. COROLLARY 6. Fo each stictly iceasig sequece a ) o positive eal umbes thee exist a > 0 such that 5.2) holds. EXAMPLE 2. The sequece a = 2 satisies 5.3) ad 5.4). Theeoe we have ) 2i ) 2 + i=. 2 ) + 2i ) EXAMPLE 3. The sequece a = k )+, k > 0, satisies 5.4). Futhe, 5.3) is equivalet to kk + ). 5.5) Theeoe, 5.2) holds o this sequece wheeve 5.5) is valid. EXAMPLE 4. The sequece a = a, a >, satisies 5.4). Futhe, 5.3) is equivalet to a ) a As i pevious example, o each > 0theeexista > owhich5.6) is valid. i= COMMENTS. Iequality 5.2) is equivalet to + a i i= a i i= a + a + a a I we egad the let ad ight sides o the last iequality as membes o a eal sequece A ) we ca coclude that sequece A ) is deceasig i.e. N) p N) A +p A. Hece, iequality 5.2) is equivalet to +m a i i= a +m a +m a i i= a a,

12 574 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ i.e. a a +m a +m a i i= +m a a i i= NEW RESULTS. Followig the easoig o N. Elezović ad J.Pečaić esults peseted above [6]) we exted the esults obtaied thee o x) =x, x 0, 0 to a iceasig x) whee x x) is covex. Istead o dealig with i= a + i a + i= a i a + + we deal with ) ai ) + a a ) i= i= REMARK. Iequality 5.8) is equivalet to i= Theeoe, i a i > 0, a i ) > 0 i=,...., > 0, a > 0, =, 2, ) a + ) ai ). 5.8) a + ) + a i ) a ) a ) a + ). 5.9) a + a + ) the iequality a a ) 0 5.0) a + a + ) is a ecessay coditio o 5.8) to hold. THEOREM 8. Let a > 0, =,... ad let the uctio x) > 0 be deied o [0, ), ad satisies 5.0). I [ a +2 ) a+2 + a ] a ) 5.) a + ) a + a + a + ) o 0, a 0 = 0, the 5.8) holds. Poo. The poo is by iductio ad ollows the steps o the poo o Theoem 7. Fo = iequality 5.8) is equal to 5.) o = 0. Fo a geeal iequality 5.8) is equivalet to 5.9) ad theeoe the iductio hypothesisis equivalet to which meas that + a i ) i= +2 a i ) i= a + 2 a + ) a + a + ) a a ) a + 2 a + ) a + a + ) a a ) + a +2)

13 ON VAN DE LUNE -ALZER S INEQUALITY 575 ad hece it is suiciet to pove that a + 2 a + ) a + a + ) a a ) + a +2) which is equivalet to 5.). a +2 2 a +2 ) a +2 a +2 ) a + a + ) 5.2) THEOREM 9. Let x) be a positive iceasig uctio o [0, ) such that x x) is covex ad ) A xa) 2 A), x x ) Let the sequece a > 0, =,..., a 0 = 0 satisy a +2 a + a + a, 5.4) ad The 5.8) holds. a 2 a ) ) a a 2 ) Poo. Iequality 5.5) is equivalet to 5.) o = 0. Let us deote The it ollows om 5.4) that w > 0. I 2thew adthe a +2 a + w = a +2 a ) [ a +2 ) a+2 + a ] a ) a +2). a + ) a + a + a + ) a + ) Theeoe, i this case 5.) holds ad om Theoem 8 we get that 5.8) holds. I 0 w, iequality 5.4) is equivalet to a w) a ) As x) 0 ad is iceasig we get that [ a +2 ) a+2 + a ] a ) a + ) a + a + a + ) a [ + + w)) w + w) a ] + w)) a + ) a + ) ) + w)a + ) + w) a + ) = a + ) a + )) 2 w + w a + a + )) + ) + w a + w) a + w)). 5.8)

14 576 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ As x x) is covex, we get that w + w a + a + )) + + w a + w) a + w))) w a + + w + w ) w a + + w + w + w )) + w = a ) + + w a+. + w Isetig 5.9) i 5.8) we get that a +2 ) a + ) [ a+2 a + + a a ) a + a + ) + w)a +) + w) a + ) a + a + ) a + )) 2 + w) = + w) a +) a + ) +w 2. a + ) ] ) a+ + w 5.9) 5.20) As 0 w, theeoe + w 2. The, om 5.3) we get that ) a+ + w) a + ) 2 a + ). + w 5.2) Togethe with 5.20) we get that 5.) holds. Hece 5.8) is poved. COROLLARY 7. Let x) =x, 0, x 0. Theeoe x x) =x + is covex o x 0, so 5.2) holds with equality ad iequality 5.8) becomes equal to iequality 5.7). COROLLARY 8. Let log x) be a covex uctio. The 5.2) holds ad as x) is iceasig, also x) is covexadtheeoe 5.8) holds. I 2000 F. Qi ad L. Debath, i [29], usig mathematical iductio ad Cauchy mea value theoem, poved ollowig esults. THEOREM 0. Let ad m be atual umbes. Suppose {a, a 2, } is a positive ad iceasig sequece satisyig ak+2 ), 5.22) k + 2)a k+2 k + )a k+ k + )a k+ ka k a k+ o ay give positive eal umbe ad k N. The we have the iequality a a +m The lowe boud o 5.23) is best possible. +m a i i= +m a i i=. 5.23)

15 ON VAN DE LUNE -ALZER S INEQUALITY 577 COROLLARY 9. Let ad m be atual umbes. Suppose a = {a, a 2, } is a positive ad iceasig sequece satisyig a 2 k+ a ka k+2, 5.24) { a k+ a k k + a 2 k+ a max, k + 2 }, k N. 5.25) ka k+2 a k+ a k+2 The, o ay give positive eal umbe, we have iequality 5.23). The lowe boud o 5.23) is best possible. Applyig Coollay 9 to a =k +, k + 2, ) iequality 4.) ollows. I 2002 Z. Xu ad D. Xu, i [40], gave some ew esults elated to Alze s ad Mati s iequality. We will peset the esults elated to Alze s iequality. THEOREM. Let a ) N be a stictly iceasig positive sequece, ad let m be a atual umbe ad be a positive eal umbe. I a a ) a + a a a, 2, 5.26) the a a +m < +m a i i= +m a i i= The lowe boud i 5.27) is best possible.,. 5.27) COMMENTS. Notice that the iequality 5.27) is equal to 5.23) with dieet coditios. Coditio 5.26) ca be itepeted i the ollowig way: The iequality is equivalet to a a a ) ) a + a a+ ), a a which meas that the sequece Futhemoe, iequality { a+ a ) } N a + a a a is iceasig i. is equivalet to a a + a 2, which meas that the sequece a ) N is logaithmic cocave o 2.

16 578 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ As a cosequece o Theoem Z. Xu ad D. Xu easily poved that the iequality + k + m + k < +m i + k) i= +m i= i + k), 5.28) is valid o ay oegative eal umbe k ad ot oly o k beig oegative itege like it was peseted i above cases. I F. Qi, B.-N. Guo ad L. Debath, i [3], usig mathematical iductio, poved iequality 5.27), metioed above, with dieet coditios. We quote thei esult ad coollay. THEOREM 2. Let ad m be atual umbes. Suppose a i ) +m i= is a iceasig, logaithmically covex, ad positive sequece. Deote the powe mea P ) o ay give positive eal umbe by The the sequece is { } +m Pi) a i i= P ) = ) a i. 5.29) i= is deceasig o ay give positive eal umbe, that P ) P +m ) a 5.30) a +m The lowe boud i 5.30) is the best possible. Cosideig that the expoetial uctios a xα ad a αx, o give costats α ad a >, ae logaithmically covex o [0, ), as a coollay o Theoem 2 it ollows. COROLLARY 0. Let α ad a > be two costats. Fo ay give eal umbe the ollowig iequalities hold a +k)α a +m+k)α a α+k a α+m+k +m +m +k a iα i=k+ +m+k a iα i=k+ +k a α i=k+ +m+k a α i=k+, 5.3), 5.32) whee a m ae atual umbes, ad k is a oegative itege. The lowe bouds i 5.3) ad 5.32) ae the best possible.

17 ON VAN DE LUNE -ALZER S INEQUALITY A iequality o Va de Lue - Alze o egative powes The iequality o Va de Lue - Alze o egative powes was poved by H. Alze i [3]. The esults which we will peset hee oe ew poos ad extesios. I C.-P. Che ad F. Qi, i [7], poved that Va de Lue - Alze s iequality is valid o all eal umbes ot oly o > 0 ). We ow quote thei esult. THEOREM 3. Let be a atual umbe. The o all eal umbes it holds + < + i= + i= <. 6.) Both bouds ae best possible. Theoem 3 is poved by usig mathematical iductio ad Jese s iequality. J. Sádo, i [34], gave a elegat poo o iequality 6.) usig Cauchy s mea value theoem istead o Jese s iequality. Fo some uthe esults o this topic the eade is also eeed to the papes [0], [] ad [2] witte by C.-P. Che ad F. Qi. I C.-P. Che ad F. Qi, i [9], studyig mootoicity popety o geealized logaithmic meas deied by poved the ollowig theoem. [ b p p+)b a)], p, 0; b a L p a, b) = l b l a, p = ; ) b b b a e a a, p = 0, THEOREM 4. Let c > b > a > 0 be eal umbes. The the uctio ) = L a, b) L a, c) 6.2) is stictly deceasig with, ). The ollowig coollay is staightowad. COROLLARY. R The lowe boud i 6.3) is best possible. Let c > b > a > 0 be eal umbes. The o ay eal umbe b c < L a, b) L a, c). 6.3)

18 580 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ Fo c = b + δ, δ > 0, Coollay gives a extesio o itegal vesio o Va de Lue - Alze s iequality i.e. iequality b b + δ < b a b+δ a b x dx x dx a b+δ which is valid o all eal umbes. I C.-P. Che ad F. Qi, i [8], poved that Theoem 4 ca be geealized as ollows. THEOREM 5. Let c > b > a ad be eal umbes, ad let be a positive, twice dieetiable uctio ad satisy t) > 0 ad l t)) 0 o a, + ). The sup x [a,b] x) sup x [a,c] x) < a b b a a c c a a x)dx x)dx, <, 6.4) o all eal. Both bouds i 6.4) ae best possible. O the othe had, i 994., C. E. M. Peace ad J. Pečaić, i [25], poved the ollowig theoem which geealizes Theoem 4. THEOREM 6. Let a i,b i, i =, 2), be positive umbes satisyig a max, a ) 2 b max, b ) 2. a 2 a b 2 b The the uctio G deied by G) = L a, a 2 ) 6.5) L b, b 2 ) is odeceasig. We quote the poo: Poo. Powe itegal meas o ode p ae deied by [ b a M p ; a, b) = [ exp b a b a ] p t) p dt, p 0, b a ] log t)dt, p = 0. I et) =t, e x,y t) =xt + y t), the the geealized logaithmic meas have the two itegal epesetatios L p x, y) =M p e; x, y), L p x, y) =M p e x,y ;, 0).

19 ON VAN DE LUNE -ALZER S INEQUALITY 58 Thus G) = M e a,a 2 ;0, ) M e b,b 2 ;0, ) ad ou esult is a simple cosequece o the ollowig esult see [22]). Let ad g be positive ad itegable uctios o [a, b]. I the maps x gx),x x) ae mootoic i the same sese, the the uctio F deied by F) = M ;a,b) M g;a,b) gx) is odeceasig. I ou case t) =e a,a 2 t) ad gt) =e b,b 2 t).ib = b 2 the the deomiato i 6.5) is idepedet o ad the claim educes to the well-kow esult o the odeceasig chaacte o L.Ib b 2, the sice the deomiato i the deiitio o G is ivaiat ude the itechage o b ad b 2, we may without loss o geeality suppose that b > b 2. Simila symmety i the umeato o 6.5) allows us to assume a a 2, so that we ca suppose that a a 2 b b 2 >. I b > b 2 the uctio g is iceasig ad sice a ) b 2 a a 2 b = b e b,b 2 t)) 2, 6.5) tells us that g is odeceasig, cocludig the poo. The same assetio as oe that C. E. M. Peace ad J. Pečaić gave i Theoem 6 was obtaied by A.-J. Li, X.-M. Wag ad C.-P. Che, i [2], i Extedig the Ky Fa iequality to seveal geeal itegal oms, they obtaied the L ollowig theoems o mootoic popeties o the uctio sa,b) L sα a,α b) with α, a, b 0, + ) ad s R. THEOREM 7. Let α s) = b a b x s dx a α x) s dx s = L s a, b) L s α a, α b), s, + ) ad α be a positive umbe. The α s) is a stictly iceasig uctio o [a, b] 0, α 2 ], ad is a stictly deceasig uctio o [a, b] [ α 2, α). THEOREM 8. Let s) = b b a a d d c c x s dx x s dx s = L sa, b) L s c, d), s, + ) ad a, b, c, d be positive umbes. The s) is a stictly iceasig uctio o ad < bc, o a stictly deceasig uctio o ad > bc.

20 582 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ Poos o Theoem 7 ad Theoem 8 ae doe usig aalogous method as oe that C.-P. Che ad F. Qi used i [9] to pove Theoem 4. I J. Sádo, i [37], poved the ollowig theoem. THEOREM 9. Suppose that : 0, ] R is a stictly deceasig, covex o cocave) uctio. The oe has the iequality + + i= ) i > + i= i ). 6.6) COMMENTS. Notice that the evesed sig iequality, whe is stictly iceasig ad cocave o covex uctio, was poved by J.-C. Kuag, i [20], i 999, ad, moeove, was kow sice 975. thaks to Ja va de Lue s wok [, p. 254]). J. Sádo s poo is based o the method o J.-C. Kuag, [20]. Applyig Theoem 9 to the uctio x) = x s = x s, which is covex ad stictly deceasig, we get + + i= + i ) s > ) s, i which is equivalet to let-had side o 6.) o = s, s > 0. i= 7. Applicatio i guessig theoy I 998 S. S. Dagomi ad J. va de Hoek, i [4], poved a aalytic iequality which has impotat applicatios to the estimatio o the momets o guessig mappigs. To pove thei maesult they stat with sequeces S p ) ad G p ) deied i the ollowig way: S p ) = j= j p ad G p ) = S p) p+, whee p is positive eal umbe ad is atual umbe. The the ext theoem holds. THEOREM 20. Let p,p R.The ) The lowe boud o G p ) is G p ) 2) The sequece G p ) is oiceasig, i.e. + ) p + ) p+, o all ; 7.) p+ G p + ) G p ), o all. 7.2)

21 ON VAN DE LUNE -ALZER S INEQUALITY 583 COMMENTS. Note that sequece G p ) is deied i the same way as the uctio U s) i J. va de Lue s Poblem 399. Moeove, iequality 7.) is idetical to Alze s iequality 3.)eplace p with ). Namely, accodig to the deiitio o G p ) ad the act that + i p = i p + + ) p, iequality 7.) is equivalet to i= + ) p+ i p p+ i= i= i p i= + ) p + ) p+ p+, p+ i p p+ + ) p, i= ) + ) p+ i p p+ i p + + ) p, i= i= + + ) p+ i p p+ i p, i= + i= + ) i= + i p i= o p R, p. Futhe, iequality 7.2) is equivalet to J. va de Lue s statemet that uctio U s) is stictly deceasig i N. J. Sádo i his pape [35] 999.) also poit out two thigs. Fist, that 7.) is actually Alze s iequality poved also i his pape [33] o p > 0 ad o stict iequality ad secod, that 7.2) is equivalet to 7.). S. S. Dagomi ad J. va de Hoek poved Theoem 20 usig the ollowig lemma, i p p, LEMMA 4. Fo p,p R ad we have + 2) p [ p+ + + ) p] + ) 2p+, 7.3) ad thei maesult is poved usig Theoem 20. I C.-P. Che, F. Qi, P. Ceoe ad S. S. Dagomi, i [3], amog othe esults, peseted the ollowig theoem. THEOREM 2. Let be a { iceasig ad covex o cocave) uctio deied o [0, ]. The the sequece ) } { i deceases ad ) } i i= N i=0 N

22 584 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ iceases, ad + i=0 i ) i= i ) i=0 i= i ). ) i t)dt ) COMMENTS. The ist iequality i 7.4) is equivalet to Kuag s iequality 4.2), moeove it is equivalet to iequality 2.7) whichwaspovedbyj. H. valit i Theoem 2. The last iequality i 7.4) is equivalet to iequality 2.8) which is also kow sice 975. Applyig Theoem 2 to x) =x o x [0, ] ad > 0 the authos o [3] poved the ollowig coollay. COROLLARY 2. Let N. The o all eal umbe > 0, it ollows i= + + i=. 7.5) + + i= i= The ight had iequality i 7.5) is Va de Lue - Alze s iequality. I I. BetićadJ.Pečaić, i [5], geealized iequality 7.2) om Theoem 20. They used ollowig uctio. i) i= F, p, a) = ), whee i) =i + a) p. Obviously, F, p, 0) =G p ). By obtaiig the same esult as S. S. Dagomi ad J. va de Hoek gave i [4] ad [5], with F istead o G,I. Betić ad J.Pečaić obtaied the best estimates o some iequalities i metioed papes. Geealizig iequality 7.2), they peseted the ollowig theoem. THEOREM 22. Let 2 be a itege ad p,a be eal umbes. Let s deie i + a) p i= F, p, a)= + a) p. The F +, p, a) F, p, a) o each p,a ad o each itege 2.

23 ON VAN DE LUNE -ALZER S INEQUALITY 585 COMMENTS. Iequality is equivalet to i.e. F +, p, a) F, p, a) + i + a) p i= + ) + + a) p + a + a + i + a) p i= + a) p, + ) i + a) p i= + i + a) p i= p, 7.6) o each itege 2 ad o eal umbes p, a. Notice that iequality 7.6) is the geealizatio o F. Qi s iequality 4.) because ow it is poved o all eal umbes k ot oly o oegative iteges k. The outlie o the poo o Theoem 22 goes as ollows: It eed s to be show that F, p, a) F +, p, a) 0op, a ad 2. Wehave F, p, a) F +, p, a) i + a) p + i + a) p i= = + a) p i= + ) + + a) p ) = i + a) p + a) p + ) + + a) p + i= = F, p, a) + ) + + a)p + a) p ) a) p. So, we have to pove that F, p, a) + + a) p + ) + + a) p + a) p, which is, by deiitio o uctio F, p, a), equivaletto i + a) p i= + a) p + + a) p + ) + + a) p + a) p. 7.7) Iequality 7.7) was poved i [5], usig mathematicaliductio, covexityo uctio x) =x + a) p,o p adx a ad applyig Jese s iequality.

24 586 S. ABRAMOVICH, J.BARIĆ, M.MATIĆ AND J. PEČARIĆ REFERENCES [] Nieuw Achie Voo Wiskude, 3d seies, XXIII, o. 3, Novembe 975, pp [2] H. ALZER, O a iequality o H. Mic ad L. Sathe, J. Math. Aal. Appl ), [3] H. ALZER, Reiemet o a iequality o G. Beett, Discete Math ), o. 3, [4] G. BENNETT, G. JAMESON, Mootoic aveages o covex uctios, J. Math. Aal. Appl ), [5] I. BRNETIĆ, J. PEČARIĆ, Commets o some aalytic iequalities, J. Iequal. Pue Appl. Math. 4, 2003), o., Aticle 20. [6] C.-P. CHEN, F. QI, Notes o poos o Alze s iequality, Octogo Mathematical Magazie 2003), o., [7] C.-P. CHEN, F. QI, The iequality o Alze o egative powes, Octogo Mathematical Magazie 2003), o. 2, [8] C.-P. CHEN, F. QI, O itegal vesio o Alze s iequality ad Matis iequality, RGMIA Reseach Repot Collectio ), o., Aticle 3. [9] C.-P. CHEN, F. QI, Mootoicity popeties o geealized logaithmic meas, Austalia Joual o Mathematical aalysis ad Applicatios, 2004), o. 2, Aticle 2. [0] C.-P. CHEN, F. QI, Extesio o a iequality o H. Alze o egative powes, Tamkag J. Math ), o., [] C.-P. CHEN, F. QI, Geealizatio o a iequality o Alze o egative powes, Tamkag J. Math ), o. 3, [2] C.-P. CHEN, F.QI, Note o Alze,s iequality, Tamkag J. Math ), o., 4. [3] C.-P. CHEN, F. QI, P. CERONE, S.S. DRAGOMIR, Mootoicity o sequeces ivolvig covex ad cocave uctios, Mathematical Iequalities ad Applicatios ), o. 2, [4] S.S. DRAGOMIR, J. VAN DER HOEK, Some ew iequalities ad thei applicatios i guessig theoy, J. Math. Aal. Appl., ), [5] S.S.DRAGOMIR,J. VAN DER HOEK, Some ew iequalities o the aveage umbe o guesses, Kyugpook Math. J., 39, 999.), o., 7. [6] N. ELEZOVIĆ, J.PEČARIĆ, O Alze s iequality, J. Math. Aal. Appl ), [7] I. GAVREA, Opeatos o Bestei-Stacu type ad the mootoicity o some sequeces ivolvig covex uctios, Coeece o Iequalities ad Applicatios 07, pepit. [8] B. GAVREA, I. GAVREA, A iequality o liea positive uctioals, J. Iequal. Pue Appl. Math. 2000), o., Aticle 5. [9] B.-N. GUO, F. QI, Iequalities ad mootoicity o the atio o the geometic meas o a positive aithmetic sequece with abitay dieece, Tamkag J. Math ), o. 3, [20] J.-C. KUANG, Some extesios ad eiemets o Mic-Sathe iequality, Math. Gaz ), [2] A.-J. LI, X.-M. WANG AND C.-P. CHEN, Geealizatios o the Ky Fa iequality, J. Iequal. Pue Appl. Math ), o. 4, aticle 30. [22] A.W. MARSHALL, I. OLKIN, F. PROSCHAN, Mootoicity o atios o meas ad othe applicatios o majoizatio. i Iequalities, O.Shishaed.), New Yok-Lodo 967), [23] J.S. MARTINS, Aithmetic ad geometic meas, a applicatios to Loetz sequece spaces, Math Nach ), [24] H. MINC, L.SATHRE, Some iequalities ivolvig!), Poc. Edibugh Math. Soc /65), [25] C.E.M. PEARCE, J.E. PEČARIĆ, O the atio o logaithmic meas., Azeige. Oeste. Akad. Wiss. Math.- Natuwiss. Klasse ), [26] F. QI, Geealizatio o H. Alze s iequality, J. Math. Aal. Appl ), o., [27] F. QI, Geealizatios o Alze s ad Kuag s iequality, Tamkag Joual o Mathematics ), o. 3, [28] F. QI, A algebaic iequality, J. Iequal. Pue Appl. Math. 2, 200), o., Aticle 3. [29] F. QI, L. DEBNATH, O a ew geealizatio o Alze s iequality, Iteatioal Joual o Mathematics ad Mathematical Scieces ), o. 2, [30] F. QI, B.-N. GUO, Mootoicity o sequeces ivolvig covex uctio ad sequece, Math. Iequal. Appl ), o. 2, [3] F. QI, B.-N. GUO, L. DEBNATH, A lowe boud o atio o powe meas, Iteatioal Joual o Mathematics ad Mathematical Scieces - Vol. 2004, o., [32] F. QI,Q.-M.LUO, Geealizatio o H. Mic ad Sathe s iequality, Tamkag J. Math ), o. 2, [33] J. SÁNDOR, O a iequality o Alze, J. Math. Aal. Appl ),

25 ON VAN DE LUNE -ALZER S INEQUALITY 587 [34] J. SÁNDOR, O a iequality o Alze, II, O. Math. Mag. 2003), o. 2, [35] J. SÁNDOR, Commets o a iequality o the sum o powes o positive iteges, RGMIA Reseach Repot Collectio 2 999), o. 2. [36] J. SÁNDOR, O a iequality o Beett, Geeal Mathematics Sibiu) 3 995), o. 3 4, [37] J.SÁNDOR, O a iequality o Alze o egative powes, RGMIA Reseach Repot Collectio ), o. 4. [38] J.S. UME, A elemetay poo o H. Alze s iequality, Math. Japo ), o. 3, [39] J.S. UME, A iequality o a positive eal uctio, Math. Iequal. Appl ), o. 4, [40] Z. XU, D. XU, A geeal om o Alze s iequality, Computes ad Mathematics with Applicatios ), [4] S.-L. ZHANG, C.-P. CHEN, F. QI, Cotiuous aalogue o Alze s iequality, Tamkag J. Math ), o. 2, Received Novembe 6, 2007) S. Abamovich Depatmet o Mathematics Uivesity o Haia Haia, 3905 Isael abamos@math.haia.ac.il J. Baić FESB Uivesity o Split Rudea - Boškovića b.b., 2000 Split Coatia jbaic@esb.h M. Matić Depatmet o Mathematics Faculty o Natual Scieces, Mathematics ad Educatio Uivesity o Split Teslia 2, 2000 Split Coatia mmatic@pmst.h J. Pečaić Faculty o Textile Techology Uivesity o Zageb Pieottijeva 6, 0000 Zageb pecaic@elemet.h Joual o Mathematical Iequalities jmi@ele-math.com

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES

SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES #A17 INTEGERS 9 2009), 181-190 SOME ARITHMETIC PROPERTIES OF OVERPARTITION K -TUPLES Deick M. Keiste Depatmet of Mathematics, Pe State Uivesity, Uivesity Pak, PA 16802 dmk5075@psu.edu James A. Selles Depatmet

More information

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES

FIXED POINT AND HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACES IJRRAS 6 () July 0 www.apapess.com/volumes/vol6issue/ijrras_6.pdf FIXED POINT AND HYERS-UAM-RASSIAS STABIITY OF A QUADRATIC FUNCTIONA EQUATION IN BANACH SPACES E. Movahedia Behbaha Khatam Al-Abia Uivesity

More information

Some Integral Mean Estimates for Polynomials

Some Integral Mean Estimates for Polynomials Iteatioal Mathematical Foum, Vol. 8, 23, o., 5-5 HIKARI Ltd, www.m-hikai.com Some Itegal Mea Estimates fo Polyomials Abdullah Mi, Bilal Ahmad Da ad Q. M. Dawood Depatmet of Mathematics, Uivesity of Kashmi

More information

HE DI ELMONSER. 1. Introduction In 1964 H. Mink and L. Sathre [15] proved the following inequality. n, n N. ((n + 1)!) n+1

HE DI ELMONSER. 1. Introduction In 1964 H. Mink and L. Sathre [15] proved the following inequality. n, n N. ((n + 1)!) n+1 -ANALOGUE OF THE ALZER S INEQUALITY HE DI ELMONSER Abstact In this aticle, we ae inteested in giving a -analogue of the Alze s ineuality Mathematics Subject Classification (200): 26D5 Keywods: Alze s ineuality;

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Jounal of Inequalities in Pue and Applied Mathematics COEFFICIENT INEQUALITY FOR A FUNCTION WHOSE DERIVATIVE HAS A POSITIVE REAL PART S. ABRAMOVICH, M. KLARIČIĆ BAKULA AND S. BANIĆ Depatment of Mathematics

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

MONOTONICITY OF SEQUENCES INVOLVING GEOMETRIC MEANS OF POSITIVE SEQUENCES WITH LOGARITHMICAL CONVEXITY

MONOTONICITY OF SEQUENCES INVOLVING GEOMETRIC MEANS OF POSITIVE SEQUENCES WITH LOGARITHMICAL CONVEXITY MONOTONICITY OF SEQUENCES INVOLVING GEOMETRIC MEANS OF POSITIVE SEQUENCES WITH LOGARITHMICAL CONVEXITY FENG QI AND BAI-NI GUO Abstract. Let f be a positive fuctio such that x [ f(x + )/f(x) ] is icreasig

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

Generalized Fibonacci-Lucas Sequence

Generalized Fibonacci-Lucas Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol, No 6, -7 Available olie at http://pubssciepubcom/tjat//6/ Sciece ad Educatio Publishig DOI:6/tjat--6- Geealized Fiboacci-Lucas Sequece Bijeda Sigh, Ompaash

More information

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS

EVALUATION OF SUMS INVOLVING GAUSSIAN q-binomial COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EVALUATION OF SUMS INVOLVING GAUSSIAN -BINOMIAL COEFFICIENTS WITH RATIONAL WEIGHT FUNCTIONS EMRAH KILIÇ AND HELMUT PRODINGER Abstact We coside sums of the Gaussia -biomial coefficiets with a paametic atioal

More information

THE ANALYTIC LARGE SIEVE

THE ANALYTIC LARGE SIEVE THE ANALYTIC LAGE SIEVE 1. The aalytic lage sieve I the last lectue we saw how to apply the aalytic lage sieve to deive a aithmetic fomulatio of the lage sieve, which we applied to the poblem of boudig

More information

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler

Finite q-identities related to well-known theorems of Euler and Gauss. Johann Cigler Fiite -idetities elated to well-ow theoems of Eule ad Gauss Joha Cigle Faultät fü Mathemati Uivesität Wie A-9 Wie, Nodbegstaße 5 email: oha.cigle@uivie.ac.at Abstact We give geealizatios of a fiite vesio

More information

Sums of Involving the Harmonic Numbers and the Binomial Coefficients

Sums of Involving the Harmonic Numbers and the Binomial Coefficients Ameica Joual of Computatioal Mathematics 5 5 96-5 Published Olie Jue 5 i SciRes. http://www.scip.og/oual/acm http://dx.doi.og/.46/acm.5.58 Sums of Ivolvig the amoic Numbes ad the Biomial Coefficiets Wuyugaowa

More information

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD

DANIEL YAQUBI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD MIXED -STIRLING NUMERS OF THE SEOND KIND DANIEL YAQUI, MADJID MIRZAVAZIRI AND YASIN SAEEDNEZHAD Abstact The Stilig umbe of the secod id { } couts the umbe of ways to patitio a set of labeled balls ito

More information

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers

On the Explicit Determinants and Singularities of r-circulant and Left r-circulant Matrices with Some Famous Numbers O the Explicit Detemiats Sigulaities of -ciculat Left -ciculat Matices with Some Famous Numbes ZHAOLIN JIANG Depatmet of Mathematics Liyi Uivesity Shuaglig Road Liyi city CHINA jzh08@siacom JUAN LI Depatmet

More information

Some Properties of the K-Jacobsthal Lucas Sequence

Some Properties of the K-Jacobsthal Lucas Sequence Deepia Jhala et. al. /Iteatioal Joual of Mode Scieces ad Egieeig Techology (IJMSET) ISSN 349-3755; Available at https://www.imset.com Volume Issue 3 04 pp.87-9; Some Popeties of the K-Jacobsthal Lucas

More information

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM An expression consisting of two terms, connected by + or sign is called a BINOMIAL THEOREM hapte 8 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4 5y, etc., ae all biomial epessios. 8.. Biomial theoem If

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n!

= 5! 3! 2! = 5! 3! (5 3)!. In general, the number of different groups of r items out of n items (when the order is ignored) is given by n! 0 Combiatoial Aalysis Copyight by Deiz Kalı 4 Combiatios Questio 4 What is the diffeece betwee the followig questio i How may 3-lette wods ca you wite usig the lettes A, B, C, D, E ii How may 3-elemet

More information

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a

BINOMIAL THEOREM NCERT An expression consisting of two terms, connected by + or sign is called a 8. Oveview: 8.. A epessio cosistig of two tems, coected by + o sig is called a biomial epessio. Fo eample, + a, y,,7 4, etc., ae all biomial 5y epessios. 8.. Biomial theoem BINOMIAL THEOREM If a ad b ae

More information

SHIFTED HARMONIC SUMS OF ORDER TWO

SHIFTED HARMONIC SUMS OF ORDER TWO Commu Koea Math Soc 9 0, No, pp 39 55 http://dxdoiog/03/ckms0939 SHIFTED HARMONIC SUMS OF ORDER TWO Athoy Sofo Abstact We develop a set of idetities fo Eule type sums I paticula we ivestigate poducts of

More information

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS

ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS Joual of Pue ad Alied Mathematics: Advaces ad Alicatios Volume 0 Numbe 03 Pages 5-58 ON EUCLID S AND EULER S PROOF THAT THE NUMBER OF PRIMES IS INFINITE AND SOME APPLICATIONS ALI H HAKAMI Deatmet of Mathematics

More information

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS

ON CERTAIN CLASS OF ANALYTIC FUNCTIONS ON CERTAIN CLASS OF ANALYTIC FUNCTIONS Nailah Abdul Rahma Al Diha Mathematics Depatmet Gils College of Educatio PO Box 60 Riyadh 567 Saudi Aabia Received Febuay 005 accepted Septembe 005 Commuicated by

More information

The Multivariate-t distribution and the Simes Inequality. Abstract. Sarkar (1998) showed that certain positively dependent (MTP 2 ) random variables

The Multivariate-t distribution and the Simes Inequality. Abstract. Sarkar (1998) showed that certain positively dependent (MTP 2 ) random variables The Multivaiate-t distibutio ad the Simes Iequality by Hey W. Block 1, Saat K. Saka 2, Thomas H. Savits 1 ad Jie Wag 3 Uivesity of ittsbugh 1,Temple Uivesity 2,Gad Valley State Uivesity 3 Abstact. Saka

More information

The Pigeonhole Principle 3.4 Binomial Coefficients

The Pigeonhole Principle 3.4 Binomial Coefficients Discete M athematic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Ageda Ch 3. The Pigeohole Piciple

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to

( ) 1 Comparison Functions. α is strictly increasing since ( r) ( r ) α = for any positive real number c. = 0. It is said to belong to Compaiso Fuctios I this lesso, we study stability popeties of the oautoomous system = f t, x The difficulty is that ay solutio of this system statig at x( t ) depeds o both t ad t = x Thee ae thee special

More information

On ARMA(1,q) models with bounded and periodically correlated solutions

On ARMA(1,q) models with bounded and periodically correlated solutions Reseach Repot HSC/03/3 O ARMA(,q) models with bouded ad peiodically coelated solutios Aleksade Weo,2 ad Agieszka Wy oma ska,2 Hugo Steihaus Cete, Woc aw Uivesity of Techology 2 Istitute of Mathematics,

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

Range Symmetric Matrices in Minkowski Space

Range Symmetric Matrices in Minkowski Space BULLETIN of the Bull. alaysia ath. Sc. Soc. (Secod Seies) 3 (000) 45-5 LYSIN THETICL SCIENCES SOCIETY Rae Symmetic atices i ikowski Space.R. EENKSHI Depatmet of athematics, amalai Uivesity, amalaiaa 608

More information

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions

On Some Fractional Integral Operators Involving Generalized Gauss Hypergeometric Functions Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 5, Issue (Decembe ), pp. 3 33 (Peviously, Vol. 5, Issue, pp. 48 47) Applicatios ad Applied Mathematics: A Iteatioal Joual (AAM) O

More information

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology

Ch 3.4 Binomial Coefficients. Pascal's Identit y and Triangle. Chapter 3.2 & 3.4. South China University of Technology Disc ete Mathem atic Chapte 3: Coutig 3. The Pigeohole Piciple 3.4 Biomial Coefficiets D Patic Cha School of Compute Sciece ad Egieeig South Chia Uivesity of Techology Pigeohole Piciple Suppose that a

More information

A note on random minimum length spanning trees

A note on random minimum length spanning trees A ote o adom miimum legth spaig tees Ala Fieze Miklós Ruszikó Lubos Thoma Depatmet of Mathematical Scieces Caegie Mello Uivesity Pittsbugh PA15213, USA ala@adom.math.cmu.edu, usziko@luta.sztaki.hu, thoma@qwes.math.cmu.edu

More information

On composite conformal mapping of an annulus to a plane with two holes

On composite conformal mapping of an annulus to a plane with two holes O composite cofomal mappig of a aulus to a plae with two holes Mila Batista (July 07) Abstact I the aticle we coside the composite cofomal map which maps aulus to ifiite egio with symmetic hole ad ealy

More information

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r.

a) The average (mean) of the two fractions is halfway between them: b) The answer is yes. Assume without loss of generality that p < r. Solutios to MAML Olympiad Level 00. Factioated a) The aveage (mea) of the two factios is halfway betwee them: p ps+ q ps+ q + q s qs qs b) The aswe is yes. Assume without loss of geeality that p

More information

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences Chapte : Theoy of Modula Aithmetic 8 Sectio D Chiese Remaide Theoem By the ed of this sectio you will be able to pove the Chiese Remaide Theoem apply this theoem to solve simultaeous liea cogueces The

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

Taylor Transformations into G 2

Taylor Transformations into G 2 Iteatioal Mathematical Foum, 5,, o. 43, - 3 Taylo Tasfomatios ito Mulatu Lemma Savaah State Uivesity Savaah, a 344, USA Lemmam@savstate.edu Abstact. Though out this pape, we assume that

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Complementary Dual Subfield Linear Codes Over Finite Fields

Complementary Dual Subfield Linear Codes Over Finite Fields 1 Complemetay Dual Subfield Liea Codes Ove Fiite Fields Kiagai Booiyoma ad Somphog Jitma,1 Depatmet of Mathematics, Faculty of Sciece, Silpao Uivesity, Naho Pathom 73000, hailad e-mail : ai_b_555@hotmail.com

More information

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS

A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Discussioes Mathematicae Gaph Theoy 28 (2008 335 343 A NOTE ON DOMINATION PARAMETERS IN RANDOM GRAPHS Athoy Boato Depatmet of Mathematics Wilfid Lauie Uivesity Wateloo, ON, Caada, N2L 3C5 e-mail: aboato@oges.com

More information

SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE (1 + 1/n) n

SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE (1 + 1/n) n SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE + / NECDET BATIR Abstract. Several ew ad sharp iequalities ivolvig the costat e ad the sequece + / are proved.. INTRODUCTION The costat e or

More information

Lower Bounds for Cover-Free Families

Lower Bounds for Cover-Free Families Loe Bouds fo Cove-Fee Families Ali Z. Abdi Covet of Nazaeth High School Gade, Abas 7, Haifa Nade H. Bshouty Dept. of Compute Sciece Techio, Haifa, 3000 Apil, 05 Abstact Let F be a set of blocks of a t-set

More information

International Journal of Mathematical Archive-3(5), 2012, Available online through ISSN

International Journal of Mathematical Archive-3(5), 2012, Available online through   ISSN Iteatioal Joual of Matheatical Achive-3(5,, 8-8 Available olie though www.ija.ifo ISSN 9 546 CERTAIN NEW CONTINUED FRACTIONS FOR THE RATIO OF TWO 3 ψ 3 SERIES Maheshwa Pathak* & Pakaj Sivastava** *Depatet

More information

On the maximum of r-stirling numbers

On the maximum of r-stirling numbers Advaces i Applied Mathematics 4 2008) 293 306 www.elsevie.com/locate/yaama O the maximum of -Stilig umbes Istvá Mező Depatmet of Algeba ad Numbe Theoy, Istitute of Mathematics, Uivesity of Debece, Hugay

More information

MONOTONICITY FORMULAS FOR BAKRY-EMERY RICCI CURVATURE

MONOTONICITY FORMULAS FOR BAKRY-EMERY RICCI CURVATURE MONOTONICITY FORMULAS FOR BAKRY-EMERY RICCI CURVATURE BINGYU SONG, GUOFANG WEI, AND GUOQIANG WU Abstact. Motivated ad ispied by the ecet wok o Coldig [5] ad Coldig-Miicozzi [6] we deive seveal amilies

More information

Generalizations and analogues of the Nesbitt s inequality

Generalizations and analogues of the Nesbitt s inequality OCTOGON MATHEMATICAL MAGAZINE Vol 17, No1, Apil 2009, pp 215-220 ISSN 1222-5657, ISBN 978-973-88255-5-0, wwwhetfaluo/octogo 215 Geealiatios ad aalogues of the Nesbitt s iequalit Fuhua Wei ad Shahe Wu 19

More information

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017 Iteatioal Joual of Matheatics Teds ad Techology (IJMTT) Volue 47 Nube July 07 Coe Metic Saces, Coe Rectagula Metic Saces ad Coo Fixed Poit Theoes M. Sivastava; S.C. Ghosh Deatet of Matheatics, D.A.V. College

More information

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE

INVERSE CAUCHY PROBLEMS FOR NONLINEAR FRACTIONAL PARABOLIC EQUATIONS IN HILBERT SPACE IJAS 6 (3 Febuay www.apapess.com/volumes/vol6issue3/ijas_6_3_.pdf INVESE CAUCH POBLEMS FO NONLINEA FACTIONAL PAABOLIC EQUATIONS IN HILBET SPACE Mahmoud M. El-Boai Faculty of Sciece Aleadia Uivesit Aleadia

More information

Crosscorrelation of m-sequences, Exponential sums and Dickson

Crosscorrelation of m-sequences, Exponential sums and Dickson Cosscoelatio o m-equeces, Epoetial sums ad Dicso polyomials To Helleseth Uiesity o Bege NORWAY Joit wo with Aia Johase ad Aleade Kholosha Itoductio Outlie m-sequeces Coelatio o sequeces Popeties o m-sequeces

More information

A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS IN NORMED LINEAR SPACES AND APPLICATIONS

A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS IN NORMED LINEAR SPACES AND APPLICATIONS A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS IN NORMED LINEAR SPACES AND APPLICATIONS S. S. DRAGOMIR Abstract. A discrete iequality of Grüss type i ormed liear spaces ad applicatios for the discrete

More information

APPROXIMATE FUNCTIONAL INEQUALITIES BY ADDITIVE MAPPINGS

APPROXIMATE FUNCTIONAL INEQUALITIES BY ADDITIVE MAPPINGS Joural of Mathematical Iequalities Volume 6, Number 3 0, 46 47 doi:0.753/jmi-06-43 APPROXIMATE FUNCTIONAL INEQUALITIES BY ADDITIVE MAPPINGS HARK-MAHN KIM, JURI LEE AND EUNYOUNG SON Commuicated by J. Pečarić

More information

Recursion. Algorithm : Design & Analysis [3]

Recursion. Algorithm : Design & Analysis [3] Recusio Algoithm : Desig & Aalysis [] I the last class Asymptotic gowth ate he Sets Ο, Ω ad Θ Complexity Class A Example: Maximum Susequece Sum Impovemet of Algoithm Compaiso of Asymptotic Behavio Aothe

More information

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P. Pogessio Sequece & Seies A set of umbes whose domai is a eal umbe is called a SEQUENCE ad sum of the sequece is called a SERIES. If a, a, a, a 4,., a, is a sequece, the the expessio a + a + a + a 4 + a

More information

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India.

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India. Steie Hype Wiee Idex A. Babu 1, J. Baska Babujee Depatmet of mathematics, Aa Uivesity MIT Campus, Cheai-44, Idia. Abstact Fo a coected gaph G Hype Wiee Idex is defied as WW G = 1 {u,v} V(G) d u, v + d

More information

LAZHAR S INEQUALITIES AND THE S-CONVEX PHENOMENON. I.M.R. Pinheiro

LAZHAR S INEQUALITIES AND THE S-CONVEX PHENOMENON. I.M.R. Pinheiro NEW ZEALAND JOURNAL OF MATHEMATICS Volume 38 008, 57 6 LAZHAR S INEQUALITIES AND THE S-CONVEX PHENOMENON IMR Piheiro Received December 007 Abstract I this urther little article, we simply exted Lazhar

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

MA131 - Analysis 1. Workbook 9 Series III

MA131 - Analysis 1. Workbook 9 Series III MA3 - Aalysis Workbook 9 Series III Autum 004 Cotets 4.4 Series with Positive ad Negative Terms.............. 4.5 Alteratig Series.......................... 4.6 Geeral Series.............................

More information

New Inequalities For Convex Sequences With Applications

New Inequalities For Convex Sequences With Applications It. J. Ope Problems Comput. Math., Vol. 5, No. 3, September, 0 ISSN 074-87; Copyright c ICSRS Publicatio, 0 www.i-csrs.org New Iequalities For Covex Sequeces With Applicatios Zielaâbidie Latreuch ad Beharrat

More information

JENSEN S INEQUALITY FOR QUASICONVEX FUNCTIONS S. S. DRAGOMIR 1 and C. E. M. PEARCE 2. Victoria University, Melbourne, Australia

JENSEN S INEQUALITY FOR QUASICONVEX FUNCTIONS S. S. DRAGOMIR 1 and C. E. M. PEARCE 2. Victoria University, Melbourne, Australia JENSEN S INEQUALITY FOR QUASICONVEX FUNCTIONS S. S. DRAGOMIR ad C. E. M. PEARCE School o Computer Sciece & Mathematics Victoria Uiversity, Melboure, Australia School o Mathematical Scieces The Uiversity

More information

Structure and Some Geometric Properties of Nakano Difference Sequence Space

Structure and Some Geometric Properties of Nakano Difference Sequence Space Stuctue ad Soe Geoetic Poeties of Naao Diffeece Sequece Sace N Faied ad AA Baey Deatet of Matheatics, Faculty of Sciece, Ai Shas Uivesity, Caio, Egyt awad_baey@yahooco Abstact: I this ae, we exted the

More information

Applied Mathematical Sciences, Vol. 2, 2008, no. 9, Parameter Estimation of Burr Type X Distribution for Grouped Data

Applied Mathematical Sciences, Vol. 2, 2008, no. 9, Parameter Estimation of Burr Type X Distribution for Grouped Data pplied Mathematical Scieces Vol 8 o 9 45-43 Paamete stimatio o Bu Type Distibutio o Gouped Data M ludaat M T lodat ad T T lodat 3 3 Depatmet o Statistics Yamou Uivesity Ibid Joda aludaatm@hotmailcom ad

More information

Journal of Mathematical Analysis and Applications 250, doi: jmaa , available online at http:

Journal of Mathematical Analysis and Applications 250, doi: jmaa , available online at http: Joural of Mathematical Aalysis ad Applicatios 5, 886 doi:6jmaa766, available olie at http:wwwidealibrarycom o Fuctioal Equalities ad Some Mea Values Shoshaa Abramovich Departmet of Mathematics, Uiersity

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow

KEY. Math 334 Midterm II Fall 2007 section 004 Instructor: Scott Glasgow KEY Math 334 Midtem II Fall 7 sectio 4 Istucto: Scott Glasgow Please do NOT wite o this exam. No cedit will be give fo such wok. Rathe wite i a blue book, o o you ow pape, pefeably egieeig pape. Wite you

More information

Minimal order perfect functional observers for singular linear systems

Minimal order perfect functional observers for singular linear systems Miimal ode efect fuctioal obseves fo sigula liea systems Tadeusz aczoek Istitute of Cotol Idustial lectoics Wasaw Uivesity of Techology, -66 Waszawa, oszykowa 75, POLAND Abstact. A ew method fo desigig

More information

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia. #A39 INTEGERS () RECIPROCAL POWER SUMS Athoy Sofo Victoia Uivesity, Melboue City, Austalia. athoy.sofo@vu.edu.au Received: /8/, Acceted: 6//, Published: 6/5/ Abstact I this ae we give a alteative oof ad

More information

MATH /19: problems for supervision in week 08 SOLUTIONS

MATH /19: problems for supervision in week 08 SOLUTIONS MATH10101 2018/19: poblems fo supevisio i week 08 Q1. Let A be a set. SOLUTIONS (i Pove that the fuctio c: P(A P(A, defied by c(x A \ X, is bijective. (ii Let ow A be fiite, A. Use (i to show that fo each

More information

Bernstein Polynomials

Bernstein Polynomials 7 Bestei Polyomials 7.1 Itoductio This chapte is coceed with sequeces of polyomials amed afte thei ceato S. N. Bestei. Give a fuctio f o [0, 1, we defie the Bestei polyomial B (f; x = ( f =0 ( x (1 x (7.1

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

On randomly generated non-trivially intersecting hypergraphs

On randomly generated non-trivially intersecting hypergraphs O adomly geeated o-tivially itesectig hypegaphs Balázs Patkós Submitted: May 5, 009; Accepted: Feb, 010; Published: Feb 8, 010 Mathematics Subject Classificatio: 05C65, 05D05, 05D40 Abstact We popose two

More information

New Sharp Lower Bounds for the First Zagreb Index

New Sharp Lower Bounds for the First Zagreb Index SCIENTIFIC PUBLICATIONS OF THE STATE UNIVERSITY OF NOVI PAZAR SER. A:APPL. MATH. INFORM. AND MECH. vol. 8, 1 (016), 11-19. New Shap Lowe Bouds fo the Fist Zageb Idex T. Masou, M. A. Rostami, E. Suesh,

More information

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck!

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck! Uiversity of Colorado Dever Dept. Math. & Stat. Scieces Applied Aalysis Prelimiary Exam 13 Jauary 01, 10:00 am :00 pm Name: The proctor will let you read the followig coditios before the exam begis, ad

More information

CENTRAL INDEX BASED SOME COMPARATIVE GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS FROM THE VIEW POINT OF L -ORDER. Tanmay Biswas

CENTRAL INDEX BASED SOME COMPARATIVE GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS FROM THE VIEW POINT OF L -ORDER. Tanmay Biswas J Koean Soc Math Educ Se B: Pue Appl Math ISSNPint 16-0657 https://doiog/107468/jksmeb01853193 ISSNOnline 87-6081 Volume 5, Numbe 3 August 018, Pages 193 01 CENTRAL INDEX BASED SOME COMPARATIVE GROWTH

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

Lacunary Almost Summability in Certain Linear Topological Spaces

Lacunary Almost Summability in Certain Linear Topological Spaces BULLETIN of te MLYSİN MTHEMTİCL SCİENCES SOCİETY Bull. Malays. Mat. Sci. Soc. (2) 27 (2004), 27 223 Lacuay lost Suability i Cetai Liea Topological Spaces BÜNYMIN YDIN Cuuiyet Uivesity, Facutly of Educatio,

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

Bernoulli, poly-bernoulli, and Cauchy polynomials in terms of Stirling and r-stirling numbers

Bernoulli, poly-bernoulli, and Cauchy polynomials in terms of Stirling and r-stirling numbers Novembe 4, 2016 Beoulli, oly-beoulli, ad Cauchy olyomials i tems of Stilig ad -Stilig umbes Khisto N. Boyadzhiev Deatmet of Mathematics ad Statistics, Ohio Nothe Uivesity, Ada, OH 45810, USA -boyadzhiev@ou.edu

More information

IDENTITIES FOR THE NUMBER OF STANDARD YOUNG TABLEAUX IN SOME (k, l)-hooks

IDENTITIES FOR THE NUMBER OF STANDARD YOUNG TABLEAUX IN SOME (k, l)-hooks Sémiaie Lothaigie de Combiatoie 63 (010), Aticle B63c IDENTITIES FOR THE NUMBER OF STANDARD YOUNG TABLEAUX IN SOME (k, l)-hooks A. REGEV Abstact. Closed fomulas ae kow fo S(k,0;), the umbe of stadad Youg

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2. Paabola Volume 5, Issue (017) Solutions 151 1540 Q151 Take any fou consecutive whole numbes, multiply them togethe and add 1. Make a conjectue and pove it! The esulting numbe can, fo instance, be expessed

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

Relation (12.1) states that if two points belong to the convex subset Ω then all the points on the connecting line also belong to Ω.

Relation (12.1) states that if two points belong to the convex subset Ω then all the points on the connecting line also belong to Ω. Lectue 6. Poectio Opeato Deiitio A.: Subset Ω R is cove i [ y Ω R ] λ + λ [ y = z Ω], λ,. Relatio. states that i two poits belog to the cove subset Ω the all the poits o the coectig lie also belog to Ω.

More information

Modular Spaces Topology

Modular Spaces Topology Applied Matheatics 23 4 296-3 http://ddoiog/4236/a234975 Published Olie Septebe 23 (http://wwwscipog/joual/a) Modula Spaces Topology Ahed Hajji Laboatoy of Matheatics Coputig ad Applicatio Depatet of Matheatics

More information

9.7 Pascal s Formula and the Binomial Theorem

9.7 Pascal s Formula and the Binomial Theorem 592 Chapte 9 Coutig ad Pobability Example 971 Values of 97 Pascal s Fomula ad the Biomial Theoem I m vey well acquaited, too, with mattes mathematical, I udestad equatios both the simple ad quadatical

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Concavity of weighted arithmetic means with applications

Concavity of weighted arithmetic means with applications Arch. Math. 69 (1997) 120±126 0003-889X/97/020120-07 $ 2.90/0 Birkhäuser Verlag, Basel, 1997 Archiv der Mathematik Cocavity of weighted arithmetic meas with applicatios By ARKADY BERENSTEIN ad ALEK VAINSHTEIN*)

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Relating to, connected or concerned with, quality or qualities. Now usually in implied or expressed opposition to quantitative.

Relating to, connected or concerned with, quality or qualities. Now usually in implied or expressed opposition to quantitative. . Mathematical bacgou I you chose poessio, it will be ecessay to mae egieeig esig ecisios. Whe it comes to pogammig, you will ote have a selectio o possible algoithms o ata stuctues; howeve, whe you compae

More information

Generalization of Horadam s Sequence

Generalization of Horadam s Sequence Tuish Joual of Aalysis ad Nube Theoy 6 Vol No 3-7 Available olie at http://pubssciepubco/tjat///5 Sciece ad Educatio Publishig DOI:69/tjat---5 Geealizatio of Hoada s Sequece CN Phadte * YS Valaulia Depatet

More information

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES

THE ANALYSIS OF SOME MODELS FOR CLAIM PROCESSING IN INSURANCE COMPANIES Please cite this atle as: Mhal Matalyck Tacaa Romaiuk The aalysis of some models fo claim pocessig i isuace compaies Scietif Reseach of the Istitute of Mathemats ad Compute Sciece 004 Volume 3 Issue pages

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information