GRANGIAN QUANTIZATION OF THE HETEROTIC STRING IN THE BOSONIC FORMULAT

Size: px
Start display at page:

Download "GRANGIAN QUANTIZATION OF THE HETEROTIC STRING IN THE BOSONIC FORMULAT"

Transcription

1 September, 1987 IASSNS-HEP-87/draft GRANGIAN QUANTIZATION OF THE HETEROTIC STRING IN THE BOSONIC FORMULAT J. M. F. LABASTIDA and M. PERNICI The Institute for Advanced Study Princeton, NJ 08540, USA ABSTRACT We consider the BRSTquantization of the N=2 supersymmetric Siegel lagrangian, and we show that it describes four chiral bosons. This lagrangian can be consistently coupled to gravity. We apply this method to the heterotic string, obtaining a lagrangian formulation for the heterotic string in the bosonic formulation. Research supported by U. S. DOE contract DE-AC02-76ER02220 On leave from Instituto de Estructura de la Materia, CSIC, Serrano 119, Madrid, Spain

2 Chiral bosons are a basic ingredient in the heterotic string []. A covariant lagrangian quantization of chiral bosons in a gravity background is not known. A classical bosonic lagrangian formulation for chiral bosons has been presented by Siegel []. This theory has anomalies [3,4], which can be eliminated introducing a Liouville term. In ref. [] it has been shown that the theory is consistent only when it describes two chiral bosons. A consistent formulation of this model in a gravity background is lacking; the difficulty in obtaining it is due to the presence of the Liouville term [4]. To solve this problem one can try to modify this model in such a way to get rid of the Liouville term. In ref. [5] a Siegel lagrangian describing 26 bosons is considered; this theory can be consistently coupled to gravity, since the Liouville term vanishes, however it does not describe chiral bosons as physical states. In ref. [2] N = 1 and N = 2 supersymmetric extensions of the model describing chiral bosons are also considered at the classical level. In ref. [6] the N = 4 supersymmetric extension of this model is found. In this letter we show that the N = 2 model describes four chiral bosons at the quantum level; the Liouville term is absent, and it is possible to couple this model to background gravity. We show that this method can be applied to find a covariant lagrangian quantization for the heterotic string in the bosonic formulation. The N = 2 supersymmetric Siegel lagrangian describing four chiral bosons in a gravity background is the following e 1 L = + X a X a + Y a Y a + i 2 ψ ia ρ + D + ψ ia λ ( X a X a + Y a Y a ) i 4 λ ψia ρ + D ψ ia +2 χ i ψ ia X a +2 χ i Ω ij ψ ja Y a + i 2 ψ ia ρ + Ω ij ψ ja A, (1) In our conventions: ± = 1 2 ( σ± τ ), ρ ± = 1 2 (ρ 1 ±ρ 0 ), Ω 01 =1, Ω ij = Ω ji. 1

3 where D ± = e α ±D α, D α are covariant derivatives, and the ± indices are tangent space indices. The matter multiplet is formed by the real scalar bosonic fields X a and Y a, and by the Majorana-Weyl fermions ψ ia, a =1, 2, i =1, 2, and gauge multiplet by the doubly self-dual gauge field λ, the Majorana-Weyl gravitini χ i, and the self-dual U(1) gauge field A. The gauge and super-gauge transformations are the following [6] : δλ =2D + ξ + ξ D λ λ D ξ, δχ i = ξ D χ i 1 2 χ D ξ +ΛΩ ij χ j, δa = ξ D A λ Λ + Λ, δψ ia = ξ D ψ ia ψia D ξ +ΛΩ ij ψ ja, δx a = ξ X a, δy a = ξ Y a, δλ = 4i ɛ i ρ χ i, (2) δχ i = D + ɛ i ɛi D λ 1 2 λ D ɛ i + A Ω ij ɛ j, δa = i ɛ i Ω ij ρ D χ j i(d ɛ i )Ω ij ρ χ j, δψ ia = iρ ɛ i X a + iρ Ω ij ɛ j Y a, δx a = ɛ i ψ ia, δy a = ɛ i Ω ij ψ ja, 2

4 The algebra of these gauge and supergauge transformations is [7] [δ(ɛ 1 ),δ(ɛ 2 )] =δ(ξ )+δ(λ), [δ(epsilon),δ(ξ )] = [δ(epsilon),δ(λ)] = [δ(ξ 1 ),δ(ξ 2 )] = (3) [δ(ξ ),δ(λ)] = where, [δ(λ 1 ),δ(λ 2 )] = ξ = 2i ɛ i 2ρ ɛ i 1, Λ=iΩ kl [( ɛ k 2)ρ ɛ l 1 ɛ k 2ρ ( ɛ l 1)]. (4) Let us prove that this model describes four chiral bosons. The physical states are given by Q Φ >= 0 (5) where Q is the BRSTcharge, given by [fb] Q = c i G i + f k ijc i c j c k (6) where G i are the generators of the algebra (3), c i and c j are the ghosts and the antighosts respectively and f k ij the structure constants. Following ref. [8,4], let us expand Q in the zero modes of the bosonic reparametrization ghosts: Q = c o H + Q B + b 0 M (7) where H = 1 2 (p2 X + a p2 Y a)+n a (8) 3

5 is the hamiltonian, p X a and p Y a are the left sector momenta of the scalar fields X a and Y a, N is the number operator of all the matter fields, ghosts and antighosts and a the intercept. Taking (6), it turns out that Q 2 = 0 and that, =0, (9) where the contributions are given in order by the scalars, the fermions, the reparametrization ghosts b and c, the superconformal ghosts β i and γ i, and the ghosts of the U(1) symmetry [9]. Since the physical states satisfy the condition b 0 Φ >= 0 (10) it follows that H Φ >= 0 (11) Since H is positive semi-definite, and it vanishes only on the states built by oscillators and momenta belonging to the right-moving sector, it follows that the model describes four rightmoving scalars only. This analysis is similar to the one done in ref. [4] for the bosonic Siegel lagrangian. As in that case, it is crucial that the intercept be zero. As in ref. [4], one could prove the no-ghost theorem also in the Minkowski case, that is when the scalars X 1 and Y 1 have the wrong sign in the kinetic term while the other two have the right one. This case is analogous to the N = 2 spinning string [ade], in which it was proved that the only physical state is the ground state, a massless scalar. To describe the chiral bosons in the Minkowski case one must put the momentum of thi physical scalar to zero (such an artificial process is absent in the Euclidean case ). This model can be used to obtain a lagrangian for the heterotic string in the bosonic formulation. There are the 16 chiral bosons X,I =1,..., 16, which can be grouped four by 4

6 four as in (1). The bosons X have the Fourier expansion X = X p(τ + σ)+ p(τ σ)+... (12) 2π 2π where p and p are the left and right momenta respectively. The physical state condition (5) implies that p = 0. The p belong to a self-dual lattice []. Using the lagrangian (1) it is simple to write the covariant lagrangian formulation of the heterotic string without the need of fermionazing the 16 internal bosonic coordinates X. We organize these 16 bosonic coordinates in groups of 4 so we label them as X a, Y a, a =1, 2, J =1,..., 4, and we use the condensed index A, A = {µ, i, a, J}, µ =1,..., 10, i = 1 for the X a and i = 2 for the Y a to denote all the 26 bosonic coordinates X. Similarly for the 26 left-handed Majorana spinors ψ = ψ µ,ψ ia. The lagrangian is [], e 1 L hs = 1 2 (eµ α µ X A ) 2 + i 2 ψρ D ψ i 2 ξ αρ β ρ α ψ µ β X µ λ ( X a X aj +( Y a Y aj ) i 4 λ ψia ρ + D ψ ia (13) +2 χ i ψ ia X a +2 χ i Ω ij ψ ja Y a + i 2 ψ ia ρ + Ω ij ψ ja A where e µ α and ξ µ form the N = 1 supergravity multiplet in two space-time dimensions. This lagrangian is invariant under N = 1 local supersymmetry and under the transformations (2) Let us finally comment that the bosonic Siegel lagrangian quantization in ref. [] has drawbacks also in flat space when there is an internal symmetry among the scalars, for instance on a group manifold, due to the Liouville term, breaking such symmetries. This drawback is absent in the present formulation, which however holds only for n = 4k chiral bosons. 5

7 References [1] D.J. Gross, J.A. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 54 (1985) 502, Nucl. Phys. B256 (1985) 253, B267 (1986) 75 [2] W. Siegel, Nucl. Phys. B238 (1984) 307 [3] [is] C. Imbimbo and A. Schwimmer, The lagrangian formulation of chiral bosons, Phys. Lett. 00B (1987) 00 J.M.F. Labastida and M. Pernici, On the BRSTquantization of chiral bosons, Preprint IASSNS-HEP-87/29, (May 1987) [p] A.M. Polyakov, Phys. Lett. 103B (1981) 207 [lp2] J.F.M. Labastida and M. Pernici, N=4 supersymmetric Lagrangian for self-dual fields, Preprint IASSNS-HEP-87/31, (June 1987) [ade] M. Ademollo, L. Brink, A. D Auria, E. Napolitano, S. Sciuto, E. Del Giudice, P. di Vecchia, S. Ferrara, F. Gliozzi, R. Musto and R. Pettorino, Phys. Lett. 62B (1976) 105 [bs] L. Brink and J.H. Schwarz, Nucl. Phys. B121 (1977) 285 [8] [9] M. Ademollo, L. Brink, A. D Adda, R. D Auria, E. Napolitano, S. Sciuto, E. Del Giudice, P. di Vecchia, S. Ferrara, F. Gliozzi, R. Musto and R. Pettorino, Nucl. Phys. B114 (1976) 297 [12] P. Ramond and J.H. Schwarz, Phys. Lett. 64B (1976) 75 [ko] M. Kato and K. Ogawa, Nucl. Phys. B212 (1983) 443 [ft] E.S. Fradkin and A.A. Tseytlin, Phys. Lett. 106B (1981) 63 [bvn] P. Bouwknegt and P. van Nieuwenhuizen, Class. Quantum Grav. 3 (1986) 207 6

8 [mm] S. Mathur and S. Mukhi, Phys. Lett. D36 (1987) 465 7

LAGRANGIANS FOR CHIRAL BOSONS AND THE HETEROTIC STRING. J. M. F. LABASTIDA and M. PERNICI The Institute for Advanced Study Princeton, NJ 08540, USA

LAGRANGIANS FOR CHIRAL BOSONS AND THE HETEROTIC STRING. J. M. F. LABASTIDA and M. PERNICI The Institute for Advanced Study Princeton, NJ 08540, USA October, 1987 IASSNS-HEP-87/57 LAGRANGIANS FOR CHIRAL BOSONS AND THE HETEROTIC STRING J. M. F. LABASTIDA and M. PERNICI The Institute for Advanced Study Princeton, NJ 08540, USA ABSTRACT We study the symmetries

More information

GSO projection and target space supersymmetry

GSO projection and target space supersymmetry GSO projection and target space supersymmetry Paolo Di Vecchia Niels Bohr Instituttet, Copenhagen and Nordita, Stockholm Collège de France, 26.02.10 Paolo Di Vecchia (NBI+NO) GSO projection Collège de

More information

EQUIVALENCE OF DUAL FIELD THEORETICAL LIMITS OF SUPERSTRING THEORIES. J. M. F. Labastida *

EQUIVALENCE OF DUAL FIELD THEORETICAL LIMITS OF SUPERSTRING THEORIES. J. M. F. Labastida * October, 1985 EQUIVALENCE OF DUAL FIELD THEORETICAL LIMITS OF SUPERSTRING THEORIES J. M. F. Labastida * The Institute for Advanced Study Princeton, New Jersey 08540, USA ABSTRACT The equivalence of type

More information

Théorie des cordes: quelques applications. Cours II: 4 février 2011

Théorie des cordes: quelques applications. Cours II: 4 février 2011 Particules Élémentaires, Gravitation et Cosmologie Année 2010-11 Théorie des cordes: quelques applications Cours II: 4 février 2011 Résumé des cours 2009-10: deuxième partie 04 février 2011 G. Veneziano,

More information

Théorie des Cordes: une Introduction Cours VII: 26 février 2010

Théorie des Cordes: une Introduction Cours VII: 26 février 2010 Particules Élémentaires, Gravitation et Cosmologie Année 2009-10 Théorie des Cordes: une Introduction Cours VII: 26 février 2010 Généralisations de Neveu-Schwarz & Ramond Classical vs. quantum strings

More information

A Comment on String Solitons

A Comment on String Solitons CTP/TAMU-18/93 A Comment on String Solitons arxiv:hep-th/9305143v1 26 May 1993 Ramzi R. Khuri Center for Theoretical Physics Texas A&M University College Station, TX 77843 We derive an exact string-like

More information

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS John H. Schwarz Dedicated to the memory of Joël Scherk SOME FAMOUS SCHERK PAPERS Dual Models For Nonhadrons J. Scherk, J. H. Schwarz

More information

Topological DBI actions and nonlinear instantons

Topological DBI actions and nonlinear instantons 8 November 00 Physics Letters B 50 00) 70 7 www.elsevier.com/locate/npe Topological DBI actions and nonlinear instantons A. Imaanpur Department of Physics, School of Sciences, Tarbiat Modares University,

More information

Self-Duality beyond Chiral p-form Actions

Self-Duality beyond Chiral p-form Actions Self-Duality beyond Chiral p-form Actions Yan-Gang Miao a,b,1,2, R. Manvelyan a,1,3 and H.J.W. Müller-Kirsten a,4 a Department of Physics, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern,

More information

Maximally Supersymmetric Solutions in Supergravity

Maximally Supersymmetric Solutions in Supergravity Maximally Supersymmetric Solutions in Supergravity Severin Lüst Universität Hamburg arxiv:1506.08040, 1607.08249, and in progress in collaboration with J. Louis November 24, 2016 1 / 17 Introduction Supersymmetric

More information

Introduction to string theory 2 - Quantization

Introduction to string theory 2 - Quantization Remigiusz Durka Institute of Theoretical Physics Wroclaw / 34 Table of content Introduction to Quantization Classical String Quantum String 2 / 34 Classical Theory In the classical mechanics one has dynamical

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

The Dirac Propagator From Pseudoclassical Mechanics

The Dirac Propagator From Pseudoclassical Mechanics CALT-68-1485 DOE RESEARCH AND DEVELOPMENT REPORT The Dirac Propagator From Pseudoclassical Mechanics Theodore J. Allen California Institute of Technology, Pasadena, CA 9115 Abstract In this note it is

More information

Yet Another Alternative to Compactification

Yet Another Alternative to Compactification Okayama Institute for Quantum Physics: June 26, 2009 Yet Another Alternative to Compactification Heterotic five-branes explain why three generations in Nature arxiv: 0905.2185 [hep-th] Tetsuji KIMURA (KEK)

More information

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods Frederik Coomans KU Leuven Workshop on Conformal Field Theories Beyond Two Dimensions 16/03/2012, Texas A&M Based on

More information

Institut fur Theoretische Physik Universitat Hannover Institut fur Theoretische Physik Universitat Hannover Institut fur Theoretische Physik Hannover

Institut fur Theoretische Physik Universitat Hannover Institut fur Theoretische Physik Universitat Hannover Institut fur Theoretische Physik Hannover Institut fur Theoretische Physik Universitat Hannover Institut fur Theoretische Physik Universitat Hannover Institut fur Theoretische Physik Hannover ITP{UH{09/96 June 1996 hep-th/9606142 From N=2 Strings

More information

u model approach to the heterotic string theory* ABSTRACT

u model approach to the heterotic string theory* ABSTRACT SLAC - PUB - 3794 September 1985 T u model approach to the heterotic string theory* ASHOKE SEN Stanford Linear Accelerator Center Stanford University, Stanford, California, 94905 ABSTRACT Relation between

More information

arxiv:hep-th/ v1 28 Jan 1999

arxiv:hep-th/ v1 28 Jan 1999 N=1, D=10 TENSIONLESS SUPERBRANES II. 1 arxiv:hep-th/9901153v1 28 Jan 1999 P. Bozhilov 2 Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia We consider a model for tensionless (null)

More information

The WZ Term of the Spinning String and its On-shell Structure

The WZ Term of the Spinning String and its On-shell Structure The WZ Term of the Spinning String and its On-shell Structure arxiv:hep-th/9603144v1 22 Mar 1996 J. Gomis, K.Kamimura and R.Kuriki Departament d Estructura i Constituents de la Matèria Universitat de Barcelona

More information

arxiv:hep-th/ v1 6 Mar 2007

arxiv:hep-th/ v1 6 Mar 2007 hep-th/0703056 Nonlinear Realizations in Tensorial Superspaces and Higher Spins arxiv:hep-th/0703056v1 6 Mar 2007 Evgeny Ivanov Bogoliubov Laboratory of Theoretical Physics, JINR, 141980, Dubna, Moscow

More information

Exact solutions in supergravity

Exact solutions in supergravity Exact solutions in supergravity James T. Liu 25 July 2005 Lecture 1: Introduction and overview of supergravity Lecture 2: Conditions for unbroken supersymmetry Lecture 3: BPS black holes and branes Lecture

More information

Yet Another Alternative to Compactification by Heterotic Five-branes

Yet Another Alternative to Compactification by Heterotic Five-branes The University of Tokyo, Hongo: October 26, 2009 Yet Another Alternative to Compactification by Heterotic Five-branes arxiv: 0905.285 [hep-th] Tetsuji KIMURA (KEK) Shun ya Mizoguchi (KEK, SOKENDAI) Introduction

More information

arxiv:hep-th/ v1 10 Apr 2006

arxiv:hep-th/ v1 10 Apr 2006 Gravitation with Two Times arxiv:hep-th/0604076v1 10 Apr 2006 W. Chagas-Filho Departamento de Fisica, Universidade Federal de Sergipe SE, Brazil February 1, 2008 Abstract We investigate the possibility

More information

Radiative brane mass terms in orbifold gauge theories

Radiative brane mass terms in orbifold gauge theories Radiative brane mass terms in orbifold gauge theories Nikolaos Irges Instituto de Estructura de la Materia (CSIC), Serrano 123 E-28006-Madrid, Spain Orbifolds play a prominent role in theories with extra

More information

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012 dario.rosa@mib.infn.it Dipartimento di Fisica, Università degli studi di Milano Bicocca Milano, Thursday, September 27th, 2012 1 Holomorphic Chern-Simons theory (HCS) Strategy of solution and results 2

More information

Ambitwistor strings, the scattering equations, tree formulae and beyond

Ambitwistor strings, the scattering equations, tree formulae and beyond Ambitwistor strings, the scattering equations, tree formulae and beyond Lionel Mason The Mathematical Institute, Oxford lmason@maths.ox.ac.uk Les Houches 18/6/2014 With David Skinner. arxiv:1311.2564 and

More information

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/ Twistor Strings, Gauge Theory and Gravity Abou Zeid, Hull and Mason hep-th/0606272 Amplitudes for YM, Gravity have elegant twistor space structure: Twistor Geometry Amplitudes for YM, Gravity have elegant

More information

The N = 2 Gauss-Bonnet invariant in and out of superspace

The N = 2 Gauss-Bonnet invariant in and out of superspace The N = 2 Gauss-Bonnet invariant in and out of superspace Daniel Butter NIKHEF College Station April 25, 2013 Based on work with B. de Wit, S. Kuzenko, and I. Lodato Daniel Butter (NIKHEF) Super GB 1 /

More information

arxiv:hep-th/ v3 8 Nov 1995

arxiv:hep-th/ v3 8 Nov 1995 NSF-ITP-95-122 hep-th/9510017 Dirichlet-Branes and Ramond-Ramond Charges arxiv:hep-th/9510017v3 8 Nov 1995 Joseph Polchinski Institute for Theoretical Physics University of California Santa Barbara, CA

More information

RECENT DEVELOPMENTS IN FERMIONIZATION AND SUPERSTRING MODEL BUILDING

RECENT DEVELOPMENTS IN FERMIONIZATION AND SUPERSTRING MODEL BUILDING RECENT DEVELOPMENTS IN FERMIONIZATION AND SUPERSTRING MODEL BUILDING SHYAMOLI CHAUDHURI Institute for Theoretical Physics University of California Santa Barbara, CA 93106-4030 E-mail: sc@itp.ucsb.edu ABSTRACT

More information

A SUPERMEMBRANE DESCRIPTION OF STRING-STRING DUALITY. Fermin ALDABE 1

A SUPERMEMBRANE DESCRIPTION OF STRING-STRING DUALITY. Fermin ALDABE 1 hep-th/9604107 A SUPERMEMBRANE DESCRIPTION OF STRING-STRING DUALITY Fermin ALDABE 1 Theoretical Physics Institute, University of Alberta Edmonton, Alberta, Canada, T6G 2J1 April 20, 1996 ABSTRACT We show

More information

On the curious spectrum of duality-invariant higher-derivative gravitational field theories

On the curious spectrum of duality-invariant higher-derivative gravitational field theories On the curious spectrum of duality-invariant higher-derivative gravitational field theories VIII Workshop on String Field Theory and Related Aspects ICTP-SAIFR 31 May 2016 Barton Zwiebach, MIT Introduction

More information

Dual versions of N = 2 supergravity and spontaneous supersymmetry breaking

Dual versions of N = 2 supergravity and spontaneous supersymmetry breaking Dual versions of N = supergravity and spontaneous supersymmetry breaking arxiv:hep-th/9409199v1 1 Oct 1994 Yu. M. Zinoviev Institute for High Energy Physics Protvino, Moscow Region, 1484, Russia Abstract

More information

N = 2 String Amplitudes *

N = 2 String Amplitudes * LBL-37660 August 23, 1995 UCB-PTH-95/30 N = 2 String Amplitudes * Hirosi Oogurit Theoretical Physics Group Lawrence Berkeley Laboratory University of California Berkeley, California 94 720 To appear in

More information

Supergravity in Quantum Mechanics

Supergravity in Quantum Mechanics Supergravity in Quantum Mechanics hep-th/0408179 Peter van Nieuwenhuizen C.N. Yang Institute for Theoretical Physics Stony Brook University Erice Lectures, June 2017 Vienna Lectures, Jan/Feb 2017 Aim of

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory

Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory hep-th/9707042 MRI-PHY/P970716 Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory Ashoke Sen 1 2 Mehta Research Institute of Mathematics and Mathematical Physics Chhatnag Road, Jhusi,

More information

Some applications of light-cone superspace

Some applications of light-cone superspace Some applications of light-cone superspace Stefano Kovacs (Trinity College Dublin & Dublin Institute for Advanced Studies) Strings and Strong Interactions LNF, 19/09/2008 N =4 supersymmetric Yang Mills

More information

arxiv:hep-th/ v1 10 Aug 2001

arxiv:hep-th/ v1 10 Aug 2001 D-Brane Scattering of N = 2 Strings Klaus Jünemann a and Bernd Spendig b arxiv:hep-th/0108069v1 10 Aug 2001 a E-mail: K.Junemann@gmx.net b Institut für Theoretische Physik, Universität Hannover Appelstraße

More information

Symmetries, Groups Theory and Lie Algebras in Physics

Symmetries, Groups Theory and Lie Algebras in Physics Symmetries, Groups Theory and Lie Algebras in Physics M.M. Sheikh-Jabbari Symmetries have been the cornerstone of modern physics in the last century. Symmetries are used to classify solutions to physical

More information

A Note On The Chern-Simons And Kodama Wavefunctions

A Note On The Chern-Simons And Kodama Wavefunctions hep-th/0306083 arxiv:gr-qc/0306083v2 19 Jun 2003 A Note On The Chern-Simons And Kodama Wavefunctions Edward Witten Institute For Advanced Study, Princeton NJ 08540 USA Yang-Mills theory in four dimensions

More information

Electric Dipole Moment of Magnetic Monopole

Electric Dipole Moment of Magnetic Monopole 479 Progress of Theoretical Physics, Vol. 117, No. 3, March 27 Electric Dipole Moment of Magnetic Monopole Makoto Kobayashi High Energy Accelerator Research Organization (KEK, Tsukuba 35-81, Japan and

More information

A Multimonopole Solution in String Theory

A Multimonopole Solution in String Theory CTP/TAMU-33/92 A Multimonopole Solution in String Theory arxiv:hep-th/9205051v2 15 May 1992 Ramzi R. Khuri Center for Theoretical Physics Texas A&M University College Station, TX 77843 A multimonopole

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Preprint typeset in JHEP style - HYPER VERSION. Special Geometry. Yang Zhang. Abstract: N = 2 Supergravity. based on hep-th/ , Boris PiolineA

Preprint typeset in JHEP style - HYPER VERSION. Special Geometry. Yang Zhang. Abstract: N = 2 Supergravity. based on hep-th/ , Boris PiolineA Preprint typeset in JHEP style - HYPER VERSION Special Geometry Yang Zhang Abstract: N = Supergravity based on hep-th/06077, Boris PiolineA Contents 1. N = Supergravity 1 1.1 Supersymmetric multiplets

More information

Spinning strings and QED

Spinning strings and QED Spinning strings and QED James Edwards Oxford Particles and Fields Seminar January 2015 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Various relationships between

More information

Citation for published version (APA): de Wit, T. C. (2003). Domain-walls and gauged supergravities Groningen: s.n.

Citation for published version (APA): de Wit, T. C. (2003). Domain-walls and gauged supergravities Groningen: s.n. University of Groningen Domain-walls and gauged supergravities de Wit, Tim Cornelis IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

ON THE STRING DESCRIPTION OF CONFINEMENT

ON THE STRING DESCRIPTION OF CONFINEMENT IFT-UAM/CSIC--4 hep-th/35 ON THE STRING DESCRIPTION OF CONFINEMENT Enrique Álvarez and César Gómez Instituto de Física Teórica, C-XVI, 3 and Departamento de Física Teórica, C-XI, Universidad Autónoma de

More information

arxiv:hep-th/ v1 21 May 1996

arxiv:hep-th/ v1 21 May 1996 ITP-SB-96-24 BRX-TH-395 USITP-96-07 hep-th/xxyyzzz arxiv:hep-th/960549v 2 May 996 Effective Kähler Potentials M.T. Grisaru Physics Department Brandeis University Waltham, MA 02254, USA M. Roče and R. von

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

Entropy of asymptotically flat black holes in gauged supergravit

Entropy of asymptotically flat black holes in gauged supergravit Entropy of asymptotically flat black holes in gauged supergravity with Nava Gaddam, Alessandra Gnecchi (Utrecht), Oscar Varela (Harvard) - work in progress. BPS Black Holes BPS Black holes in flat space

More information

String Theory: a mini-course

String Theory: a mini-course String Theory: a mini-course C. Damian and O. Loaiza-Brito 1 Departamento de Física, DCI, Campus León, Universidad de Guanajuato, C.P. 37150, Guanuajuato, Mexico E-mail: cesaredas@fisica.ugto.mx, oloaiza@fisica.ugto.mx

More information

40 years of the Weyl anomaly

40 years of the Weyl anomaly 1 / 50 40 years of the Weyl anomaly M. J. Duff Physics Department Imperial College London CFT Beyond Two Dimensions Texas A&M March 2012 Abstract Classically, Weyl invariance S(g, φ) = S(g, φ ) under g

More information

arxiv:hep-th/ v2 15 Jul 1999

arxiv:hep-th/ v2 15 Jul 1999 Extended supersymmetry in D=1+1 arxiv:hep-th/9905145v2 15 Jul 1999 R. Amorim and J. Barcelos-Neto Instituto de Física Universidade Federal do Rio de Janeiro RJ 21945-970 - Caixa Postal 68528 - Brasil Abstract

More information

Supertwistors, Chern-Simons And Super Gauge Theories

Supertwistors, Chern-Simons And Super Gauge Theories Supertwistors, Chern-Simons And Super Gauge Theories INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT HANNOVER From Twistors To Amplitudes, QMUL, London 2005 Contents 1 Motivation Double Fibrations Twistor

More information

SUPERSPACE ANALYSIS OF_LQCAJ _ LORENTZ AND GAUGE ANOMALIES IN THE HETEROTIC STRING THEORY * ABSTRACT

SUPERSPACE ANALYSIS OF_LQCAJ _ LORENTZ AND GAUGE ANOMALIES IN THE HETEROTIC STRING THEORY * ABSTRACT SLAC - PUB - 3908 March 1986 T SUPERSPACE ANALYSIS OF_LQCAJ _ LORENTZ AND GAUGE ANOMALIES IN THE HETEROTIC STRING THEORY * ASHOKE SEN Stanford Linear Accelerator Center Stanford University, Stanford, California,

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are; Lecture 4 - Relativistic wave equations Postulates Relativistic wave equations must satisfy several general postulates. These are;. The equation is developed for a field amplitude function, ψ 2. The normal

More information

arxiv: v1 [hep-th] 4 Jul 2015

arxiv: v1 [hep-th] 4 Jul 2015 Yang-Mills theories and quadratic forms arxiv:1507.01068v1 [hep-th] 4 Jul 015 Sudarshan Ananth, Lars Brink and Mahendra Mali Indian Institute of Science Education and Research Pune 411008, India Department

More information

hep-lat/ Dec 94

hep-lat/ Dec 94 IASSNS-HEP-xx/xx RU-94-99 Two dimensional twisted chiral fermions on the lattice. Rajamani Narayanan and Herbert Neuberger * School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton,

More information

1 Canonical quantization conformal gauge

1 Canonical quantization conformal gauge Contents 1 Canonical quantization conformal gauge 1.1 Free field space of states............................... 1. Constraints..................................... 3 1..1 VIRASORO ALGEBRA...........................

More information

Generalized N = 1 orientifold compactifications

Generalized N = 1 orientifold compactifications Generalized N = 1 orientifold compactifications Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG Madison, Wisconsin, November 2006

More information

Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm

Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm Syracuse University SURFACE Physics College of Arts and Sciences 12-17-2001 Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm Simon Catterall Syracuse University Sergey Karamov Syracuse University

More information

A Short Note on D=3 N=1 Supergravity

A Short Note on D=3 N=1 Supergravity A Short Note on D=3 N=1 Supergravity Sunny Guha December 13, 015 1 Why 3-dimensional gravity? Three-dimensional field theories have a number of unique features, the massless states do not carry helicity,

More information

N = 2 supergravity in d = 4, 5, 6 and its matter couplings

N = 2 supergravity in d = 4, 5, 6 and its matter couplings KUL-TF-XX/XXX hep-th/yymmnnn N = 2 supergravity in d = 4, 5, 6 and its matter couplings Antoine Van Proeyen, 1 Instituut voor theoretische fysica Universiteit Leuven, B-3001 Leuven, Belgium Abstract An

More information

Exact results in AdS/CFT from localization. Part I

Exact results in AdS/CFT from localization. Part I Exact results in AdS/CFT from localization Part I James Sparks Mathematical Institute, Oxford Based on work with Fernando Alday, Daniel Farquet, Martin Fluder, Carolina Gregory Jakob Lorenzen, Dario Martelli,

More information

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates Amir H. Fatollahi Department of Physics, Alzahra University, P. O. Box 19938, Tehran 91167, Iran fath@alzahra.ac.ir Abstract

More information

Lecture 8: 1-loop closed string vacuum amplitude

Lecture 8: 1-loop closed string vacuum amplitude Lecture 8: 1-loop closed string vacuum amplitude José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 5, 2013 José D. Edelstein (USC) Lecture 8: 1-loop vacuum

More information

Reφ = 1 2. h ff λ. = λ f

Reφ = 1 2. h ff λ. = λ f I. THE FINE-TUNING PROBLEM A. Quadratic divergence We illustrate the problem of the quadratic divergence in the Higgs sector of the SM through an explicit calculation. The example studied is that of the

More information

1 Superstrings. 1.1 Classical theory

1 Superstrings. 1.1 Classical theory Contents 1 Superstrings 1.1 Classical theory................................... 1.1.1 ANTI-COMMUTING ψ S.......................... 1.1. FINAL ACTION............................... 1. Eq.m. and b.c.....................................

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

arxiv:hep-th/ v1 13 Feb 1992

arxiv:hep-th/ v1 13 Feb 1992 Chiral Bosons Through Linear Constraints H. O. Girotti, M. Gomes and V. O. Rivelles Instituto de Física, Universidade de São Paulo, Caixa Postal 2516, 1498 São Paulo, SP, Brazil. arxiv:hep-th/92243v1 13

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Supercurrents. Nathan Seiberg IAS

Supercurrents. Nathan Seiberg IAS Supercurrents Nathan Seiberg IAS 2011 Zohar Komargodski and NS arxiv:0904.1159, arxiv:1002.2228 Tom Banks and NS arxiv:1011.5120 Thomas T. Dumitrescu and NS arxiv:1106.0031 Summary The supersymmetry algebra

More information

Techniques for exact calculations in 4D SUSY gauge theories

Techniques for exact calculations in 4D SUSY gauge theories Techniques for exact calculations in 4D SUSY gauge theories Takuya Okuda University of Tokyo, Komaba 6th Asian Winter School on Strings, Particles and Cosmology 1 First lecture Motivations for studying

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

The Holography of F -maximization

The Holography of F -maximization SU-ITP-13/01 MIT-CTP-4443 The Holography of F -maximization arxiv:1302.7310v2 [hep-th] 31 Jan 2014 Daniel Z. Freedman 1,2,3 and Silviu S. Pufu 1,4 1 Center for Theoretical Physics, Massachusetts Institute

More information

Spectral flow as a map between (2,0) models

Spectral flow as a map between (2,0) models Spectral flow as a map between (2,0) models Panos Athanasopoulos based on Phys. Lett. B 735 (2014) 357, arxiv 1403.3404 with Alon Faraggi and Doron Gepner. Workshop on Quantum Fields and Strings - September

More information

HETEROTIC AND TYPE I STRING DYNAMICS FROM ELEVEN DIMENSIONS

HETEROTIC AND TYPE I STRING DYNAMICS FROM ELEVEN DIMENSIONS hep-th/9510209 IASSNS-HEP-95-86 PUPT-1571 HETEROTIC AND TYPE I STRING DYNAMICS FROM ELEVEN DIMENSIONS Petr Hořava Joseph Henry Laboratories, Princeton University Jadwin Hall, Princeton, NJ 08544, USA and

More information

arxiv:hep-th/ v1 29 Mar 1997

arxiv:hep-th/ v1 29 Mar 1997 March 5, 008 UMDEPP 97 101 hep-th/970314 Supergravity in 10 + Dimensions as Consistent Background for Superstring 1 arxiv:hep-th/970314v1 9 Mar 1997 Hitoshi NISHINO Department of Physics University of

More information

String Theory in a Nutshell. Elias Kiritsis

String Theory in a Nutshell. Elias Kiritsis String Theory in a Nutshell Elias Kiritsis P R I N C E T O N U N I V E R S I T Y P R E S S P R I N C E T O N A N D O X F O R D Contents Preface Abbreviations xv xvii Introduction 1 1.1 Prehistory 1 1.2

More information

DOUBLY SUPERSYMMETRIC NULL STRINGS AND STRING TENSION GENERATION. Igor A. Bandos

DOUBLY SUPERSYMMETRIC NULL STRINGS AND STRING TENSION GENERATION. Igor A. Bandos DOUBLY SUPERSYMMETRIC NULL STRINGS AND STRING TENSION GENERATION Igor A. Bandos Kharkov Institute of Physics and Technology Kharkov, 310108, the Ukraine Dmitrij P. Sorokin, Mario Tonin Dipartimento di

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

Small Black Strings/Holes

Small Black Strings/Holes Small Black Strings/Holes Based on M. A., F. Ardalan, H. Ebrahim and S. Mukhopadhyay, arxiv:0712.4070, 1 Our aim is to study the symmetry of the near horizon geometry of the extremal black holes in N =

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama Lorentz-covariant spectrum of single-particle states and their field theory Physics 30A, Spring 007, Hitoshi Murayama 1 Poincaré Symmetry In order to understand the number of degrees of freedom we need

More information

arxiv:hep-th/ v2 11 Sep 1996

arxiv:hep-th/ v2 11 Sep 1996 Gauge Independence of the Lagrangian Path Integral in a Higher-Order Formalism arxiv:hep-th/9609037v2 Sep 996 I.A. Batalin I.E. Tamm Theory Division P.N. Lebedev Physics Institute Russian Academy of Sciences

More information

New Phenomena in 2d String Theory

New Phenomena in 2d String Theory New Phenomena in 2d String Theory Nathan Seiberg Rutgers 2005 N.S. hep-th/0502156 J.L. Davis, F. Larsen, N.S. hep-th/0505081, and to appear J. Maldacena, N.S. hep-th/0506141 1 Low Dimensional String Theories

More information

Superstrings. Report for Proseminar in Theoretical Physics. Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Superstrings. Report for Proseminar in Theoretical Physics. Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Report for Proseminar in Theoretical Physics Superstrings Author: Imre Majer Supervisor: Cristian Vergu Abstract

More information

Spacetime supersymmetry in AdS 3 backgrounds

Spacetime supersymmetry in AdS 3 backgrounds ILL-(TH)-99-01 hep-th/9904040 Spacetime supersymmetry in AdS 3 backgrounds David Berenstein and Robert G. Leigh Department of Physics University of Illinois at Urbana-Champaign Urbana, IL 61801 August

More information

Strings, Branes and Extra Dimensions

Strings, Branes and Extra Dimensions arxiv:hep-th/0110055 v3 3 Jan 2002 Strings, Branes and Extra Dimensions Stefan Förste Physikalisches Institut, Universität Bonn Nussallee 12, D-53115 Bonn, Germany Abstract This review is devoted to strings

More information

What does E 8 know about 11 dimensions?

What does E 8 know about 11 dimensions? OUTP-99-61P November 1999 hep-th/9911252 What does E 8 know about 11 dimensions? Ian I. Kogan 1 and John F. Wheater 2 Department of Physics, University of Oxford Theoretical Physics, 1 Keble Road, Oxford

More information

TREE LEVEL CONSTRAINTS ON CONFORMAL FIELD THEORIES AND STRING MODELS* ABSTRACT

TREE LEVEL CONSTRAINTS ON CONFORMAL FIELD THEORIES AND STRING MODELS* ABSTRACT SLAC-PUB-5022 May, 1989 T TREE LEVEL CONSTRAINTS ON CONFORMAL FIELD THEORIES AND STRING MODELS* DAVID C. LEWELLEN Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 ABSTRACT.*

More information

LANDAU-GINZBURG MODEL FOR A CRITICAL TOPOLOGICAL STRING

LANDAU-GINZBURG MODEL FOR A CRITICAL TOPOLOGICAL STRING LANDAU-GINZBURG MODEL FOR A CRITICAL TOPOLOGICAL STRING Debashis Ghoshal Mehta Research Institute of Mathematics & Mathematical Physics 10, Kasturba Gandhi Marg, Allahabad 211 002, India and Sunil Mukhi

More information

Abstract. I insert a few omitted expressions and correct detected misprints in my book [1].

Abstract. I insert a few omitted expressions and correct detected misprints in my book [1]. ADVANCED TOPICS IN QUANTUM FIELD THEORY: ERRATA M. SHIFMAN William I. Fine Theoretical Physics Institute, University of Minnesota Minneapolis, MN 55455 USA shifman@umn.edu Abstract I insert a few omitted

More information

String theory effects on 5D black strings

String theory effects on 5D black strings String theory effects on 5D black strings Alejandra Castro University of Michigan Work in collaboration with J. Davis, P. Kraus and F. Larsen hep-th/0702072, hep-th/0703087, 0705.1847[hep-th], 0801.1863

More information

e θ 1 4 [σ 1,σ 2 ] = e i θ 2 σ 3

e θ 1 4 [σ 1,σ 2 ] = e i θ 2 σ 3 Fermions Consider the string world sheet. We have bosons X µ (σ,τ) on this world sheet. We will now also put ψ µ (σ,τ) on the world sheet. These fermions are spin objects on the worldsheet. In higher dimensions,

More information

N = 2 heterotic string compactifications on orbifolds of K3 T 2

N = 2 heterotic string compactifications on orbifolds of K3 T 2 Prepared for submission to JHEP N = 2 heterotic string compactifications on orbifolds of K3 T 2 arxiv:6.0893v [hep-th 7 Nov 206 Aradhita Chattopadhyaya, Justin R. David Centre for High Energy Physics,

More information