QUALITY AND EFFICIENCY IN KERNEL DENSITY ESTIMATES FOR LARGE DATA

Size: px
Start display at page:

Download "QUALITY AND EFFICIENCY IN KERNEL DENSITY ESTIMATES FOR LARGE DATA"

Transcription

1 QUALITY AND EFFICIENCY IN KERNEL DENSITY ESTIMATES FOR LARGE DATA Yan Zheng Jeffrey Jestes Jeff M. Philips Feifei Li University of Utah

2 Salt Lake City Sigmod 2014 Snowbird

3 Kernel Density Estimates Let P be an input point set of size n in domain µ from an unknown distribution f. P 2 R 1 or P 2 R 2 in our experiments. Kernel Density Estimates (KDE) function approximates the density of f at any possible input point x 2 µ KDE P (x) = 1 X K(p, x) P p2p KDE represents a continuous distribution from a finite set of points.

4 Kernel Density Estimates

5 Drawback of Histograms Relative Frequency Query value change significantly across the boundary of the bin The choice of origin can have quite an effect Relative Frequency Annual Income (K) Annual Income (K)

6 Example of Kernel Density Estimates 0.02 Kernel Density Estimate Annual Income (K)

7 Examples of kernels (2D) Gaussian: Triangle: Epanechnikov: Ball K(p, x) = exp K(p, x) = 3 2 max K(p, x) = K(p, x) = 2 max 2 kp xk 2 n 0, 1 n 0, ( 1/ 2 if kp xk < 0 otherwise kp xk o kp xk 2 2 o Gaussian Triangle Epanechnikov Ball

8 Comparing of Different Kernels 0.02 Gaussian Triangular Epan Triangular Gaussian Epan Bal Kernel Density Estimate Annual Income (K)

9 Approximate Kernel Density Estimates Kernel Density Estimates kde P (x) = 1 P P p2p K(p, x) KDE is very expensive for large dataset. Each query takes O(n) " -approximation " Given input P, and error, the goal is to produce a small set Q to ensure: max kde P (x) kde Q (x) = kkde P kde Q k 1 apple " x2r d

10 MergeReduce(MR) framework Initialization phase: Arbitrarily decompose P into disjoint sets of size k Combination phase Merge Step k+k->2k Reduce Step 2k->k (Matching Pairs & Randomly Select one) Proceeds in log(n/k) rounds P 1 P 2 P 3 P 4 P i P j P 1,P 2,...,P n/k P 12 P 12 P 34 P 34 P ij P 1234 Q

11 Matching Min-cost Matching [Phillips SODA13] Edmonds Blossom algorithm 2 approximation Greedy algorithm Introduce More Efficient Matching Edge Map E M = {e(p, q) (p, q) 2 M} Given a disk B, E M \ B C M,B = P = {e(p, q) \ B e(p, q) 2 E M } e(p,q)2e M \B kp qk2 C M = max B C M,B. Min-cost Matching C M = O(1) Our Matching C M = O(log(1/"))

12 Grid Matching Min-cost matching C M = O(1) Grid Matching C M = O(log(1/")) Running time O(n log(1/")) Starting with i = 0, construct Gi, length l ",i = p 2 "2 i 2 Inside of each cell, match points arbitrarily. Only the unmatched points survive to the next round. Each cell in Gi +1 is the union of 4 cells from Gi After log(1/ ")+1rounds, match points left arbitrarily.

13 Grid Matching Point set P R 2 with n points, we can construct Q giving an ε-approximate KDE in O(n log 1 " ) running time and Q = O(1 " log n 1 log1.5 " ) Using Grid-MR With Random sampling (RS). Random sample a set P from P with size O((1/" 2 ) log(1/ )) O(n + 1 " 2 log 1 " ) running time and Q = O(1 1 " log2.5 " ) Using Grid-MR+RS

14 Deterministic Z-Order Selection The levels of the Z-order curve are reminiscent of the grids Zrandom Compute the Z-order of all points, and of every two points discard one at random. Repeat this discarding of half the points until the remaining set is sufficiently small. Zorder Select one point from each set of P /k points in the sorted order using ε-approximate quantiles algorithm

15 Other Baseline Methods Improved fast gauss transform (IFGT) K-center clustering Hermite expansion For n points, m query points, reduce time from to No error vs. size or error vs. time guarantees. Only works for Gaussian Kernel Kernel herding (KH) Explore the reproducing kernel Hilbert space. It adds at each step the single point p 2 P \ Q to Q which most decreases Running Time Bounds only `2 kkde Q kde P k 2 O( Q n) error. O(mn) O(m + n)

16 Centralized Experiments Data sets: OpenStreetMap 160million records in 6.6GB Default setting 10 million records 10 random trials = = 200 on a domain 50,000 50,000 Test points 4000 randomly from P 1000 from the domain of P

17 Centralized Experiments Compare with Baseline Methods Grid-MR Blossom-MR Greedy-MR Kernel Herding Using Random Sampling as preprocessing step. Grid-MR Zorder Grid-MR+RS Zorder+RS O(n log(1/")) O(n 3 ) O(n 2 log n) Time (seconds) err Time (seconds) G-MR B-MR KH Greedy-MR (a) Construction time vs. err G-MR G-MR+RS Z Z+RS err (b) Construction time vs. err

18 Centralized Experiments Our construction time and size beats IFGT Just random sampling is slightly faster, but worse size bounds Time (seconds) G-MR+RS Z+RS IFGT RS Size (bytes) G-MR+RS Z+RS IFGT RS err (a) Construction time vs. err err (b) Size

19 Communication (bytes) Distributed Experiments Default setting: 50 million records G-MR+RS Z+RS RS err (a) Communication cost vs. err Size (bytes) G-MR+RS Z+RS RS err (b) Size vs. err Best small approximate, easy to construct representation of data for kernel density estimates.

20 Thank you

21

22 Observed error vs. guaranteed error 10 7 Grid RS+Grid zkern RS+zKern 10 8 err (b) err vs. "

23 Compare with Random Sampling for High Accuracy Time (seconds) G-MR+RS Z+RS RS Size (bytes) G-MR+RS Z+RS RS (x10 3 ) (x10 3 ) (b) Size vs. " (b) Size vs. " Time (seconds) G-MR+RS Z+RS RS err (c) Size vs. err Size (bytes) G-MR+RS Z+RS RS err (d) Size vs. err

Geometric Inference on Kernel Density Estimates

Geometric Inference on Kernel Density Estimates Geometric Inference on Kernel Density Estimates Bei Wang 1 Jeff M. Phillips 2 Yan Zheng 2 1 Scientific Computing and Imaging Institute, University of Utah 2 School of Computing, University of Utah Feb

More information

Improved Fast Gauss Transform. Fast Gauss Transform (FGT)

Improved Fast Gauss Transform. Fast Gauss Transform (FGT) 10/11/011 Improved Fast Gauss Transform Based on work by Changjiang Yang (00), Vikas Raykar (005), and Vlad Morariu (007) Fast Gauss Transform (FGT) Originally proposed by Greengard and Strain (1991) to

More information

Scalable machine learning for massive datasets: Fast summation algorithms

Scalable machine learning for massive datasets: Fast summation algorithms Scalable machine learning for massive datasets: Fast summation algorithms Getting good enough solutions as fast as possible Vikas Chandrakant Raykar vikas@cs.umd.edu University of Maryland, CollegePark

More information

Improved Fast Gauss Transform. (based on work by Changjiang Yang and Vikas Raykar)

Improved Fast Gauss Transform. (based on work by Changjiang Yang and Vikas Raykar) Improved Fast Gauss Transform (based on work by Changjiang Yang and Vikas Raykar) Fast Gauss Transform (FGT) Originally proposed by Greengard and Strain (1991) to efficiently evaluate the weighted sum

More information

Computational tractability of machine learning algorithms for tall fat data

Computational tractability of machine learning algorithms for tall fat data Computational tractability of machine learning algorithms for tall fat data Getting good enough solutions as fast as possible Vikas Chandrakant Raykar vikas@cs.umd.edu University of Maryland, CollegePark

More information

Multi-Approximate-Keyword Routing Query

Multi-Approximate-Keyword Routing Query Bin Yao 1, Mingwang Tang 2, Feifei Li 2 1 Department of Computer Science and Engineering Shanghai Jiao Tong University, P. R. China 2 School of Computing University of Utah, USA Outline 1 Introduction

More information

L Error and Bandwidth Selection for Kernel Density Estimates of Large Data

L Error and Bandwidth Selection for Kernel Density Estimates of Large Data L Error and Bandwidth Selection for Kernel Density Estimates of Large Data Yan Zheng, Jeff M. Phillips School of Computing, University of Utah Salt Lake City, UT, USA yanzheng@cs.utah.edu, jeffp@cs.utah.edu

More information

Subsampling in Smoothed Range Spaces

Subsampling in Smoothed Range Spaces Subsampling in Smoothed Range Spaces Jeff M. Phillips and Yan Zheng University of Utah Abstract. We consider smoothed versions of geometric range spaces, so an element of the ground set (e.g. a point)

More information

Joint distribution optimal transportation for domain adaptation

Joint distribution optimal transportation for domain adaptation Joint distribution optimal transportation for domain adaptation Changhuang Wan Mechanical and Aerospace Engineering Department The Ohio State University March 8 th, 2018 Joint distribution optimal transportation

More information

10 Distributed Matrix Sketching

10 Distributed Matrix Sketching 10 Distributed Matrix Sketching In order to define a distributed matrix sketching problem thoroughly, one has to specify the distributed model, data model and the partition model of data. The distributed

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 14: The Power Function and Native Space Error Estimates Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

Testing Lipschitz Functions on Hypergrid Domains

Testing Lipschitz Functions on Hypergrid Domains Testing Lipschitz Functions on Hypergrid Domains Pranjal Awasthi 1, Madhav Jha 2, Marco Molinaro 1, and Sofya Raskhodnikova 2 1 Carnegie Mellon University, USA, {pawasthi,molinaro}@cmu.edu. 2 Pennsylvania

More information

Assignment 4: Solutions

Assignment 4: Solutions Math 340: Discrete Structures II Assignment 4: Solutions. Random Walks. Consider a random walk on an connected, non-bipartite, undirected graph G. Show that, in the long run, the walk will traverse each

More information

Lecture 1 : Probabilistic Method

Lecture 1 : Probabilistic Method IITM-CS6845: Theory Jan 04, 01 Lecturer: N.S.Narayanaswamy Lecture 1 : Probabilistic Method Scribe: R.Krithika The probabilistic method is a technique to deal with combinatorial problems by introducing

More information

Improved Fast Gauss Transform

Improved Fast Gauss Transform Improved Fast Gauss Transform Changjiang Yang Department of Computer Science University of Maryland Fast Gauss Transform (FGT) Originally proposed by Greengard and Strain (1991) to efficiently evaluate

More information

Notes on MapReduce Algorithms

Notes on MapReduce Algorithms Notes on MapReduce Algorithms Barna Saha 1 Finding Minimum Spanning Tree of a Dense Graph in MapReduce We are given a graph G = (V, E) on V = N vertices and E = m N 1+c edges for some constant c > 0. Our

More information

Mean-Shift Tracker Computer Vision (Kris Kitani) Carnegie Mellon University

Mean-Shift Tracker Computer Vision (Kris Kitani) Carnegie Mellon University Mean-Shift Tracker 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Mean Shift Algorithm A mode seeking algorithm Fukunaga & Hostetler (1975) Mean Shift Algorithm A mode seeking algorithm

More information

Lecture 18: March 15

Lecture 18: March 15 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 18: March 15 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

Proofs and derivations

Proofs and derivations A Proofs and derivations Proposition 1. In the sheltering decision problem of section 1.1, if m( b P M + s) = u(w b P M + s), where u( ) is weakly concave and twice continuously differentiable, then f

More information

Active Learning: Disagreement Coefficient

Active Learning: Disagreement Coefficient Advanced Course in Machine Learning Spring 2010 Active Learning: Disagreement Coefficient Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz In previous lectures we saw examples in which

More information

An efficient approximation for point-set diameter in higher dimensions

An efficient approximation for point-set diameter in higher dimensions CCCG 2018, Winnipeg, Canada, August 8 10, 2018 An efficient approximation for point-set diameter in higher dimensions Mahdi Imanparast Seyed Naser Hashemi Ali Mohades Abstract In this paper, we study the

More information

Discovering Spatial and Temporal Links among RDF Data Panayiotis Smeros and Manolis Koubarakis

Discovering Spatial and Temporal Links among RDF Data Panayiotis Smeros and Manolis Koubarakis Discovering Spatial and Temporal Links among RDF Data Panayiotis Smeros and Manolis Koubarakis WWW2016 Workshop: Linked Data on the Web (LDOW2016) April 12, 2016 - Montréal, Canada Outline Introduction

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015 CS: Lecture #7 Mridul Aanjaneya March 9, 5 Solving linear systems of equations Consider a lower triangular matrix L: l l l L = l 3 l 3 l 33 l n l nn A procedure similar to that for upper triangular systems

More information

2.6 Complexity Theory for Map-Reduce. Star Joins 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51

2.6 Complexity Theory for Map-Reduce. Star Joins 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51 2.6. COMPLEXITY THEORY FOR MAP-REDUCE 51 Star Joins A common structure for data mining of commercial data is the star join. For example, a chain store like Walmart keeps a fact table whose tuples each

More information

Nearest Neighbor Searching Under Uncertainty. Wuzhou Zhang Supervised by Pankaj K. Agarwal Department of Computer Science Duke University

Nearest Neighbor Searching Under Uncertainty. Wuzhou Zhang Supervised by Pankaj K. Agarwal Department of Computer Science Duke University Nearest Neighbor Searching Under Uncertainty Wuzhou Zhang Supervised by Pankaj K. Agarwal Department of Computer Science Duke University Nearest Neighbor Searching (NNS) S: a set of n points in R. q: any

More information

Distributed Summaries

Distributed Summaries Distributed Summaries Graham Cormode graham@research.att.com Pankaj Agarwal(Duke) Zengfeng Huang (HKUST) Jeff Philips (Utah) Zheiwei Wei (HKUST) Ke Yi (HKUST) Summaries Summaries allow approximate computations:

More information

arxiv:cs/ v1 [cs.cg] 7 Feb 2006

arxiv:cs/ v1 [cs.cg] 7 Feb 2006 Approximate Weighted Farthest Neighbors and Minimum Dilation Stars John Augustine, David Eppstein, and Kevin A. Wortman Computer Science Department University of California, Irvine Irvine, CA 92697, USA

More information

Enumeration. Phong Nguyễn

Enumeration. Phong Nguyễn Enumeration Phong Nguyễn http://www.di.ens.fr/~pnguyen March 2017 References Joint work with: Yoshinori Aono, published at EUROCRYPT 2017: «Random Sampling Revisited: Lattice Enumeration with Discrete

More information

A Statistical Journey through Historic Haverford

A Statistical Journey through Historic Haverford A Statistical Journey through Historic Haverford Arthur Berg University of California, San Diego Arthur Berg A Statistical Journey through Historic Haverford 2/ 18 The Dataset Histograms Oldest? Arthur

More information

Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis

Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 4 Spatial Point Patterns Definition Set of point locations with recorded events" within study

More information

The first bound is the strongest, the other two bounds are often easier to state and compute. Proof: Applying Markov's inequality, for any >0 we have

The first bound is the strongest, the other two bounds are often easier to state and compute. Proof: Applying Markov's inequality, for any >0 we have The first bound is the strongest, the other two bounds are often easier to state and compute Proof: Applying Markov's inequality, for any >0 we have Pr (1 + ) = Pr For any >0, we can set = ln 1+ (4.4.1):

More information

1 Approximate Quantiles and Summaries

1 Approximate Quantiles and Summaries CS 598CSC: Algorithms for Big Data Lecture date: Sept 25, 2014 Instructor: Chandra Chekuri Scribe: Chandra Chekuri Suppose we have a stream a 1, a 2,..., a n of objects from an ordered universe. For simplicity

More information

1 Matchings in Non-Bipartite Graphs

1 Matchings in Non-Bipartite Graphs CS 598CSC: Combinatorial Optimization Lecture date: Feb 9, 010 Instructor: Chandra Chekuri Scribe: Matthew Yancey 1 Matchings in Non-Bipartite Graphs We discuss matching in general undirected graphs. Given

More information

Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering

Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering Massive Experiments and Observational Studies: A Linearithmic Algorithm for Blocking/Matching/Clustering Jasjeet S. Sekhon UC Berkeley June 21, 2016 Jasjeet S. Sekhon (UC Berkeley) Methods for Massive

More information

Linear Sketches A Useful Tool in Streaming and Compressive Sensing

Linear Sketches A Useful Tool in Streaming and Compressive Sensing Linear Sketches A Useful Tool in Streaming and Compressive Sensing Qin Zhang 1-1 Linear sketch Random linear projection M : R n R k that preserves properties of any v R n with high prob. where k n. M =

More information

arxiv: v1 [stat.ml] 28 Oct 2017

arxiv: v1 [stat.ml] 28 Oct 2017 Jinglin Chen Jian Peng Qiang Liu UIUC UIUC Dartmouth arxiv:1710.10404v1 [stat.ml] 28 Oct 2017 Abstract We propose a new localized inference algorithm for answering marginalization queries in large graphical

More information

Approximating the Minimum Closest Pair Distance and Nearest Neighbor Distances of Linearly Moving Points

Approximating the Minimum Closest Pair Distance and Nearest Neighbor Distances of Linearly Moving Points Approximating the Minimum Closest Pair Distance and Nearest Neighbor Distances of Linearly Moving Points Timothy M. Chan Zahed Rahmati Abstract Given a set of n moving points in R d, where each point moves

More information

Efficient Kernel Machines Using the Improved Fast Gauss Transform

Efficient Kernel Machines Using the Improved Fast Gauss Transform Efficient Kernel Machines Using the Improved Fast Gauss Transform Changjiang Yang, Ramani Duraiswami and Larry Davis Department of Computer Science University of Maryland College Park, MD 20742 {yangcj,ramani,lsd}@umiacs.umd.edu

More information

Effective computation of biased quantiles over data streams

Effective computation of biased quantiles over data streams Effective computation of biased quantiles over data streams Graham Cormode cormode@bell-labs.com S. Muthukrishnan muthu@cs.rutgers.edu Flip Korn flip@research.att.com Divesh Srivastava divesh@research.att.com

More information

The τ-skyline for Uncertain Data

The τ-skyline for Uncertain Data CCCG 2014, Halifax, Nova Scotia, August 11 13, 2014 The τ-skyline for Uncertain Data Haitao Wang Wuzhou Zhang Abstract In this paper, we introduce the notion of τ-skyline as an alternative representation

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations 1 Fundamentals Consider the set of linear algebraic equations n a ij x i b i represented by Ax b j with [A b ] [A b] and (1a) r(a) rank of A (1b) Then Axb has a solution iff

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 4: Query Optimization Query Optimization Cost estimation Strategies for exploring plans Q min CS 347 Notes 4 2 Cost Estimation Based on

More information

RESEARCH ON THE DISTRIBUTED PARALLEL SPATIAL INDEXING SCHEMA BASED ON R-TREE

RESEARCH ON THE DISTRIBUTED PARALLEL SPATIAL INDEXING SCHEMA BASED ON R-TREE RESEARCH ON THE DISTRIBUTED PARALLEL SPATIAL INDEXING SCHEMA BASED ON R-TREE Yuan-chun Zhao a, b, Cheng-ming Li b a. Shandong University of Science and Technology, Qingdao 266510 b. Chinese Academy of

More information

Approximating Graph Spanners

Approximating Graph Spanners Approximating Graph Spanners Michael Dinitz Johns Hopkins University Joint work with combinations of Robert Krauthgamer (Weizmann), Eden Chlamtáč (Ben Gurion), Ran Raz (Weizmann), Guy Kortsarz (Rutgers-Camden)

More information

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016 Lecture 1: Introduction and Review We begin with a short introduction to the course, and logistics. We then survey some basics about approximation algorithms and probability. We also introduce some of

More information

Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis

Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Intensity Analysis of Spatial Point Patterns Geog 210C Introduction to Spatial Data Analysis Chris Funk Lecture 5 Topic Overview 1) Introduction/Unvariate Statistics 2) Bootstrapping/Monte Carlo Simulation/Kernel

More information

12 - Nonparametric Density Estimation

12 - Nonparametric Density Estimation ST 697 Fall 2017 1/49 12 - Nonparametric Density Estimation ST 697 Fall 2017 University of Alabama Density Review ST 697 Fall 2017 2/49 Continuous Random Variables ST 697 Fall 2017 3/49 1.0 0.8 F(x) 0.6

More information

Biased Quantiles. Flip Korn Graham Cormode S. Muthukrishnan

Biased Quantiles. Flip Korn Graham Cormode S. Muthukrishnan Biased Quantiles Graham Cormode cormode@bell-labs.com S. Muthukrishnan muthu@cs.rutgers.edu Flip Korn flip@research.att.com Divesh Srivastava divesh@research.att.com Quantiles Quantiles summarize data

More information

EFFICIENT SUMMARIZATION TECHNIQUES FOR MASSIVE DATA

EFFICIENT SUMMARIZATION TECHNIQUES FOR MASSIVE DATA EFFICIENT SUMMARIZATION TECHNIQUES FOR MASSIVE DATA by Jeffrey Jestes A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of

More information

Optimal compression of approximate Euclidean distances

Optimal compression of approximate Euclidean distances Optimal compression of approximate Euclidean distances Noga Alon 1 Bo az Klartag 2 Abstract Let X be a set of n points of norm at most 1 in the Euclidean space R k, and suppose ε > 0. An ε-distance sketch

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

1 Some loose ends from last time

1 Some loose ends from last time Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Kruskal s and Borůvka s MST algorithms September 20, 2010 1 Some loose ends from last time 1.1 A lemma concerning greedy algorithms and

More information

Algorithms, Geometry and Learning. Reading group Paris Syminelakis

Algorithms, Geometry and Learning. Reading group Paris Syminelakis Algorithms, Geometry and Learning Reading group Paris Syminelakis October 11, 2016 2 Contents 1 Local Dimensionality Reduction 5 1 Introduction.................................... 5 2 Definitions and Results..............................

More information

to be more efficient on enormous scale, in a stream, or in distributed settings.

to be more efficient on enormous scale, in a stream, or in distributed settings. 16 Matrix Sketching The singular value decomposition (SVD) can be interpreted as finding the most dominant directions in an (n d) matrix A (or n points in R d ). Typically n > d. It is typically easy to

More information

Edo Liberty Principal Scientist Amazon Web Services. Streaming Quantiles

Edo Liberty Principal Scientist Amazon Web Services. Streaming Quantiles Edo Liberty Principal Scientist Amazon Web Services Streaming Quantiles Streaming Quantiles Manku, Rajagopalan, Lindsay. Random sampling techniques for space efficient online computation of order statistics

More information

Numerical Minimization of Potential Energies on Specific Manifolds

Numerical Minimization of Potential Energies on Specific Manifolds Numerical Minimization of Potential Energies on Specific Manifolds SIAM Conference on Applied Linear Algebra 2012 22 June 2012, Valencia Manuel Gra f 1 1 Chemnitz University of Technology, Germany, supported

More information

Data Streams & Communication Complexity

Data Streams & Communication Complexity Data Streams & Communication Complexity Lecture 1: Simple Stream Statistics in Small Space Andrew McGregor, UMass Amherst 1/25 Data Stream Model Stream: m elements from universe of size n, e.g., x 1, x

More information

Notes on Gaussian processes and majorizing measures

Notes on Gaussian processes and majorizing measures Notes on Gaussian processes and majorizing measures James R. Lee 1 Gaussian processes Consider a Gaussian process {X t } for some index set T. This is a collection of jointly Gaussian random variables,

More information

Polynomial Selection. Thorsten Kleinjung École Polytechnique Fédérale de Lausanne

Polynomial Selection. Thorsten Kleinjung École Polytechnique Fédérale de Lausanne Polynomial Selection Thorsten Kleinjung École Polytechnique Fédérale de Lausanne Contents Brief summary of polynomial selection (no root sieve) Motivation (lattice sieving, monic algebraic polynomial)

More information

Efficient Threshold Monitoring for Distributed Probabilistic Data

Efficient Threshold Monitoring for Distributed Probabilistic Data Efficient Threshold Monitoring for Distributed Probabilistic Data Mingwang Tang 1, Feifei Li 1, Jeff M. Phillips 2, Jeffrey Jestes 1 1 Computer Science Department, Florida State University; 2 School of

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Approximation Algorithms for Maximum. Coverage and Max Cut with Given Sizes of. Parts? A. A. Ageev and M. I. Sviridenko

Approximation Algorithms for Maximum. Coverage and Max Cut with Given Sizes of. Parts? A. A. Ageev and M. I. Sviridenko Approximation Algorithms for Maximum Coverage and Max Cut with Given Sizes of Parts? A. A. Ageev and M. I. Sviridenko Sobolev Institute of Mathematics pr. Koptyuga 4, 630090, Novosibirsk, Russia fageev,svirg@math.nsc.ru

More information

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008 Advances in Manifold Learning Presented by: Nakul Verma June 10, 008 Outline Motivation Manifolds Manifold Learning Random projection of manifolds for dimension reduction Introduction to random projections

More information

The Monte Carlo Algorithm

The Monte Carlo Algorithm The Monte Carlo Algorithm This algorithm was invented by N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys., 21, 1087 (1953). It was listed as one of the The Top

More information

[Title removed for anonymity]

[Title removed for anonymity] [Title removed for anonymity] Graham Cormode graham@research.att.com Magda Procopiuc(AT&T) Divesh Srivastava(AT&T) Thanh Tran (UMass Amherst) 1 Introduction Privacy is a common theme in public discourse

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 13

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 13 STAT 309: MATHEMATICAL COMPUTATIONS I FALL 208 LECTURE 3 need for pivoting we saw that under proper circumstances, we can write A LU where 0 0 0 u u 2 u n l 2 0 0 0 u 22 u 2n L l 3 l 32, U 0 0 0 l n l

More information

BEWARE OF RELATIVELY LARGE BUT MEANINGLESS IMPROVEMENTS

BEWARE OF RELATIVELY LARGE BUT MEANINGLESS IMPROVEMENTS TECHNICAL REPORT YL-2011-001 BEWARE OF RELATIVELY LARGE BUT MEANINGLESS IMPROVEMENTS Roi Blanco, Hugo Zaragoza Yahoo! Research Diagonal 177, Barcelona, Spain {roi,hugoz}@yahoo-inc.com Bangalore Barcelona

More information

Application: Bucket Sort

Application: Bucket Sort 5.2.2. Application: Bucket Sort Bucket sort breaks the log) lower bound for standard comparison-based sorting, under certain assumptions on the input We want to sort a set of =2 integers chosen I+U@R from

More information

Tight Approximation Ratio of a General Greedy Splitting Algorithm for the Minimum k-way Cut Problem

Tight Approximation Ratio of a General Greedy Splitting Algorithm for the Minimum k-way Cut Problem Algorithmica (2011 59: 510 520 DOI 10.1007/s00453-009-9316-1 Tight Approximation Ratio of a General Greedy Splitting Algorithm for the Minimum k-way Cut Problem Mingyu Xiao Leizhen Cai Andrew Chi-Chih

More information

Nordhaus-Gaddum Theorems for k-decompositions

Nordhaus-Gaddum Theorems for k-decompositions Nordhaus-Gaddum Theorems for k-decompositions Western Michigan University October 12, 2011 A Motivating Problem Consider the following problem. An international round-robin sports tournament is held between

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

Prediction of double gene knockout measurements

Prediction of double gene knockout measurements Prediction of double gene knockout measurements Sofia Kyriazopoulou-Panagiotopoulou sofiakp@stanford.edu December 12, 2008 Abstract One way to get an insight into the potential interaction between a pair

More information

(1) Sort all time observations from least to greatest, so that the j th and (j + 1) st observations are ordered by t j t j+1 for all j = 1,..., J.

(1) Sort all time observations from least to greatest, so that the j th and (j + 1) st observations are ordered by t j t j+1 for all j = 1,..., J. AFFIRMATIVE ACTION AND HUMAN CAPITAL INVESTMENT 8. ONLINE APPENDIX TO ACCOMPANY Affirmative Action and Human Capital Investment: Theory and Evidence from a Randomized Field Experiment, by CHRISTOPHER COTTON,

More information

10-701/ Recitation : Kernels

10-701/ Recitation : Kernels 10-701/15-781 Recitation : Kernels Manojit Nandi February 27, 2014 Outline Mathematical Theory Banach Space and Hilbert Spaces Kernels Commonly Used Kernels Kernel Theory One Weird Kernel Trick Representer

More information

Random Sampling on Big Data: Techniques and Applications Ke Yi

Random Sampling on Big Data: Techniques and Applications Ke Yi : Techniques and Applications Ke Yi Hong Kong University of Science and Technology yike@ust.hk Big Data in one slide The 3 V s: Volume Velocity Variety Integers, real numbers Points in a multi-dimensional

More information

Randomized algorithms for the approximation of matrices

Randomized algorithms for the approximation of matrices Randomized algorithms for the approximation of matrices Luis Rademacher The Ohio State University Computer Science and Engineering (joint work with Amit Deshpande, Santosh Vempala, Grant Wang) Two topics

More information

Efficient Threshold Monitoring for Distributed Probabilistic Data

Efficient Threshold Monitoring for Distributed Probabilistic Data Efficient Threshold Monitoring for Distributed Probabilistic Data Mingwang Tang, Feifei Li, Jeff M. Phillips, Jeffrey Jestes School of Computing, University of Utah, Salt Lake City, USA {tang, lifeifei,

More information

(a) Calculate the bee s mean final position on the hexagon, and clearly label this position on the figure below. Show all work.

(a) Calculate the bee s mean final position on the hexagon, and clearly label this position on the figure below. Show all work. 1. A worker bee inspects a hexagonal honeycomb cell, starting at corner A. When done, she proceeds to an adjacent corner (always facing inward as shown), either by randomly moving along the lefthand edge

More information

Querying. 1 o Semestre 2008/2009

Querying. 1 o Semestre 2008/2009 Querying Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2008/2009 Outline 1 2 3 4 5 Outline 1 2 3 4 5 function sim(d j, q) = 1 W d W q W d is the document norm W q is the

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Topological Data Analysis for Brain Networks

Topological Data Analysis for Brain Networks Topological Data Analysis for Brain Networks Relating Functional Brain Network Topology to Clinical Measures of Behavior Bei Wang Phillips 1,2 University of Utah Joint work with Eleanor Wong 1,2, Sourabh

More information

Randomized algorithm

Randomized algorithm Tutorial 4 Joyce 2009-11-24 Outline Solution to Midterm Question 1 Question 2 Question 1 Question 2 Question 3 Question 4 Question 5 Solution to Midterm Solution to Midterm Solution to Midterm Question

More information

Carnegie Mellon Univ. Dept. of Computer Science Database Applications. SAMs - Detailed outline. Spatial Access Methods - problem

Carnegie Mellon Univ. Dept. of Computer Science Database Applications. SAMs - Detailed outline. Spatial Access Methods - problem Carnegie Mellon Univ. Dept. of Computer Science 15-415 - Database Applications Lecture #26: Spatial Databases (R&G ch. 28) SAMs - Detailed outline spatial access methods problem dfn R-trees Faloutsos 2

More information

In practice one often meets a situation where the function of interest, f(x), is only represented by a discrete set of tabulated points,

In practice one often meets a situation where the function of interest, f(x), is only represented by a discrete set of tabulated points, 1 Interpolation 11 Introduction In practice one often meets a situation where the function of interest, f(x), is only represented by a discrete set of tabulated points, {x i, y i = f(x i ) i = 1 n, obtained,

More information

Stream Computation and Arthur- Merlin Communication

Stream Computation and Arthur- Merlin Communication Stream Computation and Arthur- Merlin Communication Justin Thaler, Yahoo! Labs Joint Work with: Amit Chakrabarti, Dartmouth Graham Cormode, University of Warwick Andrew McGregor, Umass Amherst Suresh Venkatasubramanian,

More information

Randomized algorithms for the low-rank approximation of matrices

Randomized algorithms for the low-rank approximation of matrices Randomized algorithms for the low-rank approximation of matrices Yale Dept. of Computer Science Technical Report 1388 Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Additive Number Theory and Automata

Additive Number Theory and Automata Additive Number Theory and Automata Jeffrey Shallit School of Computer Science, University of Waterloo Waterloo, ON N2L 3G1 Canada Joint work with Carlo Sanna Daniel Kane P. Madhusudan Dirk Nowotka Aayush

More information

2017 ACM ICPC ASIA GWALIOR REGIONAL CONTEST

2017 ACM ICPC ASIA GWALIOR REGIONAL CONTEST Official Problem Set DO NOT OPEN UNTIL CONTEST BEGINS 2017 ACM ICPC ASIA GWALIOR REGIONAL CONTEST NOTE: The order of problems here can be different than the one displayed on the contest page. 1 Problem

More information

Scaling up Bayesian Inference

Scaling up Bayesian Inference Scaling up Bayesian Inference David Dunson Departments of Statistical Science, Mathematics & ECE, Duke University May 1, 2017 Outline Motivation & background EP-MCMC amcmc Discussion Motivation & background

More information

Parallel Multivariate SpatioTemporal Clustering of. Large Ecological Datasets on Hybrid Supercomputers

Parallel Multivariate SpatioTemporal Clustering of. Large Ecological Datasets on Hybrid Supercomputers Parallel Multivariate SpatioTemporal Clustering of Large Ecological Datasets on Hybrid Supercomputers Sarat Sreepathi1, Jitendra Kumar1, Richard T. Mills2, Forrest M. Hoffman1, Vamsi Sripathi3, William

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

variance of independent variables: sum of variances So chebyshev predicts won t stray beyond stdev.

variance of independent variables: sum of variances So chebyshev predicts won t stray beyond stdev. Announcements No class monday. Metric embedding seminar. Review expectation notion of high probability. Markov. Today: Book 4.1, 3.3, 4.2 Chebyshev. Remind variance, standard deviation. σ 2 = E[(X µ X

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 22 1 / 21 Overview

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Tuesday, December 1, 2015 Outline 1 Recap Balls and bins 2 On randomized algorithms 3 Saving space: hashing-based

More information

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Siqian Shen Dept. of Industrial and Operations Engineering University of Michigan Joint work with Yan Deng (UMich, Google)

More information

Conflict-Free Colorings of Rectangles Ranges

Conflict-Free Colorings of Rectangles Ranges Conflict-Free Colorings of Rectangles Ranges Khaled Elbassioni Nabil H. Mustafa Max-Planck-Institut für Informatik, Saarbrücken, Germany felbassio, nmustafag@mpi-sb.mpg.de Abstract. Given the range space

More information