and anomaly-induced transport

Size: px
Start display at page:

Download "and anomaly-induced transport"

Transcription

1 High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 QCD in Strong Magnetic Fields, ECT*, Trento, November 12-16, 2012 The Chiral Magnetic Effect and anomaly-induced transport D. Kharzeev 1

2 Collaborators G. Basar (Stony Brook) Y. Burnier (Stony Brook -> Lausanne) G. Dunne (UConn) K. Fukushima (U Tokyo) J. Liao (BNL -> U. Indiana) L. McLerran (BNL) D. Son (U. Chicago) V. Skokov (BNL) H. Warringa (Frankfurt) H.-U. Yee (Stony Brook -> UIC) A. Zhitnitsky (U British Columbia) 2

3 Outline QCD in magnetic fields: why? Chiral Magnetic Effect: non-dissipative, topologically protected, quantum transport of charge Chiral magneto-hydrodynamics: how quantum anomalies affect the macroscopic collective behavior New results on CME from Quark Matter 2012 CME applications in real world

4 Why QCD in magnetic fields? Electromagnetic interactions (through DIS and e + e - annihilation) allowed to establish the existence of quarks and the QCD as the theory of strong interactions. Through the Bjorken scaling and deviations from it, the asymptotic freedom and the RG flow in QCD have been established.

5 Why QCD in magnetic fields? Later it has become clear that to understand QCD, we have to understand the properties of extended gluon field configurations, many of which have non-trivial topological contents. DIS is not an ideal tool to study these extended configurations - they yield power corrections that are difficult to decipher.

6 Why QCD in magnetic fields? To probe extended topological gluon field configurations, we need a different probe - an external, coherent electromagnetic field. Because of the existence of quark zero modes and associated topology, the magnetic field is ideal. However, usually the available magnetic field is weak, leading to small corrections; but, not so if - available in heavy ion collisions!

7 Gauge fields and topology NB: Maxwell electrodynamics as a curvature of a line bundle Möbius strip, the simplest nontrivial example of a fiber bundle Gauge theories live in a fiber bundle space that possesses non-trivial topology (knots, twists,...)

8 Atoms as knots in the ether P. Tait, Lord Kelvin (William Thomson) Knot theory (Tait, Alexander, Jones, Witten, Kontsevich, Khovanov,...)

9 Chern-Simons theory What does it mean for a gauge theory? Geometry Riemannian connection Curvature tensor Physics Gauge field Field strength tensor

10 Chern-Simons theory What does it mean for a gauge theory? Geometry Riemannian connection Physics Gauge field Curvature tensor S CS = k 8 M Field strength tensor d 3 x ijk A i F jk A i[a j,a k ] Abelian non-abelian

11 Chern-Simons theory S CS = k 8 M d 3 x ijk A i F jk A i[a j,a k ] Remarkable novel properties: gauge invariant, up to a boundary term topological - does not depend on the metric, knows only about the topology of space-time M breaks Parity invariance

12 Is there a way to observe topological charge fluctuations in experiment? + - excess of positive charge excess of negative charge Electric dipole moment of QCD matter! DK, Phys.Lett.B633(2006)260 [hep-ph/ ]

13 Is there a way to observe topological charge fluctuations in experiment? Relativistic ions create a strong magnetic field: H

14 Heavy ion collisions as a source of the strongest magnetic fields available in the Laboratory Talk by V.Skokov In a conducting plasma, Faraday induction can make the field long-lived: K.Tuchin, arxiv: DK, McLerran, Warringa, Nucl Phys A803(2008)227 46

15 Heavy ion collisions: the strongest magnetic field ever achieved in the laboratory 47

16 The Chern-Simons diffusion rate in an external magnetic field strongly coupled N=4 SYM plasma in an external U(1)R magnetic field through holography G. Basar, DK, arxiv: (PRD) weak field: strong field increases the rate: 15 dimensional reduction

17 Chiral Magnetic Effect in a chirally imbalanced plasma Chiral chemical potential is formally equivalent to a background chiral gauge field: In this background, and in the presence of B, vector e.m. current is not conserved: µ J µ = e2 F µ 16 F 2 L L,µ F µ R Compute the current through The result: J = e2 2 2 µ 5 Fukushima, DK, Warringa, PRD 08 F R,µ µ 5 = A 0 5 J µ = log Z[A µ,a 5 µ] A µ (x) e B J µ 5 Coefficient is fixed by the axial anomaly, no corrections 16

18 Chiral magnetic conductivity: discrete symmetries J = e2 2 2 µ 5 B P-odd T-odd P-odd P-odd effect! P-even T-odd T-even Non-dissipative current! (quantum computing etc) cf Ohmic conductivity: J = E P-even, T-odd, 17 dissipative

19 From QCD to electrodynamics: Maxwell-Chern-Simons theory L MCS = 1 4 F µ F µ A µ J µ + c 4 P µj µ CS. J µ CS = µ A F, Axial current of quarks Photons EM fields in QCD aether Annals Phys. 325 (2010)

20 The Chiral Magnetic Effect I: Charge separation B E = + cp B, =0 e eb 2 P d e = f q 2 f e eb S 2 L E =0 + e eb 2 =0 DK, Annals Phys. 325 (2010) e-print: arxiv:

21 Electric dipole moment of QCD instanton in an external magnetic field Quark zero mode density G. Basar, G. Dunne, DK, arxiv: [hep-th] Topological charge density Asymmetry between left and right modes induces the e.d.m. in an external B Talk by G.Dunne 20

22 Talk by P.Buividovich Numerical evidence for chiral magnetic effect in lattice gauge theory, P. Buividovich, M. Chernodub, E. Luschevskaya, M. Polikarpov, ArXiv ; PRD Red - positive charge Blue - negative charge SU(2) quenched, Q = 3; Electric charge density (H) - Electric charge density (H=0)

23 Talk by P.Buividovich Numerical evidence for chiral magnetic effect in lattice gauge theory, P. Buividovich, M. Chernodub, E. Luschevskaya, M. Polikarpov, ArXiv ; PRD Red - positive charge Blue - negative charge SU(2) quenched, Q = 3; Electric charge density (H) - Electric charge density (H=0)

24 Chiral magnetic effect in 2+1 flavor QCD+QED, M. Abramczyk, T. Blum, G. Petropoulos, R. Zhou, ArXiv ; Red - positive charge Blue - negative charge 2+1 flavor Domain Wall Fermions, fixed topological sectors, 16^3 x 8 lattice

25 No sign problem for the chiral chemical potential - direct lattice studies are possible Fukushima, DK, Warringa, PRD 08 23

26 Talk by A. Yamamoto arxiv: , PRL 24

27 Talk by K.Landsteiner Holographic chiral magnetic effect: the strong coupling regime (AdS/CFT) he induced j = B,. For con Strong coupling ( ) Weak coupling 0 H.-U. Yee, arxiv: , JHEP 0911:085, 2009; V. Rubakov, arxiv: ,... A. Rebhan, A.Schmitt, S.Stricker JHEP 0905, 084 (2009), G.Lifshytz, M.Lippert, arxiv: ;.A. Gorsky, P. Kopnin, A. Zayakin, arxiv: , CME persists at strong coupling - hydrodynamical formulation? 0 10 /T D.K., H. Warringa Phys Rev D80 (2009)

28 Hydrodynamics: an effective low-energy Theory Of Everything (TOE) Hydrodynamics states that the response of the fluid to slowly varying perturbations is completely determined by conservation laws (energy, momentum, charge,...) Little Bang Big Bang 26

29 The remarkable success of hydrodynamics at RHIC and LHC R. Snellings [ALICE Coll.] Talk at QM

30 Quantifying the transport properties of QCD matter Hydrodynamics: an effective low-energy theory, expansion in the ratio of thermal length 1/T to the typical variation scale L, Each term in this derivative expansion is multiplied by an appropriate transport coefficient very small shear viscosity - perfect liquid ; strong coupling 1 LT 28

31 Talk by V.Zakharov Hydrodynamics and anomalies Hydrodynamics: an effective low-energy TOE. States that the response of the fluid to slowly varying perturbations is completely determined by conservation laws (energy, momentum, charge,...) Conservation laws are a consequence of symmetries of the underlying theory What happens to hydrodynamics when these symmetries are broken by quantum effects (anomalies of QCD and QED)? 29

32 Chiral MagnetoHydroDynamics (CMHD) - relativistic hydrodynamics with triangle anomalies and external electromagnetic fields First order (in the derivative expansion) formulation: D. Son and P. Surowka, arxiv: Constraining the new anomalous transport coefficients: positivity of the entropy production rate, µs µ 0 CME (for chirally imbalanced matter) 30

33 Chiral MagnetoHydroDynamics (CMHD) - relativistic hydrodynamics with triangle anomalies and external electromagnetic fields First order hydrodynamics has problems with causality and is numerically unstable, so second order formulation is necessary; Complete second order formulation of CMHD with anomaly: DK and H.-U. Yee, ; Phys Rev D Many new transport coefficients - use conformal/weyl invariance; still 18 independent transport coefficients related to the anomaly. 15 that are specific to 2nd order: new Many new anomaly-induced phenomena! 31

34 Chiral MagnetoHydroDynamics (CMHD) - relativistic hydrodynamics with triangle anomalies and external electromagnetic fields Positivity of entropy production - still too many unconstrained transport coefficients... DK and H.-U. Yee, Is there another guiding principle? 32

35 No entropy production from T-even anomalous terms J = e2 2 2 µ 5 B DK and H.-U. Yee, P-odd T-odd P-even T-odd P-odd cf Ohmic P-odd effect! conductivity: J = E T-odd, T-even dissipative Non-dissipative current! 33 (time-reversible - no arrow of time, no entropy production)

36 No entropy production from P-odd anomalous terms DK and H.-U. Yee, Entropy grows µs µ 0 Mirror reflection: entropy decreases? µs µ 0 Decrease is ruled out by 2nd law of thermodynamics µs µ =0 34

37 No entropy production from T-even anomalous terms 1st order hydro: Son-Surowka results are reproduced 2nd order hydro: 13 out of 18 transport coefficients are computed; but is the guiding principle correct? DK and H.-U. Yee, Can we check the resulting relations between the transport coefficients? e.g. 35

38 The fluid/gravity correspondence Long history: Hawking, Bekenstein, Unruh; Damour 78; Thorne, Price, MacDonald 86 (membrane paradigm) Recent developments motivated by AdS/CFT: Policastro, Kovtun, Son, Starinets 01 (quantum bound) Bhattacharya, Hubeny, Minwalla, Rangamani 08 (fluid/gravity correspondence) Some of the transport coefficients of 2nd order hydro computed; enough to check some of our relations, e.g. J. Erdmenger et al, ; N. Banerjee et al, It works Other holographic checks work as well: 36 DK and H.-U. Yee,

39 The chiral magnetic current is non-dissipative: protected from (local) scattering and dissipation by (global) topology Somewhat similar to superconductivity, but exists at any temperature! (?) Anomalous transport coefficients in hydrodynamics describe dissipation-free processes (unlike e.g. shear viscosity) 37

40 The CME in relativistic hydrodynamics: The Chiral Magnetic Wave DK, H.-U. Yee, arxiv: [hep-th]; PRD CME Chiral separation Chiral Propagating chiral wave: (if chiral symmetry is restored) Electric Gapless collective mode is the carrier of CME current in MHD: 38

41 The Chiral Magnetic Wave The velocity of CMW computed in Sakai-Sugimoto model (holographic QCD) In strong magnetic field, CMW propagates with the speed of light! Chiral Electric DK, H.-U. Yee, arxiv: [hep-th], PRD 39

42 Charge asymmetry w.r.t. reaction plane as a signature of strong P-odd fluctuations + - excess of positive charge excess of negative charge Electric dipole moment of QCD matter! DK, Phys.Lett.B633(2006)260 [hep-ph/ ]

43 Slide from S. Voloshin

44 NB: P-even quantity (strength of P-odd fluctuations)

45 S.Esumi et al [PHENIX Coll] April 2010

46 Phenomenological estimates DK, L.McLerran, H.Warringa, arxiv: (Real-time) lattice value for the sphaleron rate, estimate for magnetic field and its lifetime yield a rough (by the order of magnitude) agreement with the data, but uncertainties are large 44

47 Talk by B.Muller Are the observed fluctuations of charge asymmetries a convincing evidence for the CME? A number of open questions that still have to be clarified: in-plane vs out-of-plane, new observables? arxiv: ; ;... e.g. A. Bzdak, V. Koch, J. Liao, estimates of the asymmetries e.g. M. Asakawa, A. Majumder, B. Muller, arxiv: backgrounds e.g. S. Pratt and S. Schlichting, arxiv: F. Wang, arxiv: ;... Fortunately, a number of new analytical and lattice results (many reported here), and the new data (low energy, U-U, charge-asymmetry driven flow) 45 has become available! (much of it at Quark Matter 2012)

48 News from Quark Matter

49 G. Wang et al [STAR Coll], arxiv: [nucl-ex] Disappearance of charge separation in the beam energy scan at RHIC Signal disappears 47

50 G. Wang et al [STAR Coll], arxiv: [nucl-ex] CME vs background effects: a test using the UU collisions S. Voloshin, arxiv: (PRL) All backgrounds to CME are driven by the elliptic flow (e.g. v2 + charge balance functions, etc) The idea: U is a highly deformed nucleus; because of this, even in the absence of spectators and thus in the absence of magnetic field, the elliptic flow does not vanish. If the charge separation persists, it is driven by background; if it vanishes, it is driven by magnetic field 48 (CME)

51 G. Wang et al [STAR Coll], arxiv: [nucl-ex] CME vs background effects: a test using the UU collisions The effects of deformation are clearly seen in UU collisions: broader multiplicity distribution, larger elliptic flow 49

52 G. Wang et al [STAR Coll], arxiv: [nucl-ex] CME vs background effects: a test using the UU collisions Signal disappears at non-zero v2 - support for CME interpretation 50

53 G. Wang et al [STAR Coll], arxiv: [nucl-ex] 51

54 CME studies at the LHC ALICE Coll., arxiv:

55 CME studies at the LHC: higher harmonics ALICE Coll., arxiv:

56 Testing the Chiral Magnetic Wave at RHIC Finite baryon density + CMW = electric quadrupole moment of QGP. Signature - difference of elliptic flows of positive and negative pions determined by total charge asymmetry of the event A: at A>0, v2(-) > v2(+); at A<0, v2(+) > v2(-) Y.Burnier, DK, J.Liao, H.Yee, PRL

57 G. Wang et al [STAR Coll], arxiv: [nucl-ex] Testing the CMW at RHIC 55

58 G. Wang et al [STAR Coll], arxiv: [nucl-ex] Testing the CMW at RHIC 56

59 A new test: baryon asymmetry DK, D.T.Son arxiv: ; PRL CME Vorticity-induced Chiral Vortical Effect CME: (almost) only electric charge CVE: (almost) only baryon charge There has to be a positive correlation between 57 electric charge and baryon number! mixed correlators - e.g. +

60 Another effect related to anomalies and magnetic fields: Conformal anomaly as a source of soft photons and dileptons in heavy ion collisions Talk by V. Skokov G.Basar, DK, V.Skokov, PRL 12 58

61 Chiral fermions and topology in condensed matter systems Novel appplications: graphene, TIs, Weyl semimetals Massless (2+1) fermions M.Muller, J.Schmalian, L. Fritz, Similar to QGP in several ways: strongly coupled, perfect liquid behavior, chiral fermions,.. Magnetized graphene: e.g. I.Aleiner, DK, A. Tsvelik, Phys Rev B 07; M.Khodas, I.Zaliznyak, DK, Phys Rev B 09

62 Chiral electronics Weyl semimetal quantum amplifier - sensor of ultra-weak magnetic field DK, H.-U.Yee, arxiv:

63 Summary Interplay of topology, anomalies and magnetic field leads to the Chiral Magnetic Effect; confirmed by lattice QCD x QED, mounting evidence from RHIC and LHC CME and related anomaly-induced phenomena are an integral part of relativistic hydrodynamics (Chiral MagnetoHydroDynamics) Many open theoretical problems, important new applications also outside of nuclear science (spintronics, quantum computing,energy storage,...)

Theoretical outlook. D. Kharzeev

Theoretical outlook. D. Kharzeev High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 QCD Workshop on Chirality, Vorticity, and Magnetic Field In Heavy Ion Collisions, UCLA, January 21-23, 2015 Theoretical outlook D. Kharzeev Supported

More information

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions

Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Electromagnetic field, flow vorticity, and anomalous transports in heavy-ion collisions Xu-Guang Huang Fudan University, Shanghai November 03, 2016 Outline Introduction Electromagnetic (EM) fields and

More information

P- and CP-odd effects in hot quark matter

P- and CP-odd effects in hot quark matter P- and CP-odd effects in hot quark matter Goethe Denkmal, Opernring, Wien Harmen Warringa, Goethe Universität, Frankfurt Collaborators: Kenji Fukushima, Dmitri Kharzeev and Larry McLerran. Kharzeev, McLerran

More information

Chiral Magnetic Effect

Chiral Magnetic Effect Chiral Magnetic Effect Kenji Fukushima (Yukawa Institute for Theoretical Physics) 1 Strong q Angle, Strong CP Problem and Heavy-Ion Collisions P and CP Violation in the YM Theory Gauge Actions P- and CP-

More information

Probing QCD Matter with QED Fields

Probing QCD Matter with QED Fields XQCD2014, Stony Brook, June 21, 2014 Probing QCD Matter with QED Fields Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center Research Supported by NSF Outline * Brief Introduction

More information

QCD Chirality 2017, UCLA, March 27-30, CME Theory: what next? D. Kharzeev

QCD Chirality 2017, UCLA, March 27-30, CME Theory: what next? D. Kharzeev QCD Chirality 2017, UCLA, March 27-30, 2017 CME Theory: what next? D. Kharzeev 1 Many new theoretical and experimental developments since QCD Chirality 2016 Excellent talks at this Workshop demonstrate

More information

Anisotropic Hydrodynamics, Chiral Magnetic Effect and Holography

Anisotropic Hydrodynamics, Chiral Magnetic Effect and Holography ` Kalaydzhyan, I.K., PRL 106 (2011) 211601, Gahramanov, Kalaydzhyan, I.K. (PRD (2012)) Anisotropic Hydrodynamics, Chiral Magnetic Effect and Holography Ingo Kirsch DESY Hamburg, Germany Based on work with

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Topologically induced local P and CP violation in hot QCD

Topologically induced local P and CP violation in hot QCD Proc. 25th Winter Workshop on Nuclear Dynamics (2009) 000 000 25th Winter Workshop on Nuclear Dynamics Big Sky, Montana, USA February 1 8, 2009 Topologically induced local P and CP violation in hot QCD

More information

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington) Anomalous hydrodynamics and gravity Dam T. Son (INT, University of Washington) Summary of the talk Hydrodynamics: an old theory, describing finite temperature systems The presence of anomaly modifies hydrodynamics

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc.

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. NOV 23, 2015 MAGNETIC FIELDS EVERYWHERE [Miransky & Shovkovy, Physics Reports 576 (2015) pp. 1-209] Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc. November 23, 2015 Magnetic

More information

Quark matter under strong magnetic fields

Quark matter under strong magnetic fields Quark matter under strong magnetic fields Mei Huang Theoretical Physics Division Institute of High Energy Physics, CAS Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions, UCLA, Mar.27-29,2017

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

Chiral magnetic effect in 2+1 flavor QCD+QED

Chiral magnetic effect in 2+1 flavor QCD+QED M. Abramczyk E-mail: mabramc@gmail.com E-mail: tblum@phys.uconn.edu G. Petropoulos E-mail: gregpetrop@gmail.com R. Zhou, E-mail: zhouran13@gmail.com Physics Department, University of Connecticut, 15 Hillside

More information

Chirality: from QCD to condensed matter

Chirality: from QCD to condensed matter High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 Intersections between QCD and condensed matter, Schladming, Styria, Austria, March 1-6, 2015 Chirality: from QCD to condensed matter D. Kharzeev

More information

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from To Topological charge flucutations, D. Leinweber Tracks in TPC of STAR And back! Harmen Warringa,

More information

Hydrodynamics and quantum anomalies. Dam Thanh Son (University of Chicago) EFI Colloquium (April 25, 2016)

Hydrodynamics and quantum anomalies. Dam Thanh Son (University of Chicago) EFI Colloquium (April 25, 2016) Hydrodynamics and quantum anomalies Dam Thanh Son (University of Chicago) EFI Colloquium (April 25, 2016) Plan of the talk Hydrodynamics Anomalies Gauge/gravity duality Hydrodynamics with anomalies (a

More information

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov Strong magnetic fields in lattice gluodynamics P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov arxiv:1011.3001, arxiv:1011.3795, arxiv:1003.180,

More information

Instantons and Sphalerons in a Magnetic Field

Instantons and Sphalerons in a Magnetic Field Stony Brook University 06/27/2012 GB, G.Dunne & D. Kharzeev, arxiv:1112.0532, PRD 85 045026 GB, D. Kharzeev, arxiv:1202.2161, PRD 85 086012 Outline Motivation & some lattice results General facts on Dirac

More information

Phenomenology of anomalous chiral transports in heavy-ion collisions

Phenomenology of anomalous chiral transports in heavy-ion collisions Phenomenology of anomalous chiral transports in heavy-ion collisions Xu-Guang Huang 1,2 1 Physics Department and Center for Particle Physics and Field Theory, Fudan University, Shanghai 200433, China 2

More information

Classical-statistical simulations and the Chiral Magnetic Effect

Classical-statistical simulations and the Chiral Magnetic Effect Classical-statistical simulations and the Chiral Magnetic Effect Niklas Mueller Heidelberg University based on work together with: J. Berges, M. Mace, S. Schlichting, S. Sharma, N. Tanji, R. Venugopalan

More information

arxiv: v1 [nucl-th] 7 Dec 2016

arxiv: v1 [nucl-th] 7 Dec 2016 Study of chiral vortical and magnetic effects in the anomalous transport model Yifeng Sun 1, and Che Ming Ko 1, 1 Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College

More information

The Beam Energy Scan at RHIC

The Beam Energy Scan at RHIC 2013 ICNT Program @ FRIB, MSU July 31, 2013 The Beam Energy Scan at RHIC Jinfeng Liao Indiana University, Physics Dept. & CEEM RIKEN BNL Research Center 1 Outline Brief Intro: High Energy Heavy Ion Collisions

More information

arxiv: v2 [hep-ph] 21 Oct 2016

arxiv: v2 [hep-ph] 21 Oct 2016 Quantized chiral magnetic current from reconnections of magnetic flux Yuji Hirono, 1 Dmitri E. Kharzeev, 1, 2, 3 and Yi Yin 1 1 Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000

More information

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12 Strong Interaction Effects of Strong Magnetic Fields Berndt Mueller CPODD Workshop 2012 RIKEN BNL, 25-27 June 2012 Overview Pseudoscalar QED-QCD couplings CME phenomenology Results M. Asakawa, A. Majumder

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

QGP, Hydrodynamics and the AdS/CFT correspondence

QGP, Hydrodynamics and the AdS/CFT correspondence QGP, Hydrodynamics and the AdS/CFT correspondence Adrián Soto Stony Brook University October 25th 2010 Adrián Soto (Stony Brook University) QGP, Hydrodynamics and AdS/CFT October 25th 2010 1 / 18 Outline

More information

Holographic hydrodynamics of systems with broken rotational symmetry. Johanna Erdmenger. Max-Planck-Institut für Physik, München

Holographic hydrodynamics of systems with broken rotational symmetry. Johanna Erdmenger. Max-Planck-Institut für Physik, München Holographic hydrodynamics of systems with broken rotational symmetry Johanna Erdmenger Max-Planck-Institut für Physik, München Based on joint work with M. Ammon, V. Grass, M. Kaminski, P. Kerner, H.T.

More information

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with:

Talk based on: arxiv: arxiv: arxiv: arxiv: arxiv:1106.xxxx. In collaboration with: Talk based on: arxiv:0812.3572 arxiv:0903.3244 arxiv:0910.5159 arxiv:1007.2963 arxiv:1106.xxxx In collaboration with: A. Buchel (Perimeter Institute) J. Liu, K. Hanaki, P. Szepietowski (Michigan) The behavior

More information

Polyakov Loop in a Magnetic Field

Polyakov Loop in a Magnetic Field Polyakov Loop in a Magnetic Field Kenji Fukushima (Department of Physics, Keio University) March 17, 11 @ St.Goar 1 Talk Contents Relativistic Heavy-Ion Collision and Strong Magnetic Fields eb ~m ~118

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Exploring quark-gluon plasma in relativistic heavy-ion collisions

Exploring quark-gluon plasma in relativistic heavy-ion collisions Exploring quark-gluon plasma in relativistic heavy-ion collisions Guang-You Qin 秦广友 Duke University @ University of Science and Technology of China July 12 th, 2011 Outline Introduction Collective flow

More information

Away-Side Angular Correlations Associated with Heavy Quark Jets

Away-Side Angular Correlations Associated with Heavy Quark Jets Away-Side Angular Correlations Associated with Heavy Quark Jets Jorge Noronha Presented by: William Horowitz The Ohio State University Based on: J.N, Gyulassy, Torrieri, arxiv:0807.1038 [hep-ph] and Betz,

More information

MAGNETIC FIELDS EVERYWHERE

MAGNETIC FIELDS EVERYWHERE MAY 1, 016 MAGNETIC FIELDS EVERYWHERE [Miransky & Shovkovy, Physics Reports 576 (015) pp. 1-09] May 1, 016 Universe www.mpifr-bonn.mpg.de Current galactic magnetic fields ~ 10-6 G Current magnetic fields

More information

Chiral magnetic effect and anomalous transport from real-time lattice simulations

Chiral magnetic effect and anomalous transport from real-time lattice simulations Chiral magnetic effect and anomalous transport from real-time lattice simulations Niklas Mueller Heidelberg University based on work together with: J. Berges, M. Mace, S. Schlichting, S. Sharma, N. Tanji

More information

An Introduction to Chiral Magnetic Effect

An Introduction to Chiral Magnetic Effect An Introduction to Chiral Magnetic Effect Qun Wang Department of Modern Physics University of Science and Technology of China QCD Study Group April 2-4, 2016, Shanghai JiaoTong Univ A game of collective

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

The direct photon puzzle

The direct photon puzzle The direct photon puzzle Jean-François Paquet January 16, 2017 ALICE Journal Club Jean-François Paquet (Stony Brook) 2 What is the direct photon puzzle? > Background

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents

Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Reference: AM and T. Hirano, arxiv:1003:3087 Relativistic Viscous Hydrodynamics for Multi-Component Systems with Multiple Conserved Currents Akihiko Monnai Department of Physics, The University of Tokyo

More information

Transport Properties in Magnetic Field

Transport Properties in Magnetic Field University of Illinois at Chicago/ RIKEN-BNL Research Center The Phases of Dense Matter, July 11-Aug 12 INT, July 28, 2016 The magnetic field in heavy-ion collisions In heavy-ion collisions, two magnetic

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Spontaneous electromagnetic superconductivity of QCD QED vacuum in (very) strong magnetic field

Spontaneous electromagnetic superconductivity of QCD QED vacuum in (very) strong magnetic field Spontaneous electromagnetic superconductivity of QCD QED vacuum in (very) strong magnetic field M. N. Chernodub CNRS, University of Tours, France Based on: M.Ch., Phys. Rev. D 82, 085011 (2010) [arxiv:1008.1055]

More information

Inverse magnetic catalysis in dense (holographic) matter

Inverse magnetic catalysis in dense (holographic) matter BNL, June 27, 2012 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria Inverse magnetic catalysis in dense (holographic) matter F. Preis, A. Rebhan, A. Schmitt,

More information

QCD at finite temperature and density from holography

QCD at finite temperature and density from holography Vienna, 06/17/10 1 Andreas Schmitt Institut für Theoretische Physik Technische Universität Wien 1040 Vienna, Austria QCD at finite temperature and density from holography The Sakai-Sugimoto model T-µ phase

More information

Insight into strong coupling

Insight into strong coupling Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) focused on probing features of quantum gravity Bottom-up approaches pheno applications to QCD-like and condensed

More information

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Oleg Andreev Landau Institute, Moscow & ASC, München Based on Int.J.Mod.Phys.

More information

Past, Present, and Future of the QGP Physics

Past, Present, and Future of the QGP Physics Past, Present, and Future of the QGP Physics Masayuki Asakawa Department of Physics, Osaka University November 8, 2018 oward Microscopic Understanding In Condensed Matter Physics 1st Macroscopic Properties

More information

Charge-Carrier Transport in Graphene

Charge-Carrier Transport in Graphene Charge-Carrier Transport in Graphene P.V. Buividovich, O.V. Pavlovsky, M.V. Ulybyshev, E.V. Luschevskaya, M.A. Zubkov, V.V. Braguta, M.I. Polikarpov ArXiv:1204.0921; ArXiv:1206.0619 Introduction: QCD and

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Exploring the Properties of the Phases of QCD Matter

Exploring the Properties of the Phases of QCD Matter Exploring the Properties of the Phases of QCD Matter Research opportunities and priorities for the next decade A White Paper for consideration in the 2015 NSAC Long Range Plan for Nuclear Physics (title

More information

Fluid/Gravity Correspondence for general non-rotating black holes

Fluid/Gravity Correspondence for general non-rotating black holes Fluid/Gravity Correspondence for general non-rotating black holes Xiaoning Wu Institute of Mathematics, AMSS, CAS 2013. 7. 30, @Max Planck Institute for Physics, Munich Joint work with Y. Ling, Y. Tian,

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA TOWARDS MORE REALISTIC MODELS OF THE QGP THERMALISATION Work with Michał Heller, David Mateos, Jorge Casalderrey, Paul Romatschke, Scott Pratt and Peter

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Magnetic field in heavy-ion collision and anisotropy of photon production

Magnetic field in heavy-ion collision and anisotropy of photon production Magnetic field in heavy-ion collision and anisotropy of photon production Vladimir Skokov Strong Magnetic Field and QCD; 12 November 2012 G. Basar, D. Kharzeev, V.S., arxiv:1206.1334; PRL A. Bzdak, V.S.,

More information

Photons in the Chiral Magnetic Effect

Photons in the Chiral Magnetic Effect Photons in the Chiral Magnetic Effect Kenji Fukushima Department of Physics, Keio University June 25, 2012 @ CPODD 1 Current from the Quantum Anomaly Anomaly Relation j = N c i=flavor Q i 2 e 2 μ 5 2π

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Insight into strong coupling

Insight into strong coupling Thank you 2012 Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) Bottom-up approaches pheno applications to QCD-like and condensed matter systems (e.g. Umut

More information

Towards new relativistic hydrodynamcis from AdS/CFT

Towards new relativistic hydrodynamcis from AdS/CFT Towards new relativistic hydrodynamcis from AdS/CFT Michael Lublinsky Stony Brook with Edward Shuryak QGP is Deconfined QGP is strongly coupled (sqgp) behaves almost like a perfect liquid (Navier-Stokes

More information

FERMION PAIRINGS IN B!

FERMION PAIRINGS IN B! FERMION PAIRINGS IN B! Vivian de la Incera University of Texas at El Paso CSQCDIII Guaruja, December 11-15, 2012! OUTLINE! Fermion Pairings, B, & QCD Map Magnetoelectricity of the MCFL Phase Quarkyonic

More information

The Big Picture. Thomas Schaefer. North Carolina State University

The Big Picture. Thomas Schaefer. North Carolina State University The Big Picture Thomas Schaefer North Carolina State University 1 Big Questions What is QCD? What is a Phase of QCD? What is a Plasma? What is a (perfect) Liquid? What is a wqgp/sqgp? 2 What is QCD (Quantum

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Probing the Extremes of Matter with Heavy Ions - Erice, 34th Course Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Frithjof Karsch Brookhaven National Laboratory &

More information

Shock waves in strongly coupled plasmas

Shock waves in strongly coupled plasmas Shock waves in strongly coupled plasmas M. Kruczenski Purdue University Based on: arxiv:1004.3803 (S. Khlebnikov, G. Michalogiorgakis, M.K.) Q uantum G ravity in the Southern Cone V, Buenos A ires,2010

More information

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina

ECT*, Trento December 3, Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina ECT*, Trento December 3, 2015 Collaborators: Vincenzo Greco Salvo Plumari Armando Puglisi Marco Ruggieri Francesco Scardina initial stage pre-equilibrium hydrodynamical evolution hadronization freeze-out

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Outline: Introduction

Outline: Introduction Electromagnetic radiation in hadronic interactions: from pp to AA collisions Outline: Introduction Lijuan Ruan (Brookhaven National Laboratory) Recent results on dileptons (dielectrons) Recent results

More information

Fluctuations of Conserved Charges

Fluctuations of Conserved Charges Fluctuations of Conserved Charges Theory, Experiment, and Lattice Masakiyo Kitazawa (Osaka U.) KEK, 2014/Jan./20 QCD @ nonzero T Theory (Motivation) QCD @ nonzero T Lattice Heavy Ion Collisions QCD @ nonzero

More information

No-drag frame for anomalous chiral fluid

No-drag frame for anomalous chiral fluid No-drag frame for anomalous chiral fluid M. Stephanov University of Illinois at Chicago M. Stephanov (UIC) No-drag frame UCLA 2016 1 / 15 Based on arxiv:1508.02396 with Ho-Ung Yee. M. Stephanov (UIC) No-drag

More information

Nonequilibrium photon production by classical color fields

Nonequilibrium photon production by classical color fields Nonequilibrium photon production by classical color fields Naoto Tanji Heidelberg University arxiv:1506.08442 ECT* Workshop Dec. 04 th 2015 Photons in heavy-ion collisions 1/30 hadron decays thermal hadron

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Plan of the lectures 1. QCD and States of Matter 2. The High Temperature Phase: Theory 3. Exploring QCD at High Temperature: Experiment

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V.

Quark Gluon Plasma. Rajiv V. Gavai T. I. F. R., Mumbai. Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Workshop on LHC Physics 2006, T. I. F. R., Mumbai, September 7, 2006 R. V. Gavai Top 1 Quark Gluon Plasma Rajiv V. Gavai T. I. F. R., Mumbai Introduction

More information

arxiv: v1 [hep-ph] 10 Jan 2019

arxiv: v1 [hep-ph] 10 Jan 2019 Nisho-1-2019 Nonvanishing pion masses for vanishing bare quark masses Aiichi Iwazaki Nishogakusha University, 6-16 Sanbancho Chiyoda-ku Tokyo 102-8336, Japan. (Dated: Jan. 10, 2019) arxiv:1901.03045v1

More information

Transport phenomena in strong magnetic fields

Transport phenomena in strong magnetic fields Transport phenomena in strong magnetic fields Koichi Hattori Shanghai Fudan University Seminar in INT Program INT-18-1b Week 1 Multi-Scale Problems Using Effective Field Theories Strong magnetic fields

More information

Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC

Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC (for the STAR Collaboration) University of California, Los Angeles E-mail: lwen@physics.ucla.edu Searches for the chiral effects

More information

Magnetic field in HIC in Au-Au, Cu-Cu and isobar collisions

Magnetic field in HIC in Au-Au, Cu-Cu and isobar collisions Magnetic field in HIC in Au-Au, Cu-Cu and isobar collisions Vladimir Skokov March 2, 2016 VSkokov@bnl.gov B in HIC QCD Workshop 1 / 23 Outline Introduction Magnetic field at early stage and evolution Magnetic

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

Scale anomaly and the proton mass

Scale anomaly and the proton mass High Energy Physics in the LHC Era, Valparaiso, Chile, 2012 The proton mass: at the heart of most visible matter Temple University, March 28-29, 2016 Scale anomaly and the proton mass D. Kharzeev Supported

More information

Holographic entropy production

Holographic entropy production 1 1 School of Physics, University of Chinese Academy of Sciences ( 中国科学院大学物理学院 ) (Based on the joint work [arxiv:1204.2029] with Xiaoning Wu and Hongbao Zhang, which received an honorable mention in the

More information

Electromagnetic fields in relativistic heavy-ion collisions

Electromagnetic fields in relativistic heavy-ion collisions Electromagnetic fields in relativistic heavy-ion collisions Kirill Tuchin QCD Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions January, 15 1 OUTLINE Electromagnetic field in

More information

Introduction to Heavy Ion Physics at the LHC

Introduction to Heavy Ion Physics at the LHC Introduction to Heavy Ion Physics at the LHC F. Noferini (noferini@bo.infn.it) INFN Bologna/CNAF E. Fermi Centre, Rome ALICE Review http://en.sif.it/journals/ncr/econtents/2016/039/10 24/10/2016 1 Hadrons

More information

S-CONFINING DUALITIES

S-CONFINING DUALITIES DIMENSIONAL REDUCTION of S-CONFINING DUALITIES Cornell University work in progress, in collaboration with C. Csaki, Y. Shirman, F. Tanedo and J. Terning. 1 46 3D Yang-Mills A. M. Polyakov, Quark Confinement

More information

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN Jet quenching in heavy-ion collisions at the LHC Marta Verweij CERN EPFL Seminar May. 2, 2016 Thousands of particles are produced in one heavy ion collision Marta Verweij 2 Heavy ion collision Marta Verweij

More information

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces

can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces nodes protected against gapping can be moved in energy/momentum but not individually destroyed; in general: topological Fermi surfaces physical realization: stacked 2d topological insulators C=1 3d top

More information

Band Structures of Photon in Axion Crystals

Band Structures of Photon in Axion Crystals Band Structures of Photon in Axion Crystals Sho Ozaki (Keio Univ.) in collaboration with Naoki Yamamoto (Keio Univ.) QCD worksop on Chirality, Vorticity and Magnetic field in Heavy Ion Collisions, March

More information

Hot and Magnetized Pions

Hot and Magnetized Pions .. Hot and Magnetized Pions Neda Sadooghi Department of Physics, Sharif University of Technology Tehran - Iran 3rd IPM School and Workshop on Applied AdS/CFT February 2014 Neda Sadooghi (Dept. of Physics,

More information

Vortex liquid in the superconducting vacuum of the quenched QCD induced by strong magnetic field

Vortex liquid in the superconducting vacuum of the quenched QCD induced by strong magnetic field Vortex liquid in the superconducting vacuum of the quenched QCD induced by strong magnetic field V. V. Braguta IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya str. 25, Moscow, 117218

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

Symmetries Then and Now

Symmetries Then and Now Symmetries Then and Now Nathan Seiberg, IAS 40 th Anniversary conference Laboratoire de Physique Théorique Global symmetries are useful If unbroken Multiplets Selection rules If broken Goldstone bosons

More information

Strangeness production and nuclear modification at LHC energies

Strangeness production and nuclear modification at LHC energies Strangeness production and nuclear modification at LHC energies Oliver Busch for the ALICE collaboration 1 Outline introduction jet azimuthal anisotropy jet shapes 2 Introduction 3 Jets: seeing quarks

More information