Regression Pitfalls. Pitfall Noun: A hidden or unsuspected danger or difficulty. A covered pit used as a trap.

Size: px
Start display at page:

Download "Regression Pitfalls. Pitfall Noun: A hidden or unsuspected danger or difficulty. A covered pit used as a trap."

Transcription

1 Regression Pitfalls Pitfall Noun: A hidden or unsuspected danger or difficulty. A covered pit used as a trap. Multiple regression is a widely used and powerful tool. It is also one of the most abused statistical techniques. 1 / 17 Some Regression Pitfalls Introduction

2 Observational versus Experimental Data Recall: In some investigations, the independent variables x 1, x 2,..., x k can be controlled; that is, held at desired values. The resulting data are called experimental. In other cases, the independent variables cannot be controlled, and their values are simply observed. The resulting data are called observational. 2 / 17 Some Regression Pitfalls Observational vs Experimental Data

3 Observational example Cocaine Use During Pregnancy Linked To Development Problems Two groups of new mothers, 218 used cocaine during pregnancy, 197 did not. IQ tests of infants at age 2 showed lower scores for children of users. Correlation does not imply causation. 3 / 17 Some Regression Pitfalls Observational vs Experimental Data

4 The study does not show that cocaine use causes development problems. It does show association, which might be used in prediction. For instance, it could help identify children at high risk of having development problems. 4 / 17 Some Regression Pitfalls Observational vs Experimental Data

5 Experimental example Animal-assisted therapy. 76 heart patients randomly assigned to three therapies: T: visit from a volunteer and a trained dog; V: visit from a volunteer only; C: no visit. Response y is decrease in anxiety. 5 / 17 Some Regression Pitfalls Observational vs Experimental Data

6 Result: ȳ T = 10.5, ȳ V = 3.9, ȳ C = 1.4. Model: E(Y ) = β 0 + β 1 x 1 + β 2 x 2, where x 1 is the indicator variable for group T and x 2 is the indicator variable for group V. The model-utility F -test shows significant differences among groups. Because of random assignment, the differences can be assumed to be caused by the treatments. 6 / 17 Some Regression Pitfalls Observational vs Experimental Data

7 Parameter Estimability ST 430/514 Recall The normal equations X Xˆβ = X y that define least squares parameter estimates always have a solution. But if X X is singular, they have many solutions. An individual parameter that is not uniquely estimated is called nonestimable. 7 / 17 Some Regression Pitfalls Parameter Estimability

8 Example The animal-assisted therapy data. Suppose we tried to fit the model E(Y ) = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3, where x 3 is the third indicator variable, for group C. One solution is ˆβ 0 = 0, ˆβ 1 = ȳ T = 10.5, ˆβ 2 = ȳ V = 3.9, ˆβ 3 = ȳ C = 1.4. The more usual solution is ˆβ 0 = ȳ C = 1.4, ˆβ 1 = ȳ T ȳ C = 9.1, ˆβ 2 = ȳ V ȳ C = 2.5, ˆβ 3 = 0. 8 / 17 Some Regression Pitfalls Parameter Estimability

9 All estimates change, so no parameter is estimable. The conventional solution is to leave out one variable, or equivalently to constrain one parameter to be zero. Another possibility is to constrain β 1 + β 2 + β 3 = 0, which is appealing in its symmetry, but rarely used in practice. In more complex cases, estimability may be harder to understand. 9 / 17 Some Regression Pitfalls Parameter Estimability

10 Multicollinearity Two independent variables are orthogonal if their sample correlation coefficient is zero. If all pairs of independent variables are orthogonal, X X is diagonal, and the normal equations are trivial to solve. In a controlled experiment, the variables are often orthogonal by design. If some pairs are far from orthogonal, the equations may be nearly singular. 10 / 17 Some Regression Pitfalls Multicollinearity

11 If X X is nearly singular, its inverse (X X) 1 exists but will have large entries. So the least squares estimates ˆβ = (X X) 1 X y are very sensitive to small changes in y. That makes their standard errors large. 11 / 17 Some Regression Pitfalls Multicollinearity

12 Example Carbon monoxide from cigarettes ST 430/514 cigar <- read.table("text/exercises&examples/ftccigar.txt", header = TRUE) pairs(cigar) cor(cigar) summary(lm(co ~ TAR, cigar)) summary(lm(co ~ TAR + NICOTINE + WEIGHT, cigar)) The standard error of ˆβ TAR increases nearly five-fold when NICOTINE is added to the model. Note the negative coefficients for NICOTINE and WEIGHT. But both are positively correlated with CO. 12 / 17 Some Regression Pitfalls Multicollinearity

13 Multicollinearity is sometimes measured using the Variance Inflation Factor (VIF). For variable x i, the VIF is VIF i = 1 1 R 2 i 1, where Ri 2 is the coefficient of determination in the regression of x i on the other independent variables {x j, j i}. VIF i is related to the increase in the standard error of ˆβ i when the other variables are included. VIF i = 1 if x i is orthogonal to the other independent variables. 13 / 17 Some Regression Pitfalls Multicollinearity

14 Extrapolation A regression model is an approximation to the complexities of the real world. It may fit the sample data well. If it fits well, it will usually give a reliable prediction for a new context that is similar to those in the sample data. With several variables, deciding when the new context is too different for reliable prediction may be difficult, especially in the presence of multicollinearity. 14 / 17 Some Regression Pitfalls Extrapolation

15 Transformation In many problems, one or more of the variables (dependent and independent) may be measured and recorded in a form that is not the best from a modeling perspective. Linear transformations are usually pointless, as a linear model is essentially unchanged by it. Among nonlinear transformations, logarithms are most widely useful, followed by powers of the variables. 15 / 17 Some Regression Pitfalls Variable Transformation

16 The primary goal of transformation is to find a good approximation to the way E(Y ) depends on x. Another goal is to make the variance of the random error reasonably constant. ɛ = Y E(Y ) Finally, if a transformation makes ɛ approximately normally distributed, that is worth achieving. 16 / 17 Some Regression Pitfalls Variable Transformation

17 Example 7.8 Impact of price of coffee on demand: coffee <- read.table("text/exercises&examples/coffee.txt", header = TRUE) with(coffee, plot(price, DEMAND)) Example 7.8 models Y (DEMAND) against p 1, where p = PRICE. We could also consider log(y ) and log(p), as well as other powers of p. 17 / 17 Some Regression Pitfalls Variable Transformation

Dr. Maddah ENMG 617 EM Statistics 11/28/12. Multiple Regression (3) (Chapter 15, Hines)

Dr. Maddah ENMG 617 EM Statistics 11/28/12. Multiple Regression (3) (Chapter 15, Hines) Dr. Maddah ENMG 617 EM Statistics 11/28/12 Multiple Regression (3) (Chapter 15, Hines) Problems in multiple regression: Multicollinearity This arises when the independent variables x 1, x 2,, x k, are

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression ST 430/514 Recall: a regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates).

More information

Multicollinearity occurs when two or more predictors in the model are correlated and provide redundant information about the response.

Multicollinearity occurs when two or more predictors in the model are correlated and provide redundant information about the response. Multicollinearity Read Section 7.5 in textbook. Multicollinearity occurs when two or more predictors in the model are correlated and provide redundant information about the response. Example of multicollinear

More information

Analysing data: regression and correlation S6 and S7

Analysing data: regression and correlation S6 and S7 Basic medical statistics for clinical and experimental research Analysing data: regression and correlation S6 and S7 K. Jozwiak k.jozwiak@nki.nl 2 / 49 Correlation So far we have looked at the association

More information

Chapter 11. Correlation and Regression

Chapter 11. Correlation and Regression Chapter 11. Correlation and Regression The word correlation is used in everyday life to denote some form of association. We might say that we have noticed a correlation between foggy days and attacks of

More information

STAT 4385 Topic 06: Model Diagnostics

STAT 4385 Topic 06: Model Diagnostics STAT 4385 Topic 06: Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2016 1/ 40 Outline Several Types of Residuals Raw, Standardized, Studentized

More information

Multiple linear regression S6

Multiple linear regression S6 Basic medical statistics for clinical and experimental research Multiple linear regression S6 Katarzyna Jóźwiak k.jozwiak@nki.nl November 15, 2017 1/42 Introduction Two main motivations for doing multiple

More information

UNIT 12 ~ More About Regression

UNIT 12 ~ More About Regression ***SECTION 15.1*** The Regression Model When a scatterplot shows a relationship between a variable x and a y, we can use the fitted to the data to predict y for a given value of x. Now we want to do tests

More information

STAT Checking Model Assumptions

STAT Checking Model Assumptions STAT 704 --- Checking Model Assumptions Recall we assumed the following in our model: (1) The regression relationship between the response and the predictor(s) specified in the model is appropriate (2)

More information

Hypothesis testing Goodness of fit Multicollinearity Prediction. Applied Statistics. Lecturer: Serena Arima

Hypothesis testing Goodness of fit Multicollinearity Prediction. Applied Statistics. Lecturer: Serena Arima Applied Statistics Lecturer: Serena Arima Hypothesis testing for the linear model Under the Gauss-Markov assumptions and the normality of the error terms, we saw that β N(β, σ 2 (X X ) 1 ) and hence s

More information

Regression diagnostics

Regression diagnostics Regression diagnostics Kerby Shedden Department of Statistics, University of Michigan November 5, 018 1 / 6 Motivation When working with a linear model with design matrix X, the conventional linear model

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

Classification & Regression. Multicollinearity Intro to Nominal Data

Classification & Regression. Multicollinearity Intro to Nominal Data Multicollinearity Intro to Nominal Let s Start With A Question y = β 0 + β 1 x 1 +β 2 x 2 y = Anxiety Level x 1 = heart rate x 2 = recorded pulse Since we can all agree heart rate and pulse are related,

More information

Covariance and Correlation

Covariance and Correlation Covariance and Correlation ST 370 The probability distribution of a random variable gives complete information about its behavior, but its mean and variance are useful summaries. Similarly, the joint probability

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Fitting a regression model

Fitting a regression model Fitting a regression model We wish to fit a simple linear regression model: y = β 0 + β 1 x + ɛ. Fitting a model means obtaining estimators for the unknown population parameters β 0 and β 1 (and also for

More information

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects Contents 1 Review of Residuals 2 Detecting Outliers 3 Influential Observations 4 Multicollinearity and its Effects W. Zhou (Colorado State University) STAT 540 July 6th, 2015 1 / 32 Model Diagnostics:

More information

Linear Models and Estimation by Least Squares

Linear Models and Estimation by Least Squares Linear Models and Estimation by Least Squares Jin-Lung Lin 1 Introduction Causal relation investigation lies in the heart of economics. Effect (Dependent variable) cause (Independent variable) Example:

More information

9. Least squares data fitting

9. Least squares data fitting L. Vandenberghe EE133A (Spring 2017) 9. Least squares data fitting model fitting regression linear-in-parameters models time series examples validation least squares classification statistics interpretation

More information

BANA 7046 Data Mining I Lecture 2. Linear Regression, Model Assessment, and Cross-validation 1

BANA 7046 Data Mining I Lecture 2. Linear Regression, Model Assessment, and Cross-validation 1 BANA 7046 Data Mining I Lecture 2. Linear Regression, Model Assessment, and Cross-validation 1 Shaobo Li University of Cincinnati 1 Partially based on Hastie, et al. (2009) ESL, and James, et al. (2013)

More information

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X =

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X = The Gauss-Markov Linear Model y Xβ + ɛ y is an n random vector of responses X is an n p matrix of constants with columns corresponding to explanatory variables X is sometimes referred to as the design

More information

Multiple Regression Methods

Multiple Regression Methods Chapter 1: Multiple Regression Methods Hildebrand, Ott and Gray Basic Statistical Ideas for Managers Second Edition 1 Learning Objectives for Ch. 1 The Multiple Linear Regression Model How to interpret

More information

4.7 Confidence and Prediction Intervals

4.7 Confidence and Prediction Intervals 4.7 Confidence and Prediction Intervals Instead of conducting tests we could find confidence intervals for a regression coefficient, or a set of regression coefficient, or for the mean of the response

More information

Nonlinear Measures of Correlation and Dimensionality Reduction with Application to Protein Motion

Nonlinear Measures of Correlation and Dimensionality Reduction with Application to Protein Motion Nonlinear Measures of Correlation and Dimensionality Reduction with Application to Protein Motion REU Site: Interdisciplinary Program in High Performance Computing Nancy Hong 1, Emily Jasien 2, Christopher

More information

Bayes Estimators & Ridge Regression

Bayes Estimators & Ridge Regression Readings Chapter 14 Christensen Merlise Clyde September 29, 2015 How Good are Estimators? Quadratic loss for estimating β using estimator a L(β, a) = (β a) T (β a) How Good are Estimators? Quadratic loss

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares ST 430/514 Recall the linear regression equation E(Y ) = β 0 + β 1 x 1 + β 2 x 2 + + β k x k We have estimated the parameters β 0, β 1, β 2,..., β k by minimizing the sum of squared

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 / 42 Passenger car mileage Consider the carmpg dataset taken from

More information

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction,

Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, Residual Analysis for two-way ANOVA The twoway model with K replicates, including interaction, is Y ijk = µ ij + ɛ ijk = µ + α i + β j + γ ij + ɛ ijk with i = 1,..., I, j = 1,..., J, k = 1,..., K. In carrying

More information

Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16)

Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16) Lecture: Simultaneous Equation Model (Wooldridge s Book Chapter 16) 1 2 Model Consider a system of two regressions y 1 = β 1 y 2 + u 1 (1) y 2 = β 2 y 1 + u 2 (2) This is a simultaneous equation model

More information

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods.

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods. TheThalesians Itiseasyforphilosopherstoberichiftheychoose Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods Ivan Zhdankin

More information

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27 Estimation of the Response Mean Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 27 The Gauss-Markov Linear Model y = Xβ + ɛ y is an n random vector of responses. X is an n p matrix

More information

Analysis of Covariance. The following example illustrates a case where the covariate is affected by the treatments.

Analysis of Covariance. The following example illustrates a case where the covariate is affected by the treatments. Analysis of Covariance In some experiments, the experimental units (subjects) are nonhomogeneous or there is variation in the experimental conditions that are not due to the treatments. For example, a

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17

Estimating Estimable Functions of β. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 17 Estimating Estimable Functions of β Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 7 The Response Depends on β Only through Xβ In the Gauss-Markov or Normal Theory Gauss-Markov Linear

More information

Remedial Measures Wrap-Up and Transformations-Box Cox

Remedial Measures Wrap-Up and Transformations-Box Cox Remedial Measures Wrap-Up and Transformations-Box Cox Frank Wood October 25, 2011 Last Class Graphical procedures for determining appropriateness of regression fit - Normal probability plot Tests to determine

More information

Multicollinearity. Filippo Ferroni 1. Course in Econometrics and Data Analysis Ieseg September 22, Banque de France.

Multicollinearity. Filippo Ferroni 1. Course in Econometrics and Data Analysis Ieseg September 22, Banque de France. Filippo Ferroni 1 1 Business Condition and Macroeconomic Forecasting Directorate, Banque de France Course in Econometrics and Data Analysis Ieseg September 22, 2011 We have multicollinearity when two or

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

22s:152 Applied Linear Regression. Chapter 5: Ordinary Least Squares Regression. Part 1: Simple Linear Regression Introduction and Estimation

22s:152 Applied Linear Regression. Chapter 5: Ordinary Least Squares Regression. Part 1: Simple Linear Regression Introduction and Estimation 22s:152 Applied Linear Regression Chapter 5: Ordinary Least Squares Regression Part 1: Simple Linear Regression Introduction and Estimation Methods for studying the relationship of two or more quantitative

More information

where x and ȳ are the sample means of x 1,, x n

where x and ȳ are the sample means of x 1,, x n y y Animal Studies of Side Effects Simple Linear Regression Basic Ideas In simple linear regression there is an approximately linear relation between two variables say y = pressure in the pancreas x =

More information

MULTICOLLINEARITY AND VARIANCE INFLATION FACTORS. F. Chiaromonte 1

MULTICOLLINEARITY AND VARIANCE INFLATION FACTORS. F. Chiaromonte 1 MULTICOLLINEARITY AND VARIANCE INFLATION FACTORS F. Chiaromonte 1 Pool of available predictors/terms from them in the data set. Related to model selection, are the questions: What is the relative importance

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

18.S096 Problem Set 3 Fall 2013 Regression Analysis Due Date: 10/8/2013

18.S096 Problem Set 3 Fall 2013 Regression Analysis Due Date: 10/8/2013 18.S096 Problem Set 3 Fall 013 Regression Analysis Due Date: 10/8/013 he Projection( Hat ) Matrix and Case Influence/Leverage Recall the setup for a linear regression model y = Xβ + ɛ where y and ɛ are

More information

The prediction of house price

The prediction of house price 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data

On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data On Measurement Error Problems with Predictors Derived from Stationary Stochastic Processes and Application to Cocaine Dependence Treatment Data Yehua Li Department of Statistics University of Georgia Yongtao

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

(4) 1. Create dummy variables for Town. Name these dummy variables A and B. These 0,1 variables now indicate the location of the house.

(4) 1. Create dummy variables for Town. Name these dummy variables A and B. These 0,1 variables now indicate the location of the house. Exam 3 Resource Economics 312 Introductory Econometrics Please complete all questions on this exam. The data in the spreadsheet: Exam 3- Home Prices.xls are to be used for all analyses. These data are

More information

Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS

Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS 1a) The model is cw i = β 0 + β 1 el i + ɛ i, where cw i is the weight of the ith chick, el i the length of the egg from which it hatched, and ɛ i

More information

Quantitative Bivariate Data

Quantitative Bivariate Data Statistics 211 (L02) - Linear Regression Quantitative Bivariate Data Consider two quantitative variables, defined in the following way: X i - the observed value of Variable X from subject i, i = 1, 2,,

More information

Key Algebraic Results in Linear Regression

Key Algebraic Results in Linear Regression Key Algebraic Results in Linear Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 30 Key Algebraic Results in

More information

Regression #8: Loose Ends

Regression #8: Loose Ends Regression #8: Loose Ends Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #8 1 / 30 In this lecture we investigate a variety of topics that you are probably familiar with, but need to touch

More information

Matrices and vectors A matrix is a rectangular array of numbers. Here s an example: A =

Matrices and vectors A matrix is a rectangular array of numbers. Here s an example: A = Matrices and vectors A matrix is a rectangular array of numbers Here s an example: 23 14 17 A = 225 0 2 This matrix has dimensions 2 3 The number of rows is first, then the number of columns We can write

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Lecture 19 Multiple (Linear) Regression

Lecture 19 Multiple (Linear) Regression Lecture 19 Multiple (Linear) Regression Thais Paiva STA 111 - Summer 2013 Term II August 1, 2013 1 / 30 Thais Paiva STA 111 - Summer 2013 Term II Lecture 19, 08/01/2013 Lecture Plan 1 Multiple regression

More information

ACE 564 Spring Lecture 8. Violations of Basic Assumptions I: Multicollinearity and Non-Sample Information. by Professor Scott H.

ACE 564 Spring Lecture 8. Violations of Basic Assumptions I: Multicollinearity and Non-Sample Information. by Professor Scott H. ACE 564 Spring 2006 Lecture 8 Violations of Basic Assumptions I: Multicollinearity and Non-Sample Information by Professor Scott H. Irwin Readings: Griffiths, Hill and Judge. "Collinear Economic Variables,

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

Linear Regression. Chapter 3

Linear Regression. Chapter 3 Chapter 3 Linear Regression Once we ve acquired data with multiple variables, one very important question is how the variables are related. For example, we could ask for the relationship between people

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Business Statistics. Tommaso Proietti. Linear Regression. DEF - Università di Roma 'Tor Vergata'

Business Statistics. Tommaso Proietti. Linear Regression. DEF - Università di Roma 'Tor Vergata' Business Statistics Tommaso Proietti DEF - Università di Roma 'Tor Vergata' Linear Regression Specication Let Y be a univariate quantitative response variable. We model Y as follows: Y = f(x) + ε where

More information

Trendlines Simple Linear Regression Multiple Linear Regression Systematic Model Building Practical Issues

Trendlines Simple Linear Regression Multiple Linear Regression Systematic Model Building Practical Issues Trendlines Simple Linear Regression Multiple Linear Regression Systematic Model Building Practical Issues Overfitting Categorical Variables Interaction Terms Non-linear Terms Linear Logarithmic y = a +

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Population 1 Population 2

Population 1 Population 2 Two Population Case Testing the Difference Between Two Population Means Sample of Size n _ Sample mean = x Sample s.d.=s x Sample of Size m _ Sample mean = y Sample s.d.=s y Pop n mean=μ x Pop n s.d.=

More information

Robustness of Principal Components

Robustness of Principal Components PCA for Clustering An objective of principal components analysis is to identify linear combinations of the original variables that are useful in accounting for the variation in those original variables.

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Model Selection. Frank Wood. December 10, 2009

Model Selection. Frank Wood. December 10, 2009 Model Selection Frank Wood December 10, 2009 Standard Linear Regression Recipe Identify the explanatory variables Decide the functional forms in which the explanatory variables can enter the model Decide

More information

Probability and Samples. Sampling. Point Estimates

Probability and Samples. Sampling. Point Estimates Probability and Samples Sampling We want the results from our sample to be true for the population and not just the sample But our sample may or may not be representative of the population Sampling error

More information

Correlation. Chapter 9 (omit 9.5, 9.10, 9.13, 9.14) Aplia (week 6 Correlation; omit question 6)

Correlation. Chapter 9 (omit 9.5, 9.10, 9.13, 9.14) Aplia (week 6 Correlation; omit question 6) Chapter 9 (omit 9.5, 9., 9.13, 9.1) Aplia (week Correlation; omit question ) Research report details in course syllabus due October 1 Assessing relationship between variables level of neurotransmitter

More information

Estimable Functions and Their Least Squares Estimators. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51

Estimable Functions and Their Least Squares Estimators. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 51 Estimable Functions and Their Least Squares Estimators Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 51 Consider the GLM y = n p X β + ε, where E(ε) = 0. p 1 n 1 n 1 Suppose

More information

Day 4: Shrinkage Estimators

Day 4: Shrinkage Estimators Day 4: Shrinkage Estimators Kenneth Benoit Data Mining and Statistical Learning March 9, 2015 n versus p (aka k) Classical regression framework: n > p. Without this inequality, the OLS coefficients have

More information

Regression Model Building

Regression Model Building Regression Model Building Setting: Possibly a large set of predictor variables (including interactions). Goal: Fit a parsimonious model that explains variation in Y with a small set of predictors Automated

More information

STAT 4385 Topic 03: Simple Linear Regression

STAT 4385 Topic 03: Simple Linear Regression STAT 4385 Topic 03: Simple Linear Regression Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2017 Outline The Set-Up Exploratory Data Analysis

More information

Contest Quiz 3. Question Sheet. In this quiz we will review concepts of linear regression covered in lecture 2.

Contest Quiz 3. Question Sheet. In this quiz we will review concepts of linear regression covered in lecture 2. Updated: November 17, 2011 Lecturer: Thilo Klein Contact: tk375@cam.ac.uk Contest Quiz 3 Question Sheet In this quiz we will review concepts of linear regression covered in lecture 2. NOTE: Please round

More information

M 225 Test 1 B Name SHOW YOUR WORK FOR FULL CREDIT! Problem Max. Points Your Points Total 75

M 225 Test 1 B Name SHOW YOUR WORK FOR FULL CREDIT! Problem Max. Points Your Points Total 75 M 225 Test 1 B Name SHOW YOUR WORK FOR FULL CREDIT! Problem Max. Points Your Points 1-13 13 14 3 15 8 16 4 17 10 18 9 19 7 20 3 21 16 22 2 Total 75 1 Multiple choice questions (1 point each) 1. Look at

More information

Review: Second Half of Course Stat 704: Data Analysis I, Fall 2014

Review: Second Half of Course Stat 704: Data Analysis I, Fall 2014 Review: Second Half of Course Stat 704: Data Analysis I, Fall 2014 Tim Hanson, Ph.D. University of South Carolina T. Hanson (USC) Stat 704: Data Analysis I, Fall 2014 1 / 13 Chapter 8: Polynomials & Interactions

More information

Quantitative Methods I: Regression diagnostics

Quantitative Methods I: Regression diagnostics Quantitative Methods I: Regression University College Dublin 10 December 2014 1 Assumptions and errors 2 3 4 Outline Assumptions and errors 1 Assumptions and errors 2 3 4 Assumptions: specification Linear

More information

Building a Prognostic Biomarker

Building a Prognostic Biomarker Building a Prognostic Biomarker Noah Simon and Richard Simon July 2016 1 / 44 Prognostic Biomarker for a Continuous Measure On each of n patients measure y i - single continuous outcome (eg. blood pressure,

More information

12.12 MODEL BUILDING, AND THE EFFECTS OF MULTICOLLINEARITY (OPTIONAL)

12.12 MODEL BUILDING, AND THE EFFECTS OF MULTICOLLINEARITY (OPTIONAL) 12.12 Model Building, and the Effects of Multicollinearity (Optional) 1 Although Excel and MegaStat are emphasized in Business Statistics in Practice, Second Canadian Edition, some examples in the additional

More information

L7: Multicollinearity

L7: Multicollinearity L7: Multicollinearity Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Introduction ï Example Whats wrong with it? Assume we have this data Y

More information

Remedial Measures for Multiple Linear Regression Models

Remedial Measures for Multiple Linear Regression Models Remedial Measures for Multiple Linear Regression Models Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Remedial Measures for Multiple Linear Regression Models 1 / 25 Outline

More information

Regression Models for Quantitative and Qualitative Predictors: An Overview

Regression Models for Quantitative and Qualitative Predictors: An Overview Regression Models for Quantitative and Qualitative Predictors: An Overview Polynomial regression models Interaction regression models Qualitative predictors Indicator variables Modeling interactions between

More information

Ridge Regression. Summary. Sample StatFolio: ridge reg.sgp. STATGRAPHICS Rev. 10/1/2014

Ridge Regression. Summary. Sample StatFolio: ridge reg.sgp. STATGRAPHICS Rev. 10/1/2014 Ridge Regression Summary... 1 Data Input... 4 Analysis Summary... 5 Analysis Options... 6 Ridge Trace... 7 Regression Coefficients... 8 Standardized Regression Coefficients... 9 Observed versus Predicted...

More information

Linear Regression. September 27, Chapter 3. Chapter 3 September 27, / 77

Linear Regression. September 27, Chapter 3. Chapter 3 September 27, / 77 Linear Regression Chapter 3 September 27, 2016 Chapter 3 September 27, 2016 1 / 77 1 3.1. Simple linear regression 2 3.2 Multiple linear regression 3 3.3. The least squares estimation 4 3.4. The statistical

More information

Correlation and Linear Regression

Correlation and Linear Regression Correlation and Linear Regression Correlation: Relationships between Variables So far, nearly all of our discussion of inferential statistics has focused on testing for differences between group means

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Empirical Likelihood Methods for Two-sample Problems with Data Missing-by-Design

Empirical Likelihood Methods for Two-sample Problems with Data Missing-by-Design 1 / 32 Empirical Likelihood Methods for Two-sample Problems with Data Missing-by-Design Changbao Wu Department of Statistics and Actuarial Science University of Waterloo (Joint work with Min Chen and Mary

More information

Learning Objectives. IQ Scores of Students. Correlation. Correlation and Simple Linear Regression

Learning Objectives. IQ Scores of Students. Correlation. Correlation and Simple Linear Regression NURS56 INTRODUCTION TO STATISTICS Learning Objectives Correlation and Simple Linear Regression Patsy P.H. Chau (Email: phpchau@hku.hk). To examine how two continuous variables are related Adapted from

More information

Chapter 3: Examining Relationships Review Sheet

Chapter 3: Examining Relationships Review Sheet Review Sheet 1. A study is conducted to determine if one can predict the yield of a crop based on the amount of yearly rainfall. The response variable in this study is A) the yield of the crop. D) either

More information

Discriminant analysis and supervised classification

Discriminant analysis and supervised classification Discriminant analysis and supervised classification Angela Montanari 1 Linear discriminant analysis Linear discriminant analysis (LDA) also known as Fisher s linear discriminant analysis or as Canonical

More information

Correlation and simple linear regression S5

Correlation and simple linear regression S5 Basic medical statistics for clinical and eperimental research Correlation and simple linear regression S5 Katarzyna Jóźwiak k.jozwiak@nki.nl November 15, 2017 1/41 Introduction Eample: Brain size and

More information

Regression. Marc H. Mehlman University of New Haven

Regression. Marc H. Mehlman University of New Haven Regression Marc H. Mehlman marcmehlman@yahoo.com University of New Haven the statistician knows that in nature there never was a normal distribution, there never was a straight line, yet with normal and

More information

Conjugate Analysis for the Linear Model

Conjugate Analysis for the Linear Model Conjugate Analysis for the Linear Model If we have good prior knowledge that can help us specify priors for β and σ 2, we can use conjugate priors. Following the procedure in Christensen, Johnson, Branscum,

More information

y response variable x 1, x 2,, x k -- a set of explanatory variables

y response variable x 1, x 2,, x k -- a set of explanatory variables 11. Multiple Regression and Correlation y response variable x 1, x 2,, x k -- a set of explanatory variables In this chapter, all variables are assumed to be quantitative. Chapters 12-14 show how to incorporate

More information

Chapter 9. Correlation and Regression

Chapter 9. Correlation and Regression Chapter 9 Correlation and Regression Lesson 9-1/9-2, Part 1 Correlation Registered Florida Pleasure Crafts and Watercraft Related Manatee Deaths 100 80 60 40 20 0 1991 1993 1995 1997 1999 Year Boats in

More information

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij =

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij = 20. ONE-WAY ANALYSIS OF VARIANCE 1 20.1. Balanced One-Way Classification Cell means parametrization: Y ij = µ i + ε ij, i = 1,..., I; j = 1,..., J, ε ij N(0, σ 2 ), In matrix form, Y = Xβ + ε, or 1 Y J

More information

ST430 Exam 1 with Answers

ST430 Exam 1 with Answers ST430 Exam 1 with Answers Date: October 5, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textook are permitted but you may use a calculator.

More information

AP Statistics Unit 2 (Chapters 7-10) Warm-Ups: Part 1

AP Statistics Unit 2 (Chapters 7-10) Warm-Ups: Part 1 AP Statistics Unit 2 (Chapters 7-10) Warm-Ups: Part 1 2. A researcher is interested in determining if one could predict the score on a statistics exam from the amount of time spent studying for the exam.

More information

Coefficient of Determination

Coefficient of Determination Coefficient of Determination ST 430/514 The coefficient of determination, R 2, is defined as before: R 2 = 1 SS E (yi ŷ i ) = 1 2 SS yy (yi ȳ) 2 The interpretation of R 2 is still the fraction of variance

More information

14.74 Lecture 10: The returns to human capital: education

14.74 Lecture 10: The returns to human capital: education 14.74 Lecture 10: The returns to human capital: education Esther Duflo March 7, 2011 Education is a form of human capital. You invest in it, and you get returns, in the form of higher earnings, etc...

More information

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis Massimiliano Pontil 1 Today s plan SVD and principal component analysis (PCA) Connection

More information