Multilevel Preconditioning and Adaptive Sparse Solution of Inverse Problems

Size: px
Start display at page:

Download "Multilevel Preconditioning and Adaptive Sparse Solution of Inverse Problems"

Transcription

1 Multilevel and Adaptive Sparse of Inverse Problems Fachbereich Mathematik und Informatik Philipps Universität Marburg Workshop Sparsity and Computation, Bonn, (joint work with M. Fornasier and T. Raasch)

2 Outline

3 Outline

4 The Problem: treatment of inverse problems y = Ku + e, K : X Y, X, Y Hilbert spaces Minimization of functionals: J(u) := Ku y 2 Y + 2 ( u, ψ λ ) λ I l1,α (I), u lp,α := ( u λ p α λ ) 1/p λ I Ψ := {ψ λ } λ I (wavelet) basis Ψ := { ψ λ } λ I dual basis

5 The Problem: treatment of inverse problems y = Ku + e, K : X Y, X, Y Hilbert spaces Minimization of functionals: J(u) := Ku y 2 Y + 2 ( u, ψ λ ) λ I l1,α (I), u lp,α := ( u λ p α λ ) 1/p λ I Ψ := {ψ λ } λ I (wavelet) basis Ψ := { ψ λ } λ I dual basis

6 The Problem: equivalent formulation: F u := λ I u λ ψ λ, u l 2 (I) J(u) := J α (u) = (K F )u y 2 Y + 2 u l1,α (I), A := K F several iterative methods available: (a) the GPSR-algorithm (b) the l 1 l s algorithm, (c) FISTA (fast iterative soft-thresholding algorithm) (d) LARS...

7 The Problem: equivalent formulation: F u := λ I u λ ψ λ, u l 2 (I) J(u) := J α (u) = (K F )u y 2 Y + 2 u l1,α (I), A := K F several iterative methods available: (a) the GPSR-algorithm (b) the l 1 l s algorithm, (c) FISTA (fast iterative soft-thresholding algorithm) (d) LARS...

8 The Approach: Iterated Soft- Algorithm (ISTA) [Daubechies/DeFrise/DeMol] and others... u (n+1) = S α [u (n) + A y A Au (n)], x τ x > τ S τ (x) = 0 x τ x + τ x < τ ( S α (a) = arg min u a 2 ) + 2 u 1,α u l 2 (I)

9 Problems... slow convergence: The path in the x 1 vs. Kx y 2 plane Acceleration by: decreasing thresholding parameters adaptivity multilevel preconditioning

10 Outline

11 : decreasing iterative soft-thresholding algorithm (D-ISTA): u (n+1) ( = S α (n) u (n) + A (y Au (n) ) ), α (n) λ α λ Restricted Isometry Property (RIP): (1 γ k ) u Λ 2 l 2 A Λ u Λ Y (1 + γ k ) u Λ 2 l 2, for all Λ {1,..., N} with #Λ k Theorem The following conditions are equivalent: (i) A has RIP property (ii) A A Λ Λ is positive definite, eigenvalues in [1 γ k, 1 + γ k ], for all Λ {1,..., N} with #Λ k; (iii) (I A A) Λ Λ γ k, for all Λ {1,..., N} with #Λ k.

12 It works... Theorem Let ū := (I A A)u + A y l w τ (I), 0 < τ < 2. Moreover, let L := 4 u 2 l 2 (I) + 4C ū τ ᾱ 2 l w τ (I)ᾱ τ. RIP of order 2L + #suppu with γ 0 < 1 satisfied. Whenever for γ 0 γ < 1 α λ α (n) λ α λ + (γ γ 0 )L 1/2 ɛ n, for all λ Λ, then #supp u (n) L and u u (n) l2 (I) γ n u l2 (I) =: ɛ n

13 A Comparison: log 10 ( A u n y 2 2 ) Dynamics of the algorithms u n 1 ISTA D ISTA Sparse minimizer u * and approximations due to the algorithms ISTA D ISTA u * Error with respect to the minimizer of J ISTA D ISTA Dynamics of the support sizes of the approximations to u * due to the algorithms 3.5 ISTA 3 D ISTA u * log 10 ( u n u * 2 ) log 10 ( u n 0 ) Number of iterations Number of iterations A : matrix with i.i.d. Gaussian entries, α = 10 3, γ 0 = 0.1 and γ = 0.95.

14 Outline

15 : Typical application: A solution operator of an operator equation Problem: D-ISTA not directly implementable! We need suitable approximations! Use adaptive strategies.

16 : Typical application: A solution operator of an operator equation Problem: D-ISTA not directly implementable! We need suitable approximations! Use adaptive strategies.

17 : Typical application: A solution operator of an operator equation Problem: D-ISTA not directly implementable! We need suitable approximations! Use adaptive strategies.

18 : Typical application: A solution operator of an operator equation Problem: D-ISTA not directly implementable! We need suitable approximations! Use adaptive strategies.

19 Building Blocks: RHS[g, ε] g ε : determines finitely supported g ε s.t. g g ε l2 (I) ε; APPLY[N, v, ε] w ε : determines finitely supported w ε s.t Nv w ε l2 (I) ε; Realization: [Cohen/Dahmen/DeVore] Implementable algorithm A-ISTA: ũ (n+1) = S (ũ(n) α (n) +RHS[A y, δ n ] APPLY[A A, ũ (n), γ n ] )

20 It works... Theorem Technical assumptions (RIP etc.) If δ n = γ n = ɛ n+1 2ρ, ɛ n = γ n u l2 (I), 0 < γ 0 γ < γ < 1, α (n) are chosen according to α λ α (n) λ α λ + (γ γ 0 )L 1/2 ɛ n, then the iterates of A-ISTA fulfill #supp ũ (n) L and u ũ (n) l2 (I) ɛ n.

21 Outline

22 : How can RIP be guaranteed?! X L 2 (Ω) X, Ψ = {ψ λ } λ I Assumptions: wavelet basis K : X L 2 (Ω), K 2 s λ µ 2 σ( λ + µ ) Kψ λ, ψ µ c 1 ( min( λ, µ ) dist(ω µ, Ω λ ) ) r For µ = λ For µ = λ K Kψ λ, ψ λ c 2 2 2σ λ K Kψ λ, ψ µ c 3 2 2σ λ (1 + k k ) r

23 Theorem Let A A = F K KF = ( K Kψ λ, ψ µ ) λ,µ I. Let Dj b = ( K Kψ λ, ψ µ ) λ = µ =j be the diagonal block of A A for refinement level j, D b = (D0 b, Db 1,...). Then (I (D b ) 1/2 A A(D b ) 1/2 ) Λ Λ < C2 s Λ and K((D b ) 1/2 A A (D b ) 1/2 Λ Λ ) 1 + C 2 s Λ 1 C 2 s Λ. increase of s = larger sets Λ (D b ) 1/2 A A (D b ) 1/2 not globally well-conditioned! in practice: diagonal preconditioning works well!

24 Theorem Let A A = F K KF = ( K Kψ λ, ψ µ ) λ,µ I. Let Dj b = ( K Kψ λ, ψ µ ) λ = µ =j be the diagonal block of A A for refinement level j, D b = (D0 b, Db 1,...). Then (I (D b ) 1/2 A A(D b ) 1/2 ) Λ Λ < C2 s Λ and K((D b ) 1/2 A A (D b ) 1/2 Λ Λ ) 1 + C 2 s Λ 1 C 2 s Λ. increase of s = larger sets Λ (D b ) 1/2 A A (D b ) 1/2 not globally well-conditioned! in practice: diagonal preconditioning works well!

25 Theorem Let A A = F K KF = ( K Kψ λ, ψ µ ) λ,µ I. Let Dj b = ( K Kψ λ, ψ µ ) λ = µ =j be the diagonal block of A A for refinement level j, D b = (D0 b, Db 1,...). Then (I (D b ) 1/2 A A(D b ) 1/2 ) Λ Λ < C2 s Λ and K((D b ) 1/2 A A (D b ) 1/2 Λ Λ ) 1 + C 2 s Λ 1 C 2 s Λ. increase of s = larger sets Λ (D b ) 1/2 A A (D b ) 1/2 not globally well-conditioned! in practice: diagonal preconditioning works well!

26 Examples: integral operators with Schwartz kernels Ku(x) = Φ(x, ξ)u(ξ)dξ, x Ω, Ω Ω, Ω R d, dist(ω, Ω) = δ > 0, u X := H t (Ω) Φ : Ω Ω α x β ξ Φ(x, ξ) c α,β x ξ (d+2t+ α + β )

27 Magnetic Tomography: Current Sensor Biot-Savart operator: B(x, j) = µ 0 j(ξ) (x ξ) 4π Ω x ξ 3 dξ = Φ(x, ξ) = µ 0 1 4π x ξ, x ξ j := current density Ω [ x Φ(x, ξ)] j(ξ)dξ

28 Outline

29 : Volterra integral operator K : L 2 (0, 1) L 2 (0, 1), Ku(t) = u(x) = t 0 u(s) ds, K Ku(t) = 1 24x + 1, 0 x < x , 16 x < x , 1 2 x < , otherwise 0 ( 1 max(s, t) ) u(s) ds level j k

30 : no prec. diag. prec. b. diag. prec. cond 2 (A T * AT ) #random columns

31 Linear Convergence: l 2 errors, alpha=1e-05, alphaprec=1e-05, gamma=0.99, eta=0.1 ISTA P-ISTA D-ISTA PD-ISTA l 2 error 1e-06 1e-08 1e-10 1e iteration

32 Linear Convergence: l 2 errors, alpha=1e-06, alphaprec=1e-06, gamma=0.99, eta=0.1 ISTA P-ISTA D-ISTA PD-ISTA l 2 error iteration

33 Support Dynamics: active coefficients, alpha=1e-06, alphaprec=1e-06, gamma=0.99, eta=0.1 ISTA P-ISTA D-ISTA PD-ISTA active coefficients iteration

34 Outline

35 : treatment of inverse problems, minimization of associated functionals thresholding algorithms Adaptive strategies experiments

36 : treatment of inverse problems, minimization of associated functionals thresholding algorithms Adaptive strategies experiments

37 : treatment of inverse problems, minimization of associated functionals thresholding algorithms Adaptive strategies experiments

38 : treatment of inverse problems, minimization of associated functionals thresholding algorithms Adaptive strategies experiments

39 : treatment of inverse problems, minimization of associated functionals thresholding algorithms Adaptive strategies experiments

40 Reformulation after : Observe that: J(u) = Au y 2 Y + 2α u l1 (I) = AD 1/2 D} 1/2 {{ u} y 2 Y + 2α D 1/2 D} 1/2 {{ u} :=z :=z l1 (I) = AD 1/2 z y 2 Y + 2α D 1/2 z l1 (I) := J D (z). Hence, ( ) argmin u l2 (I)J(u) = D 1/2 argmin z D 1/2 l 2 (I) J D (z).

41 Adptivity helps again... to control the supports of the iterands! Theorem We define z := z + (D 1/2 A y D 1/2 A AD 1/2 z ) l 2 (I) and Λ δ ( z) = {λ : δ < z λ + (D 1/2 A y D 1/2 A AD 1/2 z ) λ }, We set Λ = N n=0λ (n) supp z Λ δ ( z), Λ (n) = supp ( z (n) ), where N N is such that z z (N) ɛ N ε, Then for δ(ɛ) sufficiently small Λ (n) Λ, for all n 0.

DFG-Schwerpunktprogramm 1324

DFG-Schwerpunktprogramm 1324 DFG-Schwerpunktprogramm 1324 Extraktion quantifizierbarer Information aus komplexen Systemen Multilevel preconditioning for sparse optimization of functionals with nonconvex fidelity terms S. Dahlke, M.

More information

An Introduction to Sparse Recovery (and Compressed Sensing)

An Introduction to Sparse Recovery (and Compressed Sensing) An Introduction to Sparse Recovery (and Compressed Sensing) Massimo Fornasier Department of Mathematics massimo.fornasier@ma.tum.de http://www-m15.ma.tum.de/ CoSeRa 2016 RWTH - Aachen September 19, 2016

More information

Schemes. Philipp Keding AT15, San Antonio, TX. Quarklet Frames in Adaptive Numerical. Schemes. Philipp Keding. Philipps-University Marburg

Schemes. Philipp Keding AT15, San Antonio, TX. Quarklet Frames in Adaptive Numerical. Schemes. Philipp Keding. Philipps-University Marburg AT15, San Antonio, TX 5-23-2016 Joint work with Stephan Dahlke and Thorsten Raasch Let H be a Hilbert space with its dual H. We are interested in the solution u H of the operator equation Lu = f, with

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Besov regularity for operator equations on patchwise smooth manifolds

Besov regularity for operator equations on patchwise smooth manifolds on patchwise smooth manifolds Markus Weimar Philipps-University Marburg Joint work with Stephan Dahlke (PU Marburg) Mecklenburger Workshop Approximationsmethoden und schnelle Algorithmen Hasenwinkel, March

More information

Exponential decay of reconstruction error from binary measurements of sparse signals

Exponential decay of reconstruction error from binary measurements of sparse signals Exponential decay of reconstruction error from binary measurements of sparse signals Deanna Needell Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters Outline Introduction Mathematical Formulation

More information

Sparsity Regularization

Sparsity Regularization Sparsity Regularization Bangti Jin Course Inverse Problems & Imaging 1 / 41 Outline 1 Motivation: sparsity? 2 Mathematical preliminaries 3 l 1 solvers 2 / 41 problem setup finite-dimensional formulation

More information

On the coherence barrier and analogue problems in compressed sensing

On the coherence barrier and analogue problems in compressed sensing On the coherence barrier and analogue problems in compressed sensing Clarice Poon University of Cambridge June 1, 2017 Joint work with: Ben Adcock Anders Hansen Bogdan Roman (Simon Fraser) (Cambridge)

More information

Variational Image Restoration

Variational Image Restoration Variational Image Restoration Yuling Jiao yljiaostatistics@znufe.edu.cn School of and Statistics and Mathematics ZNUFE Dec 30, 2014 Outline 1 1 Classical Variational Restoration Models and Algorithms 1.1

More information

Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements

Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Wolfgang Dahmen Institut für Geometrie und Praktische Mathematik RWTH Aachen and IMI, University of Columbia, SC

More information

Vast Volatility Matrix Estimation for High Frequency Data

Vast Volatility Matrix Estimation for High Frequency Data Vast Volatility Matrix Estimation for High Frequency Data Yazhen Wang National Science Foundation Yale Workshop, May 14-17, 2009 Disclaimer: My opinion, not the views of NSF Y. Wang (at NSF) 1 / 36 Outline

More information

Computation of operators in wavelet coordinates

Computation of operators in wavelet coordinates Computation of operators in wavelet coordinates Tsogtgerel Gantumur and Rob Stevenson Department of Mathematics Utrecht University Tsogtgerel Gantumur - Computation of operators in wavelet coordinates

More information

Linear convergence of iterative soft-thresholding

Linear convergence of iterative soft-thresholding arxiv:0709.1598v3 [math.fa] 11 Dec 007 Linear convergence of iterative soft-thresholding Kristian Bredies and Dirk A. Lorenz ABSTRACT. In this article, the convergence of the often used iterative softthresholding

More information

Bayesian Models for Regularization in Optimization

Bayesian Models for Regularization in Optimization Bayesian Models for Regularization in Optimization Aleksandr Aravkin, UBC Bradley Bell, UW Alessandro Chiuso, Padova Michael Friedlander, UBC Gianluigi Pilloneto, Padova Jim Burke, UW MOPTA, Lehigh University,

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Fast Multipole BEM for Structural Acoustics Simulation

Fast Multipole BEM for Structural Acoustics Simulation Fast Boundary Element Methods in Industrial Applications Fast Multipole BEM for Structural Acoustics Simulation Matthias Fischer and Lothar Gaul Institut A für Mechanik, Universität Stuttgart, Germany

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 57 Table of Contents 1 Sparse linear models Basis Pursuit and restricted null space property Sufficient conditions for RNS 2 / 57

More information

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications Class 19: Data Representation by Design What is data representation? Let X be a data-space X M (M) F (M) X A data representation

More information

Convergence of Particle Filtering Method for Nonlinear Estimation of Vortex Dynamics

Convergence of Particle Filtering Method for Nonlinear Estimation of Vortex Dynamics Convergence of Particle Filtering Method for Nonlinear Estimation of Vortex Dynamics Meng Xu Department of Mathematics University of Wyoming February 20, 2010 Outline 1 Nonlinear Filtering Stochastic Vortex

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Approximate Message Passing Algorithms

Approximate Message Passing Algorithms November 4, 2017 Outline AMP (Donoho et al., 2009, 2010a) Motivations Derivations from a message-passing perspective Limitations Extensions Generalized Approximate Message Passing (GAMP) (Rangan, 2011)

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 26, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 55 High dimensional

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam

More information

44 CHAPTER 3. CAVITY SCATTERING

44 CHAPTER 3. CAVITY SCATTERING 44 CHAPTER 3. CAVITY SCATTERING For the TE polarization case, the incident wave has the electric field parallel to the x 3 -axis, which is also the infinite axis of the aperture. Since both the incident

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 14: The Power Function and Native Space Error Estimates Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via convex relaxations Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Tensor Sparsity and Near-Minimal Rank Approximation for High-Dimensional PDEs

Tensor Sparsity and Near-Minimal Rank Approximation for High-Dimensional PDEs Tensor Sparsity and Near-Minimal Rank Approximation for High-Dimensional PDEs Wolfgang Dahmen, RWTH Aachen Collaborators: Markus Bachmayr, Ron DeVore, Lars Grasedyck, Endre Süli Paris, Oct.11, 2013 W.

More information

Besov Regularity and Approximation of a Certain Class of Random Fields

Besov Regularity and Approximation of a Certain Class of Random Fields Besov Regularity and Approximation of a Certain Class of Random Fields Nicolas Döhring (TU Kaiserslautern) joint work with F. Lindner, R. Schilling (TU Dresden), K. Ritter (TU Kaiserslautern), T. Raasch

More information

Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids

Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids Suboptimal feedback control of PDEs by solving Hamilton-Jacobi Bellman equations on sparse grids Jochen Garcke joint work with Axel Kröner, INRIA Saclay and CMAP, Ecole Polytechnique Ilja Kalmykov, Universität

More information

High Dimensional Covariance and Precision Matrix Estimation

High Dimensional Covariance and Precision Matrix Estimation High Dimensional Covariance and Precision Matrix Estimation Wei Wang Washington University in St. Louis Thursday 23 rd February, 2017 Wei Wang (Washington University in St. Louis) High Dimensional Covariance

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 23, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 47 High dimensional

More information

Analysis of Greedy Algorithms

Analysis of Greedy Algorithms Analysis of Greedy Algorithms Jiahui Shen Florida State University Oct.26th Outline Introduction Regularity condition Analysis on orthogonal matching pursuit Analysis on forward-backward greedy algorithm

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

Sparse Legendre expansions via l 1 minimization

Sparse Legendre expansions via l 1 minimization Sparse Legendre expansions via l 1 minimization Rachel Ward, Courant Institute, NYU Joint work with Holger Rauhut, Hausdorff Center for Mathematics, Bonn, Germany. June 8, 2010 Outline Sparse recovery

More information

Course and Wavelets and Filter Banks

Course and Wavelets and Filter Banks Course 18.327 and 1.130 Wavelets and Filter Bans Numerical solution of PDEs: Galerin approximation; wavelet integrals (projection coefficients, moments and connection coefficients); convergence Numerical

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector

Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector Primal Dual Pursuit A Homotopy based Algorithm for the Dantzig Selector Muhammad Salman Asif Thesis Committee: Justin Romberg (Advisor), James McClellan, Russell Mersereau School of Electrical and Computer

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

The Sparsity and Bias of The LASSO Selection In High-Dimensional Linear Regression

The Sparsity and Bias of The LASSO Selection In High-Dimensional Linear Regression The Sparsity and Bias of The LASSO Selection In High-Dimensional Linear Regression Cun-hui Zhang and Jian Huang Presenter: Quefeng Li Feb. 26, 2010 un-hui Zhang and Jian Huang Presenter: Quefeng The Sparsity

More information

A orthonormal basis for Radial Basis Function approximation

A orthonormal basis for Radial Basis Function approximation A orthonormal basis for Radial Basis Function approximation 9th ISAAC Congress Krakow, August 5-9, 2013 Gabriele Santin, joint work with S. De Marchi Department of Mathematics. Doctoral School in Mathematical

More information

Nonparametric Inference In Functional Data

Nonparametric Inference In Functional Data Nonparametric Inference In Functional Data Zuofeng Shang Purdue University Joint work with Guang Cheng from Purdue Univ. An Example Consider the functional linear model: Y = α + where 1 0 X(t)β(t)dt +

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

Proximal Methods for Optimization with Spasity-inducing Norms

Proximal Methods for Optimization with Spasity-inducing Norms Proximal Methods for Optimization with Spasity-inducing Norms Group Learning Presentation Xiaowei Zhou Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

DFG-Schwerpunktprogramm 1324

DFG-Schwerpunktprogramm 1324 DFG-Schwerpunktprogramm 1324 Extraktion quantifizierbarer Information aus komplexen Systemen Adaptive Wavelet Methods for Elliptic Stochastic Partial Differential Equations P. A. Cioica, S. Dahlke, N.

More information

Optimization for Compressed Sensing

Optimization for Compressed Sensing Optimization for Compressed Sensing Robert J. Vanderbei 2014 March 21 Dept. of Industrial & Systems Engineering University of Florida http://www.princeton.edu/ rvdb Lasso Regression The problem is to solve

More information

A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring

A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring Marco Donatelli Dept. of Science and High Tecnology U. Insubria (Italy) Joint work with M. Hanke

More information

III. Iterative Monte Carlo Methods for Linear Equations

III. Iterative Monte Carlo Methods for Linear Equations III. Iterative Monte Carlo Methods for Linear Equations In general, Monte Carlo numerical algorithms may be divided into two classes direct algorithms and iterative algorithms. The direct algorithms provide

More information

Diffuison processes on CR-manifolds

Diffuison processes on CR-manifolds Diffuison processes on CR-manifolds Setsuo TANIGUCHI Faculty of Arts and Science, Kyushu University September 5, 2014 Setsuo TANIGUCHI (Kyushu Univ) CR-Browninan motion September 5, 2014 1 / 16 Introduction

More information

Theory and applications of time-frequency analysis

Theory and applications of time-frequency analysis Theory and applications of time-frequency analysis Ville Turunen (ville.turunen@aalto.fi) Abstract: When and how often something happens in a signal? By properly quantizing these questions, we obtain the

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

Errata. Updated as of June 13, (η(u)φt. + q(u)φ x + εη(u)φ xx. 2 for x < 3t/2+3x 1 2x 2, u(x, t) = 1 for x 3t/2+3x 1 2x 2.

Errata. Updated as of June 13, (η(u)φt. + q(u)φ x + εη(u)φ xx. 2 for x < 3t/2+3x 1 2x 2, u(x, t) = 1 for x 3t/2+3x 1 2x 2. Errata H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws Applied Mathematical Sciences, volume 3, Springer Verlag, New York, 00 Updated as of June 3, 007 Changes appear in red.

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

Generalized greedy algorithms.

Generalized greedy algorithms. Generalized greedy algorithms. François-Xavier Dupé & Sandrine Anthoine LIF & I2M Aix-Marseille Université - CNRS - Ecole Centrale Marseille, Marseille ANR Greta Séminaire Parisien des Mathématiques Appliquées

More information

Elaine T. Hale, Wotao Yin, Yin Zhang

Elaine T. Hale, Wotao Yin, Yin Zhang , Wotao Yin, Yin Zhang Department of Computational and Applied Mathematics Rice University McMaster University, ICCOPT II-MOPTA 2007 August 13, 2007 1 with Noise 2 3 4 1 with Noise 2 3 4 1 with Noise 2

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Stochastic geometry and random matrix theory in CS

Stochastic geometry and random matrix theory in CS Stochastic geometry and random matrix theory in CS IPAM: numerical methods for continuous optimization University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho Encoder Decoder pair - Encoder/Decoder

More information

Iterative methods for positive definite linear systems with a complex shift

Iterative methods for positive definite linear systems with a complex shift Iterative methods for positive definite linear systems with a complex shift William McLean, University of New South Wales Vidar Thomée, Chalmers University November 4, 2011 Outline 1. Numerical solution

More information

Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices

Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices Dimensionality reduction: Johnson-Lindenstrauss lemma for structured random matrices Jan Vybíral Austrian Academy of Sciences RICAM, Linz, Austria January 2011 MPI Leipzig, Germany joint work with Aicke

More information

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization Panos Parpas Department of Computing Imperial College London www.doc.ic.ac.uk/ pp500 p.parpas@imperial.ac.uk jointly with D.V.

More information

A Unified Formulation of Gaussian Versus Sparse Stochastic Processes

A Unified Formulation of Gaussian Versus Sparse Stochastic Processes A Unified Formulation of Gaussian Versus Sparse Stochastic Processes Michael Unser, Pouya Tafti and Qiyu Sun EPFL, UCF Appears in IEEE Trans. on Information Theory, 2014 Presented by Liming Wang M. Unser,

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Optimization Algorithms for Compressed Sensing

Optimization Algorithms for Compressed Sensing Optimization Algorithms for Compressed Sensing Stephen Wright University of Wisconsin-Madison SIAM Gator Student Conference, Gainesville, March 2009 Stephen Wright (UW-Madison) Optimization and Compressed

More information

Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery

Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery Department of Mathematics & Risk Management Institute National University of Singapore (Based on a joint work with Shujun

More information

Regularization and Inverse Problems

Regularization and Inverse Problems Regularization and Inverse Problems Caroline Sieger Host Institution: Universität Bremen Home Institution: Clemson University August 5, 2009 Caroline Sieger (Bremen and Clemson) Regularization and Inverse

More information

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Vicente L. Malave February 23, 2011 Outline Notation minimize a number of functions φ

More information

Random Coding for Fast Forward Modeling

Random Coding for Fast Forward Modeling Random Coding for Fast Forward Modeling Justin Romberg with William Mantzel, Salman Asif, Karim Sabra, Ramesh Neelamani Georgia Tech, School of ECE Workshop on Sparsity and Computation June 11, 2010 Bonn,

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

Cache Oblivious Stencil Computations

Cache Oblivious Stencil Computations Cache Oblivious Stencil Computations S. HUNOLD J. L. TRÄFF F. VERSACI Lectures on High Performance Computing 13 April 2015 F. Versaci (TU Wien) Cache Oblivious Stencil Computations 13 April 2015 1 / 19

More information

Automatic Relevance Determination

Automatic Relevance Determination Automatic Relevance Determination Elia Liitiäinen (eliitiai@cc.hut.fi) Time Series Prediction Group Adaptive Informatics Research Centre Helsinki University of Technology, Finland October 24, 2006 Introduction

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Chapter 7: Bounded Operators in Hilbert Spaces

Chapter 7: Bounded Operators in Hilbert Spaces Chapter 7: Bounded Operators in Hilbert Spaces I-Liang Chern Department of Applied Mathematics National Chiao Tung University and Department of Mathematics National Taiwan University Fall, 2013 1 / 84

More information

A Linearly Convergent First-order Algorithm for Total Variation Minimization in Image Processing

A Linearly Convergent First-order Algorithm for Total Variation Minimization in Image Processing A Linearly Convergent First-order Algorithm for Total Variation Minimization in Image Processing Cong D. Dang Kaiyu Dai Guanghui Lan October 9, 0 Abstract We introduce a new formulation for total variation

More information

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications Class 08: Sparsity Based Regularization Lorenzo Rosasco Learning algorithms so far ERM + explicit l 2 penalty 1 min w R d n n l(y

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Bayesian Regularization

Bayesian Regularization Bayesian Regularization Aad van der Vaart Vrije Universiteit Amsterdam International Congress of Mathematicians Hyderabad, August 2010 Contents Introduction Abstract result Gaussian process priors Co-authors

More information

Inexact Alternating Direction Method of Multipliers for Separable Convex Optimization

Inexact Alternating Direction Method of Multipliers for Separable Convex Optimization Inexact Alternating Direction Method of Multipliers for Separable Convex Optimization Hongchao Zhang hozhang@math.lsu.edu Department of Mathematics Center for Computation and Technology Louisiana State

More information

Iterative Projection Methods

Iterative Projection Methods Iterative Projection Methods for noisy and corrupted systems of linear equations Deanna Needell February 1, 2018 Mathematics UCLA joint with Jamie Haddock and Jesús De Loera https://arxiv.org/abs/1605.01418

More information

Math 46, Applied Math (Spring 2008): Final

Math 46, Applied Math (Spring 2008): Final Math 46, Applied Math (Spring 2008): Final 3 hours, 80 points total, 9 questions, roughly in syllabus order (apart from short answers) 1. [16 points. Note part c, worth 7 points, is independent of the

More information

Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice

Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice 1 Lecture Notes, HCI, 4.1.211 Chapter 2 Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice Bastian Goldlücke Computer Vision Group Technical University of Munich 2 Bastian

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Continuous Frames and Sampling

Continuous Frames and Sampling NuHAG University of Vienna, Faculty for Mathematics Marie Curie Fellow within the European network HASSIP HPRN-CT-2002-285 SampTA05, Samsun July 2005 Joint work with Massimo Fornasier Overview 1 Continuous

More information

Risk Averse Shape Optimization

Risk Averse Shape Optimization Risk Averse Shape Optimization Sergio Conti 2 Martin Pach 1 Martin Rumpf 2 Rüdiger Schultz 1 1 Department of Mathematics University Duisburg-Essen 2 Rheinische Friedrich-Wilhelms-Universität Bonn Workshop

More information

Solving Corrupted Quadratic Equations, Provably

Solving Corrupted Quadratic Equations, Provably Solving Corrupted Quadratic Equations, Provably Yuejie Chi London Workshop on Sparse Signal Processing September 206 Acknowledgement Joint work with Yuanxin Li (OSU), Huishuai Zhuang (Syracuse) and Yingbin

More information

ON PROJECTIVE METHODS OF APPROXIMATE SOLUTION OF SINGULAR INTEGRAL EQUATIONS. Introduction Let us consider an operator equation of second kind [1]

ON PROJECTIVE METHODS OF APPROXIMATE SOLUTION OF SINGULAR INTEGRAL EQUATIONS. Introduction Let us consider an operator equation of second kind [1] GEORGIAN MATHEMATICAL JOURNAL: Vol. 3, No. 5, 1996, 457-474 ON PROJECTIVE METHODS OF APPROXIMATE SOLUTION OF SINGULAR INTEGRAL EQUATIONS A. JISHKARIANI AND G. KHVEDELIDZE Abstract. The estimate for the

More information

Velocity averaging a general framework

Velocity averaging a general framework Outline Velocity averaging a general framework Martin Lazar BCAM ERC-NUMERIWAVES Seminar May 15, 2013 Joint work with D. Mitrović, University of Montenegro, Montenegro Outline Outline 1 2 L p, p >= 2 setting

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Compressed Sensing via Partial l 1 Minimization

Compressed Sensing via Partial l 1 Minimization WORCESTER POLYTECHNIC INSTITUTE Compressed Sensing via Partial l 1 Minimization by Lu Zhong A thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements

More information

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp CoSaMP Iterative signal recovery from incomplete and inaccurate samples Joel A. Tropp Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu Joint with D. Needell

More information

Uncertainty principles for far field patterns and applications to inverse source problems

Uncertainty principles for far field patterns and applications to inverse source problems for far field patterns and applications to inverse source problems roland.griesmaier@uni-wuerzburg.de (joint work with J. Sylvester) Paris, September 17 Outline Source problems and far field patterns AregularizedPicardcriterion

More information

SPARSE SIGNAL RESTORATION. 1. Introduction

SPARSE SIGNAL RESTORATION. 1. Introduction SPARSE SIGNAL RESTORATION IVAN W. SELESNICK 1. Introduction These notes describe an approach for the restoration of degraded signals using sparsity. This approach, which has become quite popular, is useful

More information

FRAMES AND TIME-FREQUENCY ANALYSIS

FRAMES AND TIME-FREQUENCY ANALYSIS FRAMES AND TIME-FREQUENCY ANALYSIS LECTURE 5: MODULATION SPACES AND APPLICATIONS Christopher Heil Georgia Tech heil@math.gatech.edu http://www.math.gatech.edu/ heil READING For background on Banach spaces,

More information

Multiple Change Point Detection by Sparse Parameter Estimation

Multiple Change Point Detection by Sparse Parameter Estimation Multiple Change Point Detection by Sparse Parameter Estimation Department of Econometrics Fac. of Economics and Management University of Defence Brno, Czech Republic Dept. of Appl. Math. and Comp. Sci.

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Uncertainty quantification for sparse solutions of random PDEs

Uncertainty quantification for sparse solutions of random PDEs Uncertainty quantification for sparse solutions of random PDEs L. Mathelin 1 K.A. Gallivan 2 1 LIMSI - CNRS Orsay, France 2 Mathematics Dpt., Florida State University Tallahassee, FL, USA SIAM 10 July

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information