Proximal Methods for Optimization with Spasity-inducing Norms

Size: px
Start display at page:

Download "Proximal Methods for Optimization with Spasity-inducing Norms"

Transcription

1 Proximal Methods for Optimization with Spasity-inducing Norms Group Learning Presentation Xiaowei Zhou Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology Xiaowei Zhou (HKUST) Proximal Methods Group Learning 1 / 28

2 Outline 1 Background 2 Proximal Methods Overview Convergence Computation of Proximal Operator 3 ProxFlow algorithm for group-sparsity 4 Discussion Xiaowei Zhou (HKUST) Proximal Methods Group Learning 2 / 28

3 Problem Setting min w R p f (w) }{{} data fitting + λω(w) }{{}. (1) sparsity inducing f : R p R is convex differentiable Ω : R p R is convex but nonsmooth l 1 -norm : w 1 p w j j=1 l 1 /l q -norm : w l1 /l q g G η g w g q nuclear norm : w r j=1 σ j Xiaowei Zhou (HKUST) Proximal Methods Group Learning 3 / 28

4 Generic Methods Generic convex optimization methods: Subgradient descent w t+1 = w t α(s + λs ), where s f (w t ), s Ω(w t ) Reformulation as standard solvable convex programs (LP, QP, SOCP, SDP), e.g. Lasso can be formulated as: 1 min w +,w R p 2 y Xw + Xw 2 + λ(1 T w T w ) (2) + General-purpose toolboxes can be used (e.g. CVX). Blind to problem structure, tend to be slow and memory-consuming. Xiaowei Zhou (HKUST) Proximal Methods Group Learning 4 / 28

5 Outline 1 Background 2 Proximal Methods Overview Convergence Computation of Proximal Operator 3 ProxFlow algorithm for group-sparsity 4 Discussion Xiaowei Zhou (HKUST) Proximal Methods Group Learning 5 / 28

6 Proximal methods In proximal methods, (1) is optimized by iteratively solving the following problem: min f (w 0 ) + (w w 0 ) f (w 0 ) w R p }{{} linearization of f (w) +λω(w) + L 2 w w }{{}. (3) augmented term The first two terms linearly expand f at w 0. The last term keeps the solution in a neighborhood where the current linear approximation holds. L > 0 is an upper bound on the Lipschitz constant of f. Xiaowei Zhou (HKUST) Proximal Methods Group Learning 6 / 28

7 Proximal Operator Definition: Proximal Operator The proximal operator associated with the regularization λω is defined as the function that maps a vector u in R p onto the unique solution of: The operator is usually denoted as Prox λω (u) Example: 1 min v R p 2 u v λω(v), (4) When Ω is the l 1 -norm, the proximal operator is the well-known elementwise soft-thresholding operator: { 0 if u j λ j [1,, p], u j sign(u j )( u j λ) + = sign(u j )( u j λ) otherwise. Xiaowei Zhou (HKUST) Proximal Methods Group Learning 7 / 28

8 Algorithm Since (3) can be rewritten as: 1 min w R p 2 w (w 0 1 L f (w 0)) λ Ω(w), (5) L the proximal method can be written as: Algorithm 1: proximal method to solve (1) repeat w prox λ Ω(w 1 L f (w)) L until Convergence Remark. If λ = 0, it turns to be Gradient Descent. Questions: 1 How to compute the proximal operator? 2 How about the convergence of the algorithm? Xiaowei Zhou (HKUST) Proximal Methods Group Learning 8 / 28

9 Outline 1 Background 2 Proximal Methods Overview Convergence Computation of Proximal Operator 3 ProxFlow algorithm for group-sparsity 4 Discussion Xiaowei Zhou (HKUST) Proximal Methods Group Learning 9 / 28

10 Assumption We assume that f has Lipschitz continuous gradient: f (w) f (v) L w v. (6) Remark: It means the change of function gradient is upper-bounded. Lemma The above condition is equivalent to f (w) f (v)+ < f (v), w v > + L 2 w v 2. (7) Xiaowei Zhou (HKUST) Proximal Methods Group Learning 10 / 28

11 Two lemma Following two are important to the proof of convergence: Lemma (Sandwich) If F(w; v) is the linear approximation of F(w) = f (w) + λω(w) in v, w.r.t. f (w), that is F(w; v) = f (v) + f (v), w v + λω(w), then: F(w) F(w; v) + L 2 w v 2 F(w) + L 2 w v 2. (8) Lemma (3-point property) If ŵ = argmin w 1 2 w w φ(w), then for any w: φ(ŵ) ŵ w 0 2 φ(w) w w w ŵ 2. (9) Xiaowei Zhou (HKUST) Proximal Methods Group Learning 11 / 28

12 Proof of the convergence rate I F(w t ) is monotone non-increasing for t = 0,, T : F(w t+1 ) F(w t+1 ; w t ) + L 2 w t+1 w t 2 F(w t ; w t ) + L 2 w t w t 2 = F(w t ) Sandwich-left Definition Also, we have F (w t+1 ) F(w t+1 ; w t ) + L 2 w t+1 w t 2 F(w ; w t ) + L 2 w w t 2 L 2 w w t+1 2 F(w ) + L 2 w w t 2 L 2 w w t+1 2 Sandwich-left 3-point property Sandwich-right Xiaowei Zhou (HKUST) Proximal Methods Group Learning 12 / 28

13 Proof of the convergence rate II Define ɛ t = F(w t ) F(w ), so that ɛ t+1 L 2 w w t 2 L 2 w w t+1 2 T 1 T ɛ t ɛ t+1 L 2 w w 0 2 L 2 w w t 2 L 2 w w 0 2 t=0 ɛ t L w w 0 2 2T (10) At iteration T, Algorithm 1 yields a solution w T that satisfies: F(w T ) F(w ) L w w T Algorithm 1 has a convergence rate of O(1/T ). Xiaowei Zhou (HKUST) Proximal Methods Group Learning 13 / 28

14 Outline 1 Background 2 Proximal Methods Overview Convergence Computation of Proximal Operator 3 ProxFlow algorithm for group-sparsity 4 Discussion Xiaowei Zhou (HKUST) Proximal Methods Group Learning 14 / 28

15 Dual norm Definition: Dual Norm The dual norm Ω of the norm Ω is defined by: Examples: l 2 -norm is self-dual l 1 -norm is dual to l -norm Ω (z) = max w R p zt w, s.t. Ω(w) 1 (11) Xiaowei Zhou (HKUST) Proximal Methods Group Learning 15 / 28

16 Dual proximal operator Dual proximal operator: In the case where Ω is a norm, the following problem is dual to the proximal problem in (4): max v R p 1 2 v u 2 + u 2, s.t. Ω (v) λ. (12) Let Proj Ω λ be the projector on the ball of radius λ associated with Ω, then Proj Ω λ(u) is the unique solution to the problem (12) and it has the following relation with Prox λω : Prox λω = I Proj Ω λ (13) Xiaowei Zhou (HKUST) Proximal Methods Group Learning 16 / 28

17 Proof: conic duality Definition: Dual Cone Assume K is a convex cone, the dual cone K is defined as: Primal: Lagrangian: K = {z R p : z T x 0, x K } min x f (x), s.t. Ax + b K 0 Dual: L(x, λ) = f (x) + λ T (Ax + b), λ K max λ inf L(x, λ), s.t. x λ K Xiaowei Zhou (HKUST) Proximal Methods Group Learning 17 / 28

18 Typical examples When Ω is the l 1 -norm, the solution is: u u Proj. λ(u), which gives the elementwise soft-thresholding: j [1,, p], u j sign(u j )( u j λ) +. When Ω is the l 1 /l 2 -norm with nonoverlapping groups, the proximal problem is separable in every group, and the solution is a group-thresholding operator: { 0 if u g 2 λ g G, u g u g Proj. 2 λ(u g ) = u g 2 λ u g 2 u g otherwise, Xiaowei Zhou (HKUST) Proximal Methods Group Learning 18 / 28

19 Outline 1 Background 2 Proximal Methods Overview Convergence Computation of Proximal Operator 3 ProxFlow algorithm for group-sparsity 4 Discussion Xiaowei Zhou (HKUST) Proximal Methods Group Learning 19 / 28

20 Duality of the proximal problem with group-sparsity The following two problems are dual: P : 1 min v R p 2 u v λ η g v g (14) g G D : max ξ R p G 1 2 u g G ξ g u 2 2 (15) s.t. g G, ξ g λη g and ξ g j = 0 if j / g, and are two convex norms dual to each other. ξ = (ξ g ) g G where ξ g R p is the dual variable associated with v g. Xiaowei Zhou (HKUST) Proximal Methods Group Learning 20 / 28

21 Block Coordinate Descent BCD algorithm to solve the proximal problem in (14) Initialization: ξ = 0. repeat g G, ξ g Proj. λη g ( [ u h g ξh] g ). until Convergence v u g G ξg. Generally, the above algorithm is not guaranteed to converge in finite number of iterations. When is l 1 or l norm and the groups in G are in a hierarchical structure, only one iteration is needed to reach convergence. Jenatton, R. and Mairal, J. and Obozinski, G. and Bach, F. Proximal methods for hierarchical sparse coding Journal of Machine Learning Research 12 (2011) Xiaowei Zhou (HKUST) Proximal Methods Group Learning 21 / 28

22 Quadratic Min-Cost Flow Formulation How to solve the group-sparsity problem efficiently in general cases? If l 1 /l -norm is used, the dual problem (15) becomes: 1 min ξ R p G 2 u ξ g 2 2 g G s.t. g G, ξ g 1 λη g and ξ g j = 0 if j / g, The above problem can be formulated on a graph as a Quadratic Min-Cost Flow problem. Mairal, J. and Jenatton, R. and Obozinski, G. and Bach, F. Convex and Network Flow Optimization for Structured Sparsity Journal of Machine Learning Research 12 (2011) Xiaowei Zhou (HKUST) Proximal Methods Group Learning 22 / 28

23 Xiaowei Figure: Zhou (HKUST) Graph representation Proximal with Methods difference group structures Group Learning 23 / 28

24 Speed comparison Figure: Comparison: Proximal + Network Flow (ProxFlow), Quadratic Programming (QP), Conic Programming (CP) and Sub-gradient Descent (SG) Xiaowei Zhou (HKUST) Proximal Methods Group Learning 24 / 28

25 Outline 1 Background 2 Proximal Methods Overview Convergence Computation of Proximal Operator 3 ProxFlow algorithm for group-sparsity 4 Discussion Xiaowei Zhou (HKUST) Proximal Methods Group Learning 25 / 28

26 Toolbox SPAMS SPArse Modeling Software Developer: CVML INRI. Addressing various machine learning and signal processing problems: Dictionary learning and matrix factorization (NMF, sparse PCA,...). Sparse decomposition problems with LARS, coordinate descent, OMP, SOMP, proximal methods. Structured sparse decomposition problems. Xiaowei Zhou (HKUST) Proximal Methods Group Learning 26 / 28

27 Convex formulation of DECOLOR? Replace the MRFs penalty in DECOLOR with a group sparsity-inducing norm: min L,S 1 2 M L S 2 F + µ L + λω(s), where Ω(S) := g G η g s g. Stable PCP with Group Sparsity by BCD Initialize:S 0 = 0. repeat compute L k+1 = D µ (M S k ); compute S k+1 = Prox λω (M L k+1 ); until convergence Output: L, S. Xiaowei Zhou (HKUST) Proximal Methods Group Learning 27 / 28

28 Key References Mairal, J. and Jenatton, R. and Obozinski, G. and Bach, F. Convex and Network Flow Optimization for Structured Sparsity Journal of Machine Learning Research 12 (2011) Bach, F. and Jenatton, R. and Mairal, J. and Obozinski, G. Convex optimization with sparsity-inducing norms Optimization for Machine Learning, MIT Press, To appear Luca Baldassarre Proximal Methods (Lecture Notes) Jenatton, R. and Mairal, J. and Obozinski, G. and Bach, F. Proximal methods for hierarchical sparse coding Journal of Machine Learning Research 12 (2011) Xiaowei Zhou (HKUST) Proximal Methods Group Learning 28 / 28

1 Sparsity and l 1 relaxation

1 Sparsity and l 1 relaxation 6.883 Learning with Combinatorial Structure Note for Lecture 2 Author: Chiyuan Zhang Sparsity and l relaxation Last time we talked about sparsity and characterized when an l relaxation could recover the

More information

Recent Advances in Structured Sparse Models

Recent Advances in Structured Sparse Models Recent Advances in Structured Sparse Models Julien Mairal Willow group - INRIA - ENS - Paris 21 September 2010 LEAR seminar At Grenoble, September 21 st, 2010 Julien Mairal Recent Advances in Structured

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Topographic Dictionary Learning with Structured Sparsity

Topographic Dictionary Learning with Structured Sparsity Topographic Dictionary Learning with Structured Sparsity Julien Mairal 1 Rodolphe Jenatton 2 Guillaume Obozinski 2 Francis Bach 2 1 UC Berkeley 2 INRIA - SIERRA Project-Team San Diego, Wavelets and Sparsity

More information

OWL to the rescue of LASSO

OWL to the rescue of LASSO OWL to the rescue of LASSO IISc IBM day 2018 Joint Work R. Sankaran and Francis Bach AISTATS 17 Chiranjib Bhattacharyya Professor, Department of Computer Science and Automation Indian Institute of Science,

More information

Dual Proximal Gradient Method

Dual Proximal Gradient Method Dual Proximal Gradient Method http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/19 1 proximal gradient method

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 15 (Gradient methods III) 12 March, 2013 Suvrit Sra Optimal gradient methods 2 / 27 Optimal gradient methods We saw following efficiency estimates for

More information

Structured Sparse Estimation with Network Flow Optimization

Structured Sparse Estimation with Network Flow Optimization Structured Sparse Estimation with Network Flow Optimization Julien Mairal University of California, Berkeley Neyman seminar, Berkeley Julien Mairal Neyman seminar, UC Berkeley /48 Purpose of the talk introduce

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning Editors: Suvrit Sra suvrit@gmail.com Max Planck Insitute for Biological Cybernetics 7076 Tübingen, Germany Sebastian Nowozin Microsoft Research Cambridge, CB3 0FB, United

More information

Sparse Estimation and Dictionary Learning

Sparse Estimation and Dictionary Learning Sparse Estimation and Dictionary Learning (for Biostatistics?) Julien Mairal Biostatistics Seminar, UC Berkeley Julien Mairal Sparse Estimation and Dictionary Learning Methods 1/69 What this talk is about?

More information

1 Convex Optimization with Sparsity-Inducing Norms

1 Convex Optimization with Sparsity-Inducing Norms 1 Convex Optimization with Sparsity-Inducing Norms Francis Bach INRIA - Willow Project-Team 3, avenue d Italie, 7513 PARIS Rodolphe Jenatton INRIA - Willow Project-Team 3, avenue d Italie, 7513 PARIS Julien

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

Conditional Gradient (Frank-Wolfe) Method

Conditional Gradient (Frank-Wolfe) Method Conditional Gradient (Frank-Wolfe) Method Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 1 Outline Today: Conditional gradient method Convergence analysis Properties

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization /

Uses of duality. Geoff Gordon & Ryan Tibshirani Optimization / Uses of duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Remember conjugate functions Given f : R n R, the function is called its conjugate f (y) = max x R n yt x f(x) Conjugates appear

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Parcimonie en apprentissage statistique

Parcimonie en apprentissage statistique Parcimonie en apprentissage statistique Guillaume Obozinski Ecole des Ponts - ParisTech Journée Parcimonie Fédération Charles Hermite, 23 Juin 2014 Parcimonie en apprentissage 1/44 Classical supervised

More information

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization Frank-Wolfe Method Ryan Tibshirani Convex Optimization 10-725 Last time: ADMM For the problem min x,z f(x) + g(z) subject to Ax + Bz = c we form augmented Lagrangian (scaled form): L ρ (x, z, w) = f(x)

More information

Introduction to Alternating Direction Method of Multipliers

Introduction to Alternating Direction Method of Multipliers Introduction to Alternating Direction Method of Multipliers Yale Chang Machine Learning Group Meeting September 29, 2016 Yale Chang (Machine Learning Group Meeting) Introduction to Alternating Direction

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Proximal-Gradient Mark Schmidt University of British Columbia Winter 2018 Admin Auditting/registration forms: Pick up after class today. Assignment 1: 2 late days to hand in

More information

Generalized Conditional Gradient and Its Applications

Generalized Conditional Gradient and Its Applications Generalized Conditional Gradient and Its Applications Yaoliang Yu University of Alberta UBC Kelowna, 04/18/13 Y-L. Yu (UofA) GCG and Its Apps. UBC Kelowna, 04/18/13 1 / 25 1 Introduction 2 Generalized

More information

DATA MINING AND MACHINE LEARNING

DATA MINING AND MACHINE LEARNING DATA MINING AND MACHINE LEARNING Lecture 5: Regularization and loss functions Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Loss functions Loss functions for regression problems

More information

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017

Machine Learning. Support Vector Machines. Fabio Vandin November 20, 2017 Machine Learning Support Vector Machines Fabio Vandin November 20, 2017 1 Classification and Margin Consider a classification problem with two classes: instance set X = R d label set Y = { 1, 1}. Training

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

Convex relaxation for Combinatorial Penalties

Convex relaxation for Combinatorial Penalties Convex relaxation for Combinatorial Penalties Guillaume Obozinski Equipe Imagine Laboratoire d Informatique Gaspard Monge Ecole des Ponts - ParisTech Joint work with Francis Bach Fête Parisienne in Computation,

More information

Sparse and Regularized Optimization

Sparse and Regularized Optimization Sparse and Regularized Optimization In many applications, we seek not an exact minimizer of the underlying objective, but rather an approximate minimizer that satisfies certain desirable properties: sparsity

More information

Sparse Optimization Lecture: Basic Sparse Optimization Models

Sparse Optimization Lecture: Basic Sparse Optimization Models Sparse Optimization Lecture: Basic Sparse Optimization Models Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know basic l 1, l 2,1, and nuclear-norm

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Dual and primal-dual methods

Dual and primal-dual methods ELE 538B: Large-Scale Optimization for Data Science Dual and primal-dual methods Yuxin Chen Princeton University, Spring 2018 Outline Dual proximal gradient method Primal-dual proximal gradient method

More information

An Efficient Proximal Gradient Method for General Structured Sparse Learning

An Efficient Proximal Gradient Method for General Structured Sparse Learning Journal of Machine Learning Research 11 (2010) Submitted 11/2010; Published An Efficient Proximal Gradient Method for General Structured Sparse Learning Xi Chen Qihang Lin Seyoung Kim Jaime G. Carbonell

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

Proximal Methods for Hierarchical Sparse Coding

Proximal Methods for Hierarchical Sparse Coding Proximal Methods for Hierarchical Sparse Coding Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, Francis Bach To cite this version: Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, Francis

More information

Supervised Feature Selection in Graphs with Path Coding Penalties and Network Flows

Supervised Feature Selection in Graphs with Path Coding Penalties and Network Flows Journal of Machine Learning Research 4 (03) 449-485 Submitted 4/; Revised 3/3; Published 8/3 Supervised Feature Selection in Graphs with Path Coding Penalties and Network Flows Julien Mairal Bin Yu Department

More information

Structured sparsity-inducing norms through submodular functions

Structured sparsity-inducing norms through submodular functions Structured sparsity-inducing norms through submodular functions Francis Bach Sierra team, INRIA - Ecole Normale Supérieure - CNRS Thanks to R. Jenatton, J. Mairal, G. Obozinski June 2011 Outline Introduction:

More information

On Optimal Frame Conditioners

On Optimal Frame Conditioners On Optimal Frame Conditioners Chae A. Clark Department of Mathematics University of Maryland, College Park Email: cclark18@math.umd.edu Kasso A. Okoudjou Department of Mathematics University of Maryland,

More information

Math 273a: Optimization Overview of First-Order Optimization Algorithms

Math 273a: Optimization Overview of First-Order Optimization Algorithms Math 273a: Optimization Overview of First-Order Optimization Algorithms Wotao Yin Department of Mathematics, UCLA online discussions on piazza.com 1 / 9 Typical flow of numerical optimization Optimization

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Davood Hajinezhad Iowa State University Davood Hajinezhad Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method 1 / 35 Co-Authors

More information

Dual Decomposition.

Dual Decomposition. 1/34 Dual Decomposition http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/34 1 Conjugate function 2 introduction:

More information

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems)

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Donghwan Kim and Jeffrey A. Fessler EECS Department, University of Michigan

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Oslo Class 6 Sparsity based regularization

Oslo Class 6 Sparsity based regularization RegML2017@SIMULA Oslo Class 6 Sparsity based regularization Lorenzo Rosasco UNIGE-MIT-IIT May 4, 2017 Learning from data Possible only under assumptions regularization min Ê(w) + λr(w) w Smoothness Sparsity

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 14: and Applications 11th March 2019 Outline LP SOCP SDP LP SOCP SDP 1 / 21 Conic LP SOCP SDP Primal Conic Program: min c T x s.t. Ax K b (CP) : b T y s.t. A T y = c (CD) y K 0 Theorem. (Strong

More information

r=1 r=1 argmin Q Jt (20) After computing the descent direction d Jt 2 dt H t d + P (x + d) d i = 0, i / J

r=1 r=1 argmin Q Jt (20) After computing the descent direction d Jt 2 dt H t d + P (x + d) d i = 0, i / J 7 Appendix 7. Proof of Theorem Proof. There are two main difficulties in proving the convergence of our algorithm, and none of them is addressed in previous works. First, the Hessian matrix H is a block-structured

More information

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices Ryota Tomioka 1, Taiji Suzuki 1, Masashi Sugiyama 2, Hisashi Kashima 1 1 The University of Tokyo 2 Tokyo Institute of Technology 2010-06-22

More information

Lecture 24 November 27

Lecture 24 November 27 EE 381V: Large Scale Optimization Fall 01 Lecture 4 November 7 Lecturer: Caramanis & Sanghavi Scribe: Jahshan Bhatti and Ken Pesyna 4.1 Mirror Descent Earlier, we motivated mirror descent as a way to improve

More information

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725

Proximal Gradient Descent and Acceleration. Ryan Tibshirani Convex Optimization /36-725 Proximal Gradient Descent and Acceleration Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: subgradient method Consider the problem min f(x) with f convex, and dom(f) = R n. Subgradient method:

More information

The FTRL Algorithm with Strongly Convex Regularizers

The FTRL Algorithm with Strongly Convex Regularizers CSE599s, Spring 202, Online Learning Lecture 8-04/9/202 The FTRL Algorithm with Strongly Convex Regularizers Lecturer: Brandan McMahan Scribe: Tamara Bonaci Introduction In the last lecture, we talked

More information

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 08: Sparsity Based Regularization. Lorenzo Rosasco MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications Class 08: Sparsity Based Regularization Lorenzo Rosasco Learning algorithms so far ERM + explicit l 2 penalty 1 min w R d n n l(y

More information

You should be able to...

You should be able to... Lecture Outline Gradient Projection Algorithm Constant Step Length, Varying Step Length, Diminishing Step Length Complexity Issues Gradient Projection With Exploration Projection Solving QPs: active set

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Accelerate Subgradient Methods

Accelerate Subgradient Methods Accelerate Subgradient Methods Tianbao Yang Department of Computer Science The University of Iowa Contributors: students Yi Xu, Yan Yan and colleague Qihang Lin Yang (CS@Uiowa) Accelerate Subgradient Methods

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

Lasso: Algorithms and Extensions

Lasso: Algorithms and Extensions ELE 538B: Sparsity, Structure and Inference Lasso: Algorithms and Extensions Yuxin Chen Princeton University, Spring 2017 Outline Proximal operators Proximal gradient methods for lasso and its extensions

More information

LOCAL LINEAR CONVERGENCE OF ADMM Daniel Boley

LOCAL LINEAR CONVERGENCE OF ADMM Daniel Boley LOCAL LINEAR CONVERGENCE OF ADMM Daniel Boley Model QP/LP: min 1 / 2 x T Qx+c T x s.t. Ax = b, x 0, (1) Lagrangian: L(x,y) = 1 / 2 x T Qx+c T x y T x s.t. Ax = b, (2) where y 0 is the vector of Lagrange

More information

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 36 Why proximal? Newton s method: for C 2 -smooth, unconstrained problems allow

More information

Support Vector Machines for Classification and Regression

Support Vector Machines for Classification and Regression CIS 520: Machine Learning Oct 04, 207 Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may

More information

A Greedy Framework for First-Order Optimization

A Greedy Framework for First-Order Optimization A Greedy Framework for First-Order Optimization Jacob Steinhardt Department of Computer Science Stanford University Stanford, CA 94305 jsteinhardt@cs.stanford.edu Jonathan Huggins Department of EECS Massachusetts

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2016) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs

Support Vector Machines for Classification and Regression. 1 Linearly Separable Data: Hard Margin SVMs E0 270 Machine Learning Lecture 5 (Jan 22, 203) Support Vector Machines for Classification and Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

ORIE 4741: Learning with Big Messy Data. Proximal Gradient Method

ORIE 4741: Learning with Big Messy Data. Proximal Gradient Method ORIE 4741: Learning with Big Messy Data Proximal Gradient Method Professor Udell Operations Research and Information Engineering Cornell November 13, 2017 1 / 31 Announcements Be a TA for CS/ORIE 1380:

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Proximal methods. S. Villa. October 7, 2014

Proximal methods. S. Villa. October 7, 2014 Proximal methods S. Villa October 7, 2014 1 Review of the basics Often machine learning problems require the solution of minimization problems. For instance, the ERM algorithm requires to solve a problem

More information

operator and Group LASSO penalties

operator and Group LASSO penalties Multidimensional shrinkage-thresholding operator and Group LASSO penalties Arnau Tibau Puig, Ami Wiesel, Gilles Fleury and Alfred O. Hero III Abstract The scalar shrinkage-thresholding operator is a key

More information

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization Panos Parpas Department of Computing Imperial College London www.doc.ic.ac.uk/ pp500 p.parpas@imperial.ac.uk jointly with D.V.

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Inverse Power Method for Non-linear Eigenproblems

Inverse Power Method for Non-linear Eigenproblems Inverse Power Method for Non-linear Eigenproblems Matthias Hein and Thomas Bühler Anubhav Dwivedi Department of Aerospace Engineering & Mechanics 7th March, 2017 1 / 30 OUTLINE Motivation Non-Linear Eigenproblems

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

Optimization for Learning and Big Data

Optimization for Learning and Big Data Optimization for Learning and Big Data Donald Goldfarb Department of IEOR Columbia University Department of Mathematics Distinguished Lecture Series May 17-19, 2016. Lecture 1. First-Order Methods for

More information

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University UNDERDETERMINED LINEAR EQUATIONS We

More information

Approximate Farkas Lemmas in Convex Optimization

Approximate Farkas Lemmas in Convex Optimization Approximate Farkas Lemmas in Convex Optimization Imre McMaster University Advanced Optimization Lab AdvOL Graduate Student Seminar October 25, 2004 1 Exact Farkas Lemma Motivation 2 3 Future plans The

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

Incremental and Stochastic Majorization-Minimization Algorithms for Large-Scale Machine Learning

Incremental and Stochastic Majorization-Minimization Algorithms for Large-Scale Machine Learning Incremental and Stochastic Majorization-Minimization Algorithms for Large-Scale Machine Learning Julien Mairal Inria, LEAR Team, Grenoble Journées MAS, Toulouse Julien Mairal Incremental and Stochastic

More information

Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent

Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent Sparse Linear Programg via Primal and Dual Augmented Coordinate Descent Presenter: Joint work with Kai Zhong, Cho-Jui Hsieh, Pradeep Ravikumar and Inderjit Dhillon. Sparse Linear Program Given vectors

More information

Frist order optimization methods for sparse inverse covariance selection

Frist order optimization methods for sparse inverse covariance selection Frist order optimization methods for sparse inverse covariance selection Katya Scheinberg Lehigh University ISE Department (joint work with D. Goldfarb, Sh. Ma, I. Rish) Introduction l l l l l l The field

More information

6. Proximal gradient method

6. Proximal gradient method L. Vandenberghe EE236C (Spring 2013-14) 6. Proximal gradient method motivation proximal mapping proximal gradient method with fixed step size proximal gradient method with line search 6-1 Proximal mapping

More information

2 Regularized Image Reconstruction for Compressive Imaging and Beyond

2 Regularized Image Reconstruction for Compressive Imaging and Beyond EE 367 / CS 448I Computational Imaging and Display Notes: Compressive Imaging and Regularized Image Reconstruction (lecture ) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement

More information

Statistical Machine Learning II Spring 2017, Learning Theory, Lecture 4

Statistical Machine Learning II Spring 2017, Learning Theory, Lecture 4 Statistical Machine Learning II Spring 07, Learning Theory, Lecture 4 Jean Honorio jhonorio@purdue.edu Deterministic Optimization For brevity, everywhere differentiable functions will be called smooth.

More information

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning Convex Optimization Lecture 15 - Gradient Descent in Machine Learning Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 21 Today s Lecture 1 Motivation 2 Subgradient Method 3 Stochastic

More information

Proximal Minimization by Incremental Surrogate Optimization (MISO)

Proximal Minimization by Incremental Surrogate Optimization (MISO) Proximal Minimization by Incremental Surrogate Optimization (MISO) (and a few variants) Julien Mairal Inria, Grenoble ICCOPT, Tokyo, 2016 Julien Mairal, Inria MISO 1/26 Motivation: large-scale machine

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Dual Augmented Lagrangian, Proximal Minimization, and MKL

Dual Augmented Lagrangian, Proximal Minimization, and MKL Dual Augmented Lagrangian, Proximal Minimization, and MKL Ryota Tomioka 1, Taiji Suzuki 1, and Masashi Sugiyama 2 1 University of Tokyo 2 Tokyo Institute of Technology 2009-09-15 @ TU Berlin (UT / Tokyo

More information

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1,

On the interior of the simplex, we have the Hessian of d(x), Hd(x) is diagonal with ith. µd(w) + w T c. minimize. subject to w T 1 = 1, Math 30 Winter 05 Solution to Homework 3. Recognizing the convexity of g(x) := x log x, from Jensen s inequality we get d(x) n x + + x n n log x + + x n n where the equality is attained only at x = (/n,...,

More information

arxiv: v1 [math.oc] 3 Sep 2012

arxiv: v1 [math.oc] 3 Sep 2012 Proximal methods for the latent group lasso penalty arxiv:1209.0368v1 [math.oc] 3 Sep 2012 Silvia Villa, Lorenzo Rosasco, Sofia Mosci, Alessandro Verri Istituto Italiano di Tecnologia, Genova, ITALY CBCL,

More information

Lecture 5: September 12

Lecture 5: September 12 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 12 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Barun Patra and Tyler Vuong Note: LaTeX template courtesy of UC Berkeley EECS

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 9 Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 2 Separable convex optimization a special case is min f(x)

More information

Lecture 8: February 9

Lecture 8: February 9 0-725/36-725: Convex Optimiation Spring 205 Lecturer: Ryan Tibshirani Lecture 8: February 9 Scribes: Kartikeya Bhardwaj, Sangwon Hyun, Irina Caan 8 Proximal Gradient Descent In the previous lecture, we

More information

Math 273a: Optimization Subgradient Methods

Math 273a: Optimization Subgradient Methods Math 273a: Optimization Subgradient Methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Nonsmooth convex function Recall: For ˉx R n, f(ˉx) := {g R

More information

Lecture 9: September 28

Lecture 9: September 28 0-725/36-725: Convex Optimization Fall 206 Lecturer: Ryan Tibshirani Lecture 9: September 28 Scribes: Yiming Wu, Ye Yuan, Zhihao Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

A tutorial on sparse modeling. Outline:

A tutorial on sparse modeling. Outline: A tutorial on sparse modeling. Outline: 1. Why? 2. What? 3. How. 4. no really, why? Sparse modeling is a component in many state of the art signal processing and machine learning tasks. image processing

More information

Subgradient Method. Ryan Tibshirani Convex Optimization

Subgradient Method. Ryan Tibshirani Convex Optimization Subgradient Method Ryan Tibshirani Convex Optimization 10-725 Consider the problem Last last time: gradient descent min x f(x) for f convex and differentiable, dom(f) = R n. Gradient descent: choose initial

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Lecture 3-A - Convex) SUVRIT SRA Massachusetts Institute of Technology Special thanks: Francis Bach (INRIA, ENS) (for sharing this material, and permitting its use) MPI-IS

More information