A Resurrection of the Condorcet Jury Theorem

Size: px
Start display at page:

Download "A Resurrection of the Condorcet Jury Theorem"

Transcription

1 A Resurrecton of the Condorcet Jury Theorem Yuo Koryama and Balázs Szentes yz Septemer 19, 2008 Astract hal , verson 1-3 Jun 2009 Ths paper analyzes the optmal sze of a deleratng commttee where, () there s no con ct of nterest among ndvduals, and () nformaton acquston s costly. The commttee memers smultaneously decde whether or not to acqure nformaton, and then, they mae the ex-post e cent decson. The optmal commttee sze,, s shown to e ounded. The man result of ths paper s that any artrarly large commttee aggregates the decentralzed nformaton more e cently than the commttee of sze 2. Ths result mples that overszed commttees generate only small ne cences. 1 Introducton The classcal Condorcet Jury Theorem (CJT) states that large commttees can aggregate decentralzed nformaton more e cently than small ones. Its orgn can e traced to the dawn of the French Revoluton when Mare Jean Antone Ncolas Cartat le Marqus de Condorcet (1785, translaton 1994) nvestgated the decson-mang processes n socetes. 1 A recent lterature on commttee desgn has ponted out that f the nformaton acquston s costly, the CJT fals to hold. The reasonng s that f the sze of a commttee s large, a commttee memer realzes that the proalty that she can n uence the nal decson s too small compared to the cost of nformaton acquston. As a result, she mght prefer to avod ths cost and free-rde on the nformaton of others. Therefore, larger commttees mght generate lower socal welfare than smaller ones. These results suggest that n the presence of costly nformaton acquston, optmally choosng the sze of a commttee s oth an mportant and delcate ssue. In ths paper, we characterze the welfare loss assocated to overszed commttees, and we show that ths loss s surprsngly small n certan envronments. Therefore, as long as the commttee sze s large enough, the careful desgn of a Département d Econome, Ecole Polytechnque, Palaseau Cedex 91128, France. y Department of Economcs, Unversty College London, Gower Street, London WC1E 6BT, Unted Kngdom. z The authors are grateful to semnar partcpants at the Unversty of Chcago, Unversty of Rochester, UCL, Ecole Polytechnque, Arzona State Unversty, Maastrcht Unversty, and Unversty of Hawa for helpful comments. 1 Summares of the hstory of the CJT can e found n, for example, Grofman and Owen (1986), Mller (1986), and Gerlng, Grüner, Kel, and Schulte (2003). 1

2 hal , verson 1-3 Jun 2009 commttee mght not e as mportant as t was orgnally thought to e. In fact, f ether the nformaton structure s amguous, or the commttee has to mae decsons n varous nformatonal envronments, t mght e optmal to desgn the commttee to e as large as possle. Commttee desgn receves a consderale attenton y economsts ecause, n many stuatons, groups rather than ndvduals mae decsons. Informaton aout the desralty of the possle decsons s often decentralzed: ndvdual group memers must separately acqure costly nformaton aout the alternatves. A classcal example s a jury tral where a jury has to decde whether a defendant s gulty or nnocent. Each juror ndvdually otan some nformaton aout the defendant at some e ort cost (payng attenton to the tral, nvestgatng evdences, etc.). Lewse, when a rm s facng the decson whether or not to mplement a project each memer of the executve commttee can collect nformaton aout the pro talty of the project (y spendng tme and exertng e ort). Yet another example s the hrng decsons of academc departments. Each memer of the recrutng commttee must revew the applcatons ndvdually efore mang a collectve decson. What these examples have n common s the fact that nformaton acquston s costly and often unoservale. The exact setup analyzed n ths paper s descred as follows. A group of ndvduals has to mae a nary decson. There s no con ct of nterest among the group memers, ut they have mperfect nformaton aout whch decson s the est. Frst, ndvduals are ased to serve n a commttee. Then, the commttee memers smultaneously decde whether or not to nvest n an nformatve sgnal. Fnally, the commttee maes the optmal decson gven the acqured nformaton. We do not explctly model how the commttee memers communcate and aggregate nformaton. Instead, we smply assume that they end up mang the ex-post e cent decson. 2 The only strategc choce an ndvdual must mae n our model s the choce whether or not to acqure a sgnal upon eng selected to serve n the commttee. The central queston of our paper s the followng: how does the commttee sze,, a ect socal welfare? Frst, for each, we fully characterze the set of equlra (ncludng asymmetrc and mxed-strategy equlra). We show that there exsts a P (2 N) such that whenever P, there s a unque equlrum n whch each commttee memer nvests n nformaton wth proalty one. Furthermore, the socal welfare generated y these equlra s an ncreasng functon of. If > P, then there are multple equlra and many of them nvolve randomzatons y the memers. We also show that the socal welfare generated y the worst equlrum n the game, where the commttee sze s, s decreasng n f > P. The optmal commttee sze,, s de ned such that () f the commttee sze s, then there exsts an equlrum that maxmzes socal welfare, and () n ths equlrum, each memer nvests n nformaton wth postve proalty. We prove that the optmal commttee sze,, s ether P or P + 1. Ths 2 Snce there s no con ct of nterest among the ndvduals, t s easy to desgn a mechansm whch s ncentve compatle and e cently aggregates the sgnals. Alternatvely, one can assume that the collected nformaton s hard. 2

3 mples that the CJT fals to hold: large commttees can generate smaller socal welfare than smaller commttees. Nevertheless, we show that f the sze of the commttee s larger than, even the worst equlrum generates hgher socal welfare than the unque equlrum n the commttee of sze 2. That s, the welfare loss due to an overszed commttee s qute small. hal , verson 1-3 Jun 2009 Lterature Revew Although the Condorcet Jury Theorem provdes mportant support for the ass of democratc decson mang, many of the premses of the theorem have een crtczed. Perhaps most mportantly, Condorcet assumes sncere votng. That s, each ndvdual votes as f she were the only voter n the socety. Ths means that an ndvdual votes for the alternatve that s est, condtonal on her sgnal. Austen-Smth and Bans (1996) showed that n general, sncere votng s not consstent wth equlrum ehavor. Ths s ecause a ratonal ndvdual votes not only condtonal on her sgnal, ut also on her eng pvotal. Feddersen and Pesendorfer (1998) have shown that as the jury sze ncreases, the proalty of convctng an nnocent can actually ncrease under the unanmty rule. A varety of papers have shown, however, that even f the voters are strategc, n certan envronments the outcome of a votng converges to the e cent outcome as the numer of voters goes to n nty. Feddersen and Pesendorfer (1997) nvestgate a model n whch preferences are heterogeneous and each voter has a prvate sgnal concernng whch alternatve s est. They construct an equlrum for each populaton sze, such that the equlrum outcome converges to the full nformaton outcome as the numer of voters goes to n nty. The full nformaton outcome s de ned as the result of a votng game, where all nformaton s pulc. Myerson (1998) has shown that asymptotc e cency can e acheved even f there s populaton uncertanty; that s, a voter does not now how many other voters there are. In contrast, the Condorcet Jury Theorem mght fal to hold f the nformaton acquston s costly. Muhopadhaya (2003) has consdered a model, smlar to ours, where voters have dentcal preferences ut nformaton acquston s costly. He has shown y numercal examples that mxedstrategy equlra n large commttees may generate lower expected welfare than pure-strategy equlra n small commttees. 3 Martnell (2006) also ntroduced cost of nformaton acquston and, he allows the precson of the sgnals to depend contnuously on the amount of nvestment. Martnell (2006) proves that f the cost and the margnal cost of the precson are zero at the zero level of precson, then the decson s asymptotcally e cent. More precsely, f the sze of the commttee converges to n nty, then there s a sequence of symmetrc equlra n whch each memer nvests only a lttle, and the proalty of a correct decson converges to one. 4 3 The results are qute d erent f the votng, rather than the nformaton acquston, s costly, see e.g. Borgers (2004). 4 In hs accompanyng paper, Martnell (2007) analyzes a model n whch nformaton has a xed cost, voters are heterogeneous n ther costs, and astenton s not allowed. On the one hand, the author shows that f the 3

4 hal , verson 1-3 Jun 2009 We thn that Martnell (2006) contruted sustantally towards the understandng of the e cency propertes of group decson mang f there s no xed cost assocated to nformaton acquston. However, we eleve that ths xed cost aspect s an essental feature of many envronments. Indeed, one has to pay the prce of a newspaper even f he decdes to throw t away later. The management of a company has to pay for a consultant even f the wor of the consultant wll e completely gnored. Smlarly, a juror has to st through the tral even f he decdes not to pay any attenton. Hence, we thn that our paper s an mportant complementary result to Martnell (2006). Numerous papers have analyzed the optmal decson rules n the presence of costly nformaton. Persco (2004) dscusses the relatonshp etween the optmal decson rules and the accuracy of the sgnals. He shows that a votng rule that requres a strong consensus n order to upset the status quo s only optmal f the sgnals are su cently accurate. The ntuton for the extreme case, where the decson rule s the unanmty rule, s the followng: under the unanmty rule, the proalty of eng pvotal s small. However, ths proalty ncreases as the sgnals ecome more accurate. Therefore, n order to provde a voter wth an ncentve to nvest n nformaton, the sgnals must e su cently accurate. L (2001), Gerard and Yarv (2006), and Gershov and Szentes (2004) have shown that the optmal votng mechansm sometmes nvolves ex-post ne cent decsons. That s, the optmal mechansm mght specfy ne cent decsons for certan sgnal pro les. We eleve that there are many stuatons where such a commtment devce s not avalale. That s why we smply restrct attenton to ex post e cent decson rules. We eleve that ths s the approprate assumpton n the context of a deleratng commttee n whch there s no con ct of nterest among ndvduals. Secton 2 descres the model. The man theorems are stated and proved n Secton 3. Secton 4 concludes. Some of the proofs are relegated to the Appendx. 2 The Model There s a populaton consstng of N(> 1) ndvduals. The state of the world,!, can tae one of two values: 1 and 1. Furthermore, Pr [! = 1] = 2 (0; 1). The socety must mae a decson, d, whch s ether 1 or 1. There s no con ct of nterest among ndvduals. Each ndvdual has a ene t of u (d;!) f decson d s made when the state of the world s!. In partcular, 8 >< 0 f d =!; u (d;!) = q f d = 1 and! = 1; >: (1 q) f d = 1 and! = 1; support of the cost dstruton s not ounded away from zero, asymptotc e cency can e acheved. On the other hand, f the cost s ounded away form zero and the numer of voters s large, noody acqures nformaton n any equlrum. 4

5 hal , verson 1-3 Jun 2009 where q 2 (0; 1), ndcates the severty of type-i error 5. Each ndvdual can purchase a sgnal at a cost c (> 0) at most once. Sgnals are d across ndvduals condtonal on the realzaton of the state of the world. The ex-post payo of an ndvdual who nvests n nformaton s u c. Each ndvdual maxmzes her expected payo. There are two stages of the decson-mang process. At Stage 1, ( N) memers of the socety are desgnated to serve n the commttee at random. At Stage 2, the commttee memers decde smultaneously and ndependently whether or not to nvest n nformaton. Then, the e cent decson s made gven the sgnals collected y the memers. We do not model explctly how commttee memers delerate at Stage 2. Snce there s no con ct of nterest among the memers, t s easy to desgn a communcaton protocol that e cently aggregates nformaton. Alternatvely, one can assume that the acqured nformaton s hard. Hence, no communcaton s necessary for mang the ex-post e cent decson. We focus merely on the commttee memers ncentves to acqure nformaton. Next, we turn our attenton to the de nton of socal welfare. Frst, let denote the ex-post e cent decson rule. That s, s a mappng from sets of sgnals nto possle decsons. If the sgnal pro le s (s 1 ; :::; s n ), where n s the numer of acqured sgnals, then (s 1 ; :::; s n ) = 1, E! [u (1;!)j s 1 ; :::; s n ] E! [u ( 1;!)j s 1 ; :::; s n ]. The socal welfare s measured as the expected sum of the payo s of the ndvduals, that s, E s1; ;s n;! [Nu ( (s 1 ; :::; s n ) ;!) cn] ; (1) where the expectaton also taes nto account the possle randomzaton of the ndvduals. That s, n can e a random varale. If the commttee s large, then a memer mght prefer to save the cost of nformaton acquston and choose to rely on the opnons of others. On the other hand, f s too small, there s too lttle nformaton to aggregate, and thus the nal decson s lely to e ne cent. The queston s: What s the optmal that maxmzes ex-ante socal welfare? To e more spec c, the optmal sze of the commttee s, f () the most e cent equlrum, n the commttee wth memers, maxmzes the socal surplus among all equlra n any commttee, and () each memer acqures nformaton wth postve proalty n ths equlrum. Snce the sgnals are d condtonal on the state of the world, the expected ene t of an ndvdual from the ex post e cent decson s a functon of the numer of sgnals acqured. We de ne ths functon as follows: (n) = E s1; ;s n;! [u ( (s 1 ; ; s n ) ;!)]. We assume that the sgnals are nformatve aout the state of the world, ut only mperfectly. That s, as the numer of sgnals goes to n nty, the proalty of mang the correct decson 5 In the jury context, where! = 1 corresponds to the nnocence of the suspect, q ndcates how severe error t s to convct an nnocent. 5

6 s strctly ncreasng and converges to one. Formally, the functon s strctly ncreasng and lm n!1 (n) = 0. An ndvdual s margnal ene t from collectng an addtonal sgnal, when n sgnals are already otaned, s g (n) = (n + 1) (n) : Note that lm n!1 g (n) = 0. For our man theorem to hold, we need the followng assumpton. Assumpton 1 The functon g s log-convex. Ths assumpton s equvalent to g (n + 1) =g (n) eng ncreasng n n (2 N) : Whether or not ths assumpton s sats ed depends only on the prmtves of the model, that s, on the dstruton of the sgnals and on the parameters q and. An mmedate consequence of ths assumpton s the followng. hal , verson 1-3 Jun 2009 Remar 1 The functon g s decreasng. Proof. Suppose y contradcton that there exsts an nteger, n 0 2 N, such that, g (n 0 + 1) > g (n 0 ). Snce g (n + 1) =g (n) s ncreasng n n, t follows that g (n + 1) > g (n) whenever n n 0. Hence, g (n) > g (n 0 ) > 0 whenever n > n 0. Ths mples that lm n!1 g (n) 6= 0, whch s a contradcton. Next, we explan that Assumpton 1 essentally means that the margnal value of a sgnal decreases rapdly. Notce that the functon g eng decreasng means that the margnal socal value of an addtonal sgnal s decreasng. We thn that ths assumpton s sats ed n most economc and poltcal applcatons. How much more does Assumpton 1 requre? Snce g s decreasng and lm n!1 g (n) = 0, there always exsts an ncreasng sequence fn m g 1 m=1 N, such that g (n m ) g (n m + 1) s decreasng n m. Hence, t s stll natural to restrct attenton to nformaton structures where the second d erence n the socal value of a sgnal, g (n) g (n + 1), s decreasng. Recall that Assumpton 1 s equvalent to (g (n) g (n + 1)) =g (n) eng decreasng. That s, Assumpton 1 requres that the second d erence n the value of a sgnal does not only decrease, ut decreases at an ncreasng rate. In general, t s hard to chec whether ths assumpton holds ecause t s often d cult (or mpossle) to express g (n) analytcally. The next secton provdes examples where Assumpton 1 s sats ed. 2.1 Examples for Assumpton 1 Frst, suppose that the sgnals are normally dstruted around the true state of the world. The log-convexty assumpton s sats ed for the model where + q = 1. That s, the socety would e nd erent etween the two possle decsons f nformaton acquston were mpossle. The assumpton s also sats ed even f + q 6= 1 f the sgnals are su cently precse. Formally: 6

7 Proposton 1 Suppose that s N (!; ). () If q + = 1 then Assumpton 1 s sats ed. () For all q;, there exsts an " q; > 0, such that Assumpton 1 s sats ed f " q; >. Proof. See the Appendx. In our next example the sgnal s ternary, that s, ts possle values are f 1; 0; 1g. In addton, Pr (s =!j!) = pr; Pr (s = 0j!) = 1 r; and Pr (s =!j!) = (1 p) r: Notce that r (2 (0; 1)) s the proalty that the realzaton of the sgnal s nformatve, and p s the precson of the sgnal condtonal on eng nformatve. Proposton 2 Suppose that the sgnal s ternary. Then, there exsts a p (r) 2 (0; 1) such that, f p > p (r), Assumpton 1 s sats ed. hal , verson 1-3 Jun 2009 Proof. See the Appendx. Next, we provde an example where the log-convexty assumpton s not sats ed. Suppose that the sgnal s nary, that s, s 2 f 1; 1g and Pr (s =!j!) = p; Pr (s =!j!) = 1 p: Proposton 3 If the sgnal s nary then Assumpton 1 s not sats ed. Proof. See the Appendx. 3 Results Ths secton s devoted to the proofs of our man theorems. To that end, we rst characterze the set of equlra for all (2 N). The next susecton shows that f s small, the equlrum s unque and each memer ncurs the cost of nformaton (Proposton 4). Secton 3.2 descres the set of mxed-strategy equlra for large enough (Propostons 5). Fnally, Secton 3.3 proves the man theorems (Theorems 1 and 2). 3.1 Pure-strategy equlrum Suppose that the sze of the commttee s. If the rst 1 memers acqure nformaton, the expected gan from collectng nformaton for the th memer s g( 1). She s wllng to nvest f ths gan exceeds the cost of the sgnal, that s, f c < g ( 1) : (2) Ths nequalty s the ncentve compatlty constrant guaranteeng that a commttee memer s wllng to nvest n nformaton f the sze of the commttee s. 6 6 In what follows, we gnore the case where there exsts a 2 N such that c = g (). Ths equalty does not hold genercally, and would have no e ect on our results. 7

8 Proposton 4 Let denote the sze of the commttee. There exsts a P 2 N; such that, there exsts a unque equlrum n whch each memer nvests n a sgnal wth proalty one f and only f mn P ; N. Furthermore, the socal welfare generated y these equlra s monotoncally ncreasng n mn P ; N. Proof. Recall from Remar 1 that g s decreasng and lm!1 g () = 0: Therefore, for any postve cost c < g (0) 7, there exsts a unque P 2 N such that g P < c < g P 1 : (3) hal , verson 1-3 Jun 2009 Frst, we show that f < P then there s a unque equlrum n whch each commttee memer nvests n nformaton. Suppose that n an equlrum, the rst 1 memers randomze accordng to the pro le (r 1 ; :::; r 1 ) ; where r 2 [0; 1] denotes the proalty that the th memer nvests. Let I denote the numer of sgnals collected y the rst ( 1) memers. Snce the memers randomze, I s a random varale. Notce that I 1, and E r1;:::;r 1 [g (I)] g ( 1) ecause g s decreasng. Also notce that from P and (3), t follows that g ( 1) > c. Comnng the prevous two nequaltes, we get E r1;:::;r 1 [g (I)] > c. Ths nequalty mples that no matter what the strateges of the rst ( 1) memers are, the th memer strctly prefers to nvest n nformaton. From ths oservaton, the exstence and unqueness of the pure-strategy equlrum follow. It remans to show that f > P, such a purestrategy equlrum does not exst. But f > P, then g ( 1) < c: Therefore, the ncentve compatlty constrant, (2), s volated and there s no equlrum where each memer ncurs the cost of the sgnal. Fnally, we must show that the socal welfare generated y these pure-strategy equlra s ncreasng n mn P ; N. Notce that snce N > 1, c < g ( 1) = () ( 1) < N (() ( 1)). After addng N( 1) c, we get N( 1) c ( 1) < N() c. The left-hand sde s the socal welfare generated y the equlrum n commttee of sze 1, whle the rght-hand sde s the socal welfare nduced y the commttee of sze. 8

9 hal , verson 1-3 Jun 2009 Fgure 1: Expected gan g () and the cost c Fgure 1 s the graph of g () and c, where s N (!; 1), = :3, q = :7, and c = The expected gan s decreasng and log-convex. In ths example, P = 11. The statement n Proposton 4 s what Muhopadhaya (2003) has shown n the case where the sgnal s nary. He has also shown y numercal examples that mxed-strategy equlra n large commttees can yeld lower expected welfare than small commttees. Our analyss goes further y analytcally comparng the expected welfare of all mxed-strategy equlra. The amount of purchased nformaton n equlrum s ne cently small. Ths s ecause when a commttee memer decdes whether or not to nvest, she consders her prvate ene t rather than the socety s ene t. Snce nformaton s a pulc good, ts socal ene t s gger than the ndvdual ene t. Hence, the total numer of sgnals acqured n an equlrum s smaller than the socally optmal amount. Ths s why the socal welfare s monotoncally ncreasng n the commttee sze, as long as P. 7 If c > (1) (0); then noody has ncentve to collect nformaton, hence P = 0: 9

10 3.2 Mxed-strategy equlrum Suppose now that the sze of the commttee s larger than P. We consder strategy pro les n whch the commttee memers can randomze when mang a decson aout ncurrng the cost of nformaton acquston. The followng proposton characterzes the set of mxed-strategy equlra (ncludng asymmetrc ones). We show that each equlrum s characterzed y a par of ntegers (a; ). In the commttee, a memers nvest n a sgnal wth proalty one, and memers acqure nformaton wth postve ut less than one proalty. The rest of the memers, a (a + ) numer of them, do not ncur the cost. We call such an equlrum a type-(a; ) equlrum. hal , verson 1-3 Jun 2009 Proposton 5 Let the commttee sze e > P. Then, for all equlra there s a par (a; ), such that a memers nvest for sure, memers nvests wth proalty r 2 (0; 1), and (a + ) memers do not nvest. In addton a P a + ; (4) where the rst two nequaltes are strct whenever > 0. Proof. Frst, we explan that f, n an equlrum n whch one memer nvests wth proalty r 1 2 (0; 1) and another nvests wth proalty r 2 2 (0; 1), then r 1 = r 2. Snce the margnal ene t from an addtonal sgnal s decreasng, our games exht strategc susttuton. That s, the more nformaton the others acqure, the less ncentve a memer has to nvest. Hence, f r 1 < r 2 then the ndvdual who nvests wth proalty r 1 faces more nformaton n expectaton and has less ncentve to nvest than the ndvdual who nvests wth proalty r 2. On the other hand, snce r 1 ; r 2 2 (0; 1) oth ndvduals must e exactly nd erent etween nvestng and not nvestng, a contradcton. Now, we formalze ths argument. Let r 2 [0; 1] ( = 1; ; ) e the proalty that the th memer collects nformaton n equlrum. Suppose that r 1, r 2 2 (0; 1), and r 1 > r 2. Let I 1 and I 2 denote the numer of sgnals collected y memers 2; 3; :::; and y memers 1; 3; :::;, respectvely. Notce that snce r 1 > r 2 and g s decreasng, E r2;r 3;:::;r [g (I 1 )] > E r1;r 3;:::;r [g (I 2 )]. (5) On the other hand, a memer who strctly randomzes must e nd erent etween nvestng and not nvestng. Hence, for j = 1; 2 E rj;r 3;:::;r [g (I j )] = c. (6) Ths equalty mples that (5) should hold wth equalty, whch s a contradcton. Therefore, each equlrum can e characterzed y a par (a; ) where a memers collect nformaton for sure, and memers randomze ut collect nformaton wth the same proalty. It remans to show that there exsts a type-(a; ) equlrum f and only f (a; ) sats es (4). Frst, notce that whenever > P, n all pure-strategy equlra P memers nvest wth 10

11 proalty one, and the rest of the memers never nvests. In addton, the par P ; 0 sats es (4). Therefore, we only have to show that there exsts an equlrum of type-(a; ) equlrum where > 0 f and only f (a; ) sats es a < P < a + : (7) hal , verson 1-3 Jun 2009 Suppose that n a commttee, a memers nvest n nformaton for sure and 1 nvests wth proalty r. Let G(r; a; ) denote the expected gan from acqurng nformaton for the (a + )th memer. That s, X 1 1 G(r; a; ) = r (1 r) 1 g (a + ). =0 We clam that there exsts a type-(a; ) equlrum f and only f there exsts an r 2 (0; 1) such that G (r; a; ) = c. Suppose rst that such an r exsts. We rst argue that there exsts a type- (a; ) equlrum n whch memers nvest wth proalty r. Ths means that the memers, those that are randomzng, are nd erent etween nvestng and not nvestng. The a memers, who nvest for sure, strctly prefer to nvest ecause the margnal gan from an addtonal sgnal exceeds G (r; a; ). Smlarly, those memers who don t nvest, a (a + ) numer of them, are strctly etter o not nvestng ecause ther margnal gans are strctly smaller than G (r; a; ). Next, we argue that f G (r; a; ) = c does not have a soluton n (0; 1) then there exsts no type- (a; ) equlrum. But ths mmedately follows from the oservaton that f memers are strctly randomzng, they must e nd erent etween nvestng and not nvestng and hence G (r; a; ) = c. Therefore, t s su cent to show that G (r; a; ) = c has a soluton n (0; 1) f and only f (7) holds. Notce that G(r; a; ) s strctly decreasng n r ecause g s strctly decreasng. Also oserve that G(0; a; ) = g (a) and G(1; a; ) = g (a + 1). By the Intermedate Value Theorem, G(r; a; ) = c has a soluton n (0; 1) f and only f G(1; a; ) < c < G(0; a; ), whch s equvalent to g (a + 1) < c < g (a) : (8) Recall that P sats es g P < c < g P 1 : Snce g s decreasng, (8) holds f and only f a < P and a + > P. That s, the two strct nequaltes n (7) are sats ed. The last nequalty n (7), must hold ecause a + cannot exceed the sze of the commttee,. Fgure 2 graphcally represents the set of pars (a; ) whch satsfy (4). Accordng to the prevous proposton, there are several equlra n whch more than P memers acqure nformaton wth postve proalty. A natural queston to as s: can these mxed-strategy equlra e compared from the pont of vew of socal welfare? The next proposton partally answers ths queston. We show that f one xes the numer of memers who acqure nformaton for sure, then the larger the numer of memers who randomze s, the smaller 11

12 hal , verson 1-3 Jun 2009 Fgure 2: The set of mxed-strategy equlra the socal welfare generated y the equlrum s. Ths proposton plays an mportant role n determnng the optmal sze of the commttee. Proposton 6 Suppose that 2 N, such that there are oth type-(a; ) and type-(a; + 1) equlra. Then, the type-(a; ) equlrum generates strctly hgher socal welfare than the type-(a; + 1) equlrum. In order to prove ths proposton we need the followng results. Lemma 1 () G (r; a; ) > G (r; a; + 1) for all r 2 (0; 1], and () r a; > r a;+1, where r a; and r a;+1 are the solutons for G (r; a; ) = c and G (r; a; + 1) = c n r, respectvely. Proof. See the Appendx. Proof of Proposton 6. Suppose that a memers collect nformaton wth proalty one, and memers nvest wth proalty r. Let f (r; a; ) denote the ene t of an ndvdual, that s, f(r; a; ) = X =0 r (1 r) (a + ): 12

13 (r; a; = X =1 r 1 (1 r) (a + ) X 1 r ( ) (1 r) 1 (a + ). 1 1 Notce that = and ( ) =. Therefore, the rght-hand sde of the 1 prevous equalty can e rewrtten as X 1 r 1 (1 r) (a + ) 1 =1 =0 =0 X 1 1 r (1 r) 1 (a + ). hal , verson 1-3 Jun 2009 After changng the notaton n the rst summaton, ths can e further rewrtten: X 1 1 r (1 r) 1 (a + + 1) =0 X 1 1 = =0 X 1 1 r (1 r) 1 (a + ) =0 r (1 r) 1 (a + + 1) (a + ). Ths last expresson s just G (r; a; ), and hence, we have Next, we show that Snce f(0; a; ) = f(0; a; + 1) = (r; a; = G (r; a; ). f (r a; ; a; ) f (r a;+1 ; a; + 1) > (r a; r a;+1 ) c. (9) f (r a; ; a; ) f (r a;+1 ; a; + 1) = f (r a; ; a; ) f (0; a; ) f (r a;+1 ; a; + 1) f (0; a; + 1) = Z ra; 0 G (r; a; ) dr Z ra;+1 0 G (r; a; + 1) dr. By part () of Lemma 1, ths last d erence s larger than Z ra; G (r; a; ) dr 0 Z ra;+1 Z ra; 0 G (r; a; ) dr = G (r; a; ) dr. r a;+1 By part () of Lemma, we now that r a;+1 < r a;. In addton, snce G s decreasng n r, ths last expresson s larger than (r a; r a;+1 ) G (r a; ; a; ). Recall that r a; s de ned such that G (r a; ; a; ) = c and hence we can conclude (9). Let S(a; ) denote the socal welfare n the type-(a; ) equlrum, that s: S(a; ) = Nf (r a; ; a; ) c (a + r a; ). 13

14 Then, S (a; ) S (a; + 1) = Nf (r a; ; a; ) c (a + r a; ) [Nf (r a;+1 ; a; + 1) c (a + r a;+1 )] > N (r a; r a;+1 ) c c (r a; r a;+1 ) = (N 1) c (r a; r a;+1 ) > 0; where the rst nequalty follows from (9), and the last one follows from part () of Lemma The Proofs of the Theorems Frst, we show that the optmal commttee sze s ether P or P + 1. Second, we prove that f > then even the worst possle equlrum yelds hgher socal welfare than the unque equlrum n the commttee of sze 2: hal , verson 1-3 Jun 2009 Theorem 1 The optmal commttee sze,, s ether P or P + 1: We emphasze that for a certan set of parameter values, the optmal sze s = P, and for another set, = P + 1. Proof. Suppose that s the optmal sze of the commttee and the equlrum that maxmzes socal welfare s of type-(a; ). By the de nton of optmal sze, a + =. If = 0, then all of the commttee memers nvest n nformaton n ths equlrum. From Proposton 4, P follows. In addton, Proposton 4 also states that the socal welfare s ncreasng n as long as P. Therefore, = P follows. Suppose now that > 0. If there exsts an equlrum of type-(a; 1), then, y Proposton 6, s not the optmal commttee sze. Hence, f the sze of the commttee s, there does not exst an equlrum of type-(a; 1). By Proposton 5, ths mples that the par (a; 1) volates the nequalty chan (4) wth =. Snce the rst and last nequaltes n (4) hold ecause there s a type-(a; ) equlrum, t must e the case that the second nequalty s volated. That s, P a + 1 = 1. Ths mples that P + 1. Agan, from Proposton 4, t follows that = P or P + 1. Next, we turn our attenton to the potental welfare loss due to overszed commttees. Theorem 2 In any commttee of sze (> ), all equlra nduce hgher socal welfare than the unque equlrum n the commttee of sze 2. The followng lemma plays an mportant role n the proof. We pont out that ths s the only step of our proof that uses Assumpton 1. Lemma 2 For all 1 and 2 N, g ( 1) fg () g ()g fg () g ( 1)g f () ()g ; (10) and t holds wth equalty f and only f = or 1. 14

15 Proof of Theorem 2. Recall that S (a; ) denotes the expected socal welfare generated y an equlrum of type-(a:). Usng ths notaton, we have to prove that S ( 2; 0) < S (a; ). From Theorem 1, we now that = P or P + 1. By Proposton 4, S P 2; 0 < S P 1; 0. Therefore, n order to estalsh S ( 2; 0) < S (a; ), t s enough to show that S P 1; 0 < S (a; ) ; (11) hal , verson 1-3 Jun 2009 for all pars of (a; ) whch satsfy (4). Notce that f a+ memers nvests n nformaton, whch happens wth proalty ra; (1 r a; ) n a type-(a; ) equlrum, the socal welfare s N(a + ) c(a + ). Therefore, X h S (a; ) = r a; (1 r a; ) N (a + ) c (a + ) =0 ( X h = r a; (1 r a; ) N (a + ) c ) ca =0 ( X ) = N r a; (1 r a; ) (a + ) c (a + r a; ) : =0 In the last equaton, we used the dentty P =0 e rewrtten as N P 1 c P 1 < N Snce a P ( X =0 ra; (1 r a; ) = r a;. Therefore, (11) can ) ra; (1 r a; ) (a + ) c (a + r a; ). 1 y (4) and N, the rght hand sde of the prevous nequalty s larger than ( X ) N ra; (1 r a; ) (a + ) c P 1 + Nr a; =0 Hence t su ces to show that N P 1 c P 1 < N After addng c P ( X =0 ) ra; (1 r a; ) (a + ) c P 1 + Nr a; : 1 to oth sdes and dvdng through y N, we have ( X ) ( P 1) < r a;(1 r a; ) (a + ) cr a; : (12) =0 The left-hand sde s a payo of an ndvdual f P 1 sgnals are acqured y others, whle the rght-hand sde s the payo of an ndvdual who s randomzng n a type-(a; ) equlrum wth proalty r a;. Snce ths ndvdual s nd erent etween randomzng and not collectng nformaton, the rght-hand sde of (12) can e rewrtten as X 1 1 r a;(1 r a; ) 1 (a + ): =0 15

16 Hence (12) s equvalent to By Lemma 2 X 1 1 ( P 1) < r a;(1 r a; ) 1 (a + ): (13) =0 g P 1 ( X 1 1 r a;(1 r a; ) 1 g(a + ) g P ) (14) =0 > g P g P 1 ( X 1 1 r a;(1 r a; ) 1 (a + ) P ) : =0 hal , verson 1-3 Jun 2009 Notce that X 1 1 r a;(1 r a; ) 1 g(a + ) = c < g P 1 ; (15) =0 where the equalty guarantees that a memer who s randomzng s nd erent etween nvestng and not nvestng, and the nequalty holds y (3). Hence, from (14) and (15), g P 1 g P 1 g P > g P g P 1 ( X 1 1 r a;(1 r a; ) 1 (a + ) P ) : Snce g P 1 g P > 0; the prevous nequalty s equvalent to =0 g P 1 > P X 1 1 r a;(1 r a; ) 1 (a + ). Fnally, snce P g P 1 = P 1, ths nequalty s just (13). =0 The two graphs of Fgure 3 show the socal welfare n the worst equlrum as a functon of the commttee sze. In ths numercal example, the pror s symmetrc and the parameters are chosen such that N = 100; s N (!; 1), = :3; p = :7; and c = 10 4 : In addton, P = 11 and = 12: The two graphs are ndeed the same graph except that the scalngs of the vertcal axes are d erent. One can see that the welfare loss due to overszed commttees s qute small. 4 Concluson In ths paper, we have dscussed the optmal commttee sze and the potental welfare losses assocated wth overszed commttees. We have focused on envronments n whch there s no con ct of nterest among ndvduals ut nformaton acquston s costly. Frst, we have con rmed that the optmal commttee sze s ounded. In other words, the Condorcet Jury Theorem fals to hold, that s, larger commttees mght nduce smaller socal welfare. However, we have also showed that the welfare loss due to overszed commttees s surprsngly small. In an artrarly large commttee, 16

17 hal , verson 1-3 Jun 2009 Fgure 3: Socal Welfare, as a functon of the commttee sze 17

18 even the worst equlrum generates a hgher welfare than an equlrum n a commttee n whch there are two less memers than n the optmal commttee. Our results suggest that carefully desgnng commttees mght e not as mportant as t was thought to e. 5 Appendx Lemma 3 Suppose that 2 C 1 (R + ) s asolutely contnuous, strctly ncreasng and 0 ( + 1) = 0 () s strctly ncreasng for > "; where " 0. Let g () = ( + 1) () for all 0: Then g ( + 1) =g () < g ( + 2) =g ( + 1) for ": Proof. Fx a ( ") : Notce that 0 ( + 2) = 0 ( + 1) < 0 (t + 2) = 0 (t + 1) s equvalent to 0 ( + 2) 0 (t + 1) < 0 ( + 1) 0 (t + 2). Therefore, hal , verson 1-3 Jun 2009 It follows that 0 ( + 2) Z +1 0 (t + 1) dt < 0 ( + 1) Z +1 0 (t + 2) dt, 0 ( + 2) [ ( + 2) ( + 1)] < 0 ( + 1) [ ( + 3) ( + 2)]. 0 ( + 2) ( + 3) ( + 2) g ( + 2) 0 < = ( + 1) ( + 2) ( + 1) g ( + 1) : (16) Smlarly, for all t 2 (; + 1), 0 ( + 2) = 0 ( + 1) > 0 (t + 1) = 0 (t) s equvalent to 0 ( + 2) 0 (t) > 0 ( + 1) 0 (t + 1). Therefore, It follows that 0 ( + 2) Z +1 0 (t) dt > 0 ( + 1) Z +1 0 (t + 1) dt, 0 ( + 2) [ ( + 1) ()] > 0 ( + 1) [ ( + 2) ( + 1)]. 0 ( + 2) 0 ( + 1) From (16) and (17) t follows that for all ": > ( + 2) ( + 1) ( + 1) () g ( + 1) g () < g ( + 2) g ( + 1) = g ( + 1) : (17) g () Proof of Proposton 1. The sum of normally dstruted sgnals are also normal; P =1 s N!; p. The densty functon of P =1 s condtonal on! s 0 P 1 p s 1! p A where (x) = (2) 1=2 exp x 2 =2 : The ex post e cent decson rule s gven y (s 1 ; ; s ) = 1 f s s ; and (s 1 ; ; s ) = 1 f s s < ; 18

19 where = 2 =2 log [(1 q) (1 ) =q] s the cut-o value. Hence, for 2 Nn f0g, () = q Pr [ (s 1 ; ; s ) = 1j! = 1] (1 q) (1 ) Pr [ (s 1 ; ; s ) = 1j! = 1] + = q p (1 q) (1 ) p where s the cdf of standard normal dstruton. If = 0, (18) (0) = max f q; (1 q) (1 )g : (19) Notce that the rght hand sde of (18) converges to that of (19) as goes to zero. Part() If q + = 1; then q = (1 q) (1 ) and = 0. Hence p! () = 2q and 0 () = q p! 1 p for > 0: hal , verson 1-3 Jun 2009 Therefore, 0 ( + 1) 0 () = r exp 2 2 s ncreasng n (> 0) : From Lemma 3, settng " to e zero, t follows that g ( + 1) =g () s ncreasng n 2 N: Part() Frst, we argue that for any " (> 0) ; 0 ( + 1) = 0 () s ncreasng for all > " f s su cently small. For > 0; 0 ( + 1) 0 () = = = r + 1 (+1) p +1 r + 1 = p r exp ( + 1) r L exp 2 exp 8 ( + 1) exp exp where L = log f(1 q) (1 ) = (q)g : Now suppose that > ". The last term n (20) has no n uence on whether 0 ( + 1) = 0 () s ncreasng or not. The second term converges to 1 as goes to 0. Ovously, the rst term s strctly ncreasng n. Hence, 0 ( + 1) = 0 () s ncreasng n (> ") ; f s su cently small. By settng " 2 (0; 1) and usng Lemma 3, we have shown that g ( + 1) =g () < g ( + 2) =g ( + 1) for all 1: It remans to e shown that g (1) =g (0) < g (2) =g (1) : From the argument n the proof of Lemma 3, t follows that 0 (2) = 0 (1) < 0 (t + 1) = 0 (t) for all t 2 (1; 2) mples 0 (2) = 0 (1) < g (2) =g (1) : Hence, t s enough to show that g (1) =g (0) < 0 (2) = 0 (1) for su cently small : Snce lm!0 g (0) = (20) (0) > 0; t s enough to show that lm!0 [g (1) = f 0 (2) = 0 (1)g] = 0. In order to estalsh ths equalty, t s ovously enough to show that lm!0 () 0 (2) = 0 = 0 for 2 f1; 2g : (21) (1) 19

20 hal , verson 1-3 Jun 2009 Rememer L = log f(1 q) (1 ) = (q)g : By (18), for > 0, ( () = q L p! 2 p + exp (L) whch mples () 2 O E L p!) 2 p p= as! 0: 8 Usng (20), 0 (2) = 0 (1) 2 O E exp 1=2 2 = O E ( (1=)) as! 0. By l Hôptal s Rule, for 2 f1; 2g ; p= p= p= 2 lm = lm!0 (1=)!0 (1=) (1= 3 = 0; ) whch mples (21). Proof of Proposton 2. Frst, we clam that the ex post e cent decson rule : f 1; 0; 1g! f 1; 1g s the followng cut-o rule: 8 >< 1 f (s 1 ; ; s ) = >: 1 f X s ; =1 X s < ; where = log [(1 q) (1 ) =q] = log [p= (1 p)] : Suppose that the sgnal sequence (s 1 ; ; s ) s a permutaton of 8 9 >< >= >: 1; {z ; 1 ; 0; ; 0; 1; ; 1 } {z } {z } >; : (23) a a Then (s 1 ; ; s ) = 1 f In addton, E! [u (!; 1) js 1 ; ; s ] = (1 q) (1 ) Pr [s 1; ; s j! = 1] Pr [s 1 ; ; s ] > E! [u (!; 1) js 1 ; ; s ] = q Pr [s 1; ; s j! = 1] : Pr [s 1 ; ; s ] =1 (22) Pr [s 1 ; ; s j! = 1] = (pr) a (1 r) a (r (1 p)) and Pr [s 1 ; ; s j! = 1] = (pr) (1 r) a (r (1 p)) a : Hence, (s 1 ; ; s ) = 1 f (1 q) (1 ) p (1 p) a > qp a (1 p) ; or equvalently, log a > log (1 q)(1 ) q p 1 p = : 8 O E s a verson of Landau s O, whch descres the exact order of the expresson. Formally, f (x) 2 O E (g (x)) as x! a 9M > 0 s.t. lm x!a jf (x) =g (x)j = M: 20

21 Snce P =1 s = a, (22) follows. Now, we shall consder the case where p converges to 1. Let " denote 1 p and let Pr [a; ] denote the proalty of a sgnal sequence whch s a permutaton of (23). Then, Pr [a; j! = 1] = C (a; ) (1 ") a " ; Pr [a; j! = 1] = C (a; ) (1 ") " a ; where C (a; ) = [!=(a!! ( a )!)] r a+ (1 r) a. 9 Notce that C (a; ) s ndependent of " and symmetrc wth respect to a and. We have 10 Pr [a 1j! = 1] = C (0; 1) " + O " 2 ; and hal , verson 1-3 Jun 2009 Pr [a 0j! = 1] = C (0; 0) + fc (1; 0) + C (1; 1)g " + O " 2 : Oserve that < 1 f p s close enough to one. Wthout loss of generalty, assume that q + 1: Then Then where 1 < 0: Hence, () = q Pr [a 1j! = 1] (1 q) (1 ) Pr [a 0j! = 1] = qc (0; 1) " (1 q) (1 ) [C (0; 0) + fc (1; 0) + C (1; 1)g "] + O " 2 : and D (a; ) = C +1 (a; ) g ( + 1) g () g () = ( + 1) () = A () + B () " + O " 2 ; A () = (1 q) (1 ) D (0; 0) ; (24) B () = qd (0; 1) (1 q) (1 ) [D (1; 0) + D (1; 1)] ; = = C (a; ) : Usng these notatons, A ( + 1) 1 + B(+1) A(+1) " + O "2 = A () 1 + B() A() " + O ("2 ) B ( + 1) B () 1 + " + O " 2 : (25) A ( + 1) A () A ( + 1) + B ( + 1) " + O "2 A () + B () " + O (" 2 ) A ( + 1) A () We want to show that g ( + 1) =g () s ncreasng n f " s su cently small. Snce A ( + 1) =A () = 1 r; t s su cent to show that B () =A () s convex n : It s straghtforward to see that D (0; 1) D (0; 0) = D (1; 0) D (0; 0) = ( + 1) r (1 r) r (1 r) 1 ( + 1) r (1 r) r (1 r) +1 (1 r) = (1 r) 2 (1 r) s a polynomal of wth degree 1, hence t has no n uence on the convexty of B () =A () : On the other hand, D (1; 1) D (0; 0) = ( + 1) r2 (1 r) 1 ( 1) r 2 (1 r) 2 (1 r) +1 (1 r) = ( + 1) r2 (1 r) ( 1) r 2 (1 r) 3 (1 r) 2 9 De ne C (a; ) = 0 f < a f (x) 2 O (g (x)) as x! 0 f and only f 9 > 0; M > 0 s.t. jxj < mples jf (x) =g (x)j < M: 21

22 hal , verson 1-3 Jun 2009 has a postve coe cent of 2 : Hence we conclude B () =A () s convex n. Proof of Proposton 3. de ned y As n the proof of Proposton 2, the ex post e cent decson rule s (s) = ( 1 f P s ; 1 otherwse, where = log [(1 q) (1 ) =q] = log [p= (1 p)] : By symmetry, we can assume 0 wthout loss of generalty. Frst, suppose > 1: Then () = an addtonal sgnal s zero for < q for < ; and the margnal ene t from 1. Therefore, g ( + 1) =g () s not well-de ned. Second, suppose 0 < 1: We shall consder two d erent cases dependng on whether s even or odd. Case 1: Suppose = 2m; where m 2 N. Then, the (2m + 1)-st sgnal maes a d erence f and only f the rst 2m sgnals have a te etween postve and negatve sgnals and the (2m + 1)-st sgnal s postve (denote ths stuaton as pv e ). In such a case, the socal decson changes from 1 to 1. Hence the gan s q f! = 1; and the loss s (1 q) f! = 1: Therefore, expected margnal ene t s g (2m) = q Pr [! = 1; pv e ] (1 q) Pr [! = 1; pv e ] 2m = q p m (1 p) m p (1 q) (1 ) m 2m = fpq (1 p) (1 q) (1 )g m p m (1 p) m : 2m p m (1 p) m (1 p) m Case 2: Suppose = 2m + 1; where m 2 N. Then, the (2m + 2)-nd sgnal maes a d erence f and only f the rst (2m + 1) sgnals contans (m + 1) postve and m negatve sgnals and the (2m + 2)-nd sgnal s negatve (denote ths stuaton as pv o ). In such a case, the socal decson changes from 1 to 1. Hence the loss s q f! = 1; and the gan s (1 q) f! = 1: Therefore, expected margnal ene t s g (2m + 1) = q Pr [! = 1; pv o ] + (1 q) Pr [! = 1; pv o ] 2m + 1 = q p m+1 (1 p) m+1 + (1 q) m 2m + 1 = f q + (1 q) (1 )g m (1 ) p m+1 (1 p) m+1 : 2m + 1 p m+1 (1 p) m+1 Recall that 0 < 1; whch s equvalent to pq (1 p) (1 q) (1 ) > 0 and (1 q) (1 ) q 0: If > 0; g (2m + 2) g (2m + 1) pq (1 p) (1 q) (1 ) = ; (1 q) (1 ) q whch s a constant functon of m, and hence, Assumpton 1 does not hold. g (2m + 1) = 0 and g (2m + 2) =g (2m + 1) s not well-de ned. Proof of Lemma 1. Part (). Notce that X 1 1 G (r; a; ) = r (1 r) 1 g (a + ) : =0 m If = 0; then 22

23 Snce r (1 r) 1 = r (1 r) + r +1 (1 r) 1, hal , verson 1-3 Jun 2009 Snce g s decreasng G (r; a; ) > X 1 1 r G (r; a; ) = (1 r) + r +1 (1 r) 1 g (a + ). = = =0 =0 X 1 1 X 1 r (1 r) 1 g (a + ) + r +1 (1 r) 1 g (a + + 1) =0 =0 X 1 1 X r (1 r) 1 g (a + ) + r (1 r) g (a + ) 1 X 1 =0 + =1 1 r (1 r) g (a + ), 1 where the rst equalty holds ecause we have just rede ned thenotaton n the second summaton, n n and the second equalty holds ecause, y conventon, = = 0 for all n 2 N. Fnally, 1 n usng + =, we have 1 G (r; a; ) > X =0 r (1 r) g (a + ) = G (r; a; + 1). Part (). By the de ntons of r a; and r a;+1, we have and y part () of ths lemma, Therefore c = G (r a; ; a; ) = G (r a;+1 ; a; + 1) ; G (r a;+1 ; a; + 1) < G (r a;+1 ; a; ) : G (r a; ; a; ) < G (r a;+1 ; a; ) Snce G (r; a; ) s strctly decreasng n r; r a; > r a;+1 follows. Proof of Lemma 2. The statement of the lemma s ovous f 2 f 1; g. It remans to show that (10) hold wth strct nequalty whenever =2 f 1; g. Frst, notce that for any postve sequence, fa j g 1 0, f a j+1=a j < a j+2 =a j+1 for all j 2 N, then P a j=+1 > a j P a 1 1 j= a j for all > 1 and for all 2 f0; :::; 2g : Assumpton 1 allows us to apply ths result for the sequence a j = g (j), and hence, for all 1 P g () g ( 1) > j=+1 P g (j) 1 j= g (j) = ( + 1) ( + 1) () () for all 2 f0; :::; 2g : 23

24 Snce (a) > () f a >, ths mples that for all 2 f0; :::; 2g g () [ () ()] < g ( 1) [ ( + 1) ( + 1)]. (26) Smlarly, for a postve sequence fa j g 1 0 f a j+1=a j < a j+2 =a j+1 for all j 2 N, then P a j=+1 < a j P a 1 1 j= a j for all 1 and for all + 1: Agan, y Assumpton 1, we can apply ths result to the sequence a j = g (j) and get P g () g ( 1) < j=+1 P g (j) 1 j= g (j) = ( + 1) ( + 1) () () for all >. hal , verson 1-3 Jun 2009 Multplyng through y g ( 1) ( () ()), we get (26). That s, (26) holds whenever =2 f 1; g. After sutractng g ( 1) ( () ()) from oth sdes of (26) we get (10). References [1] D. Austen-Smth, J.S. Bans Informaton Aggregaton, Ratonalty, and the Condorcet Jury Theorem Amercan Poltcal Scence Revew 90(1) (1996) [2] R. Ben-Yashar, S. Ntzan The nvaldty of the Condorcet Jury Theorem under endogenous decsonal slls Economcs of Governance 2(3) (2001) [3] T. Börgers, Costly Votng Amercan Economc Revew 94 (2004) [4] Le Marqus de Condorcet Essa sur l applcaton de l analyse à la proalté des décsons rendues à la pluralté des vox Les Archves de la Revoluton Françase, Pergamon Press (1785) [5] P. Coughlan In Defense of Unanmous Jury Verdcts: Mstrals, Communcaton, and Strategc Votng Amercan Poltcal Scence Revew 94(2) (2000) [6] T. Feddersen, W. Pesendorfer Swng Voter s Curse Amercan Economc Revew 86 (1996) [7] T. Feddersen, W. Pesendorfer Votng Behavor and Informaton Aggregaton n Electons wth Prvate Informaton Econometrca 65(5) (1997) [8] T. Feddersen, W. Pesendorfer Convctng the Innocent: The Inferorty of Unanmous Jury Verdcts under Strategc Votng Amercan Poltcal Scence Revew 92(1) (1998) [9] D. Gerard, L. Yarv, Informaton Acquston n Commttees mmeo (2006) 24

25 [10] K. Gerlng, H.P. Grüner, A. Kel, E. Schulte, Informaton Acquston and Decson Mang n Commttees: A Survey European Central Ban, Worng Paper No. 256 (2003) [11] A. Gershov, B. Szentes, Optmal Votng Scheme wth Costly Informaton Acquston mmeo (2006) [12] B. Grofman, G. Owen, Condorcet Models, Avenues for Future Research Informaton Poolng and Group Decson Mang, Ja Press (1986) [13] H. L, "A Theory of Conservatsm" Journal of Poltcal Economy 109(3) (2001) [14] C. Martnell, Would Ratonal Voters Acqure Costly Informaton? Journal of Economc Theory 129 (2006) hal , verson 1-3 Jun 2009 [15] C. Martnell, Ratonal Ignorance and Votng Behavor Internatonal Journal of Game Theory 35 (2007) [16] A. McLennan, Consequences of the Condorcet Jury Theorem for Bene cal Informaton Aggregaton y Ratonal Agents Amercan Poltcal Scence Revew 92(2) (1998) [17] N. Mller, Informaton, Electorates, and Democracy: Some Extensons and Interpretatons of the Condorcet Jury Theorem Informaton Poolng and Group Decson Mang, Ja Press (1986) [18] K. Muhopadhaya, Jury Sze and the Free Rder Prolem Journal of Law, Economcs, and Organzaton 19(1) (2003) [19] R.B. Myerson, Game Theory: Analyss of Con ct Camrdge, MA: Harvard Unversty Press (1991) [20] R.B. Myerson, Extended Posson Games and the Condorcet Jury Theorem Games and Economc Behavor 25 (1998) [21] N. Persco Commttee Desgn wth Endogenous Informaton Revew of Economc Studes 71(1) (2004)

A Resurrection of the Condorcet Jury Theorem

A Resurrection of the Condorcet Jury Theorem A Resurrecton of the Condorcet Jury Theorem Yuo Koryama Balázs Szentes Department of Economcs, Unversty of Chcago June 13, 2007 Abstract Ths paper analyzes the optmal sze of a delberatng commttee where,

More information

A resurrection of the Condorcet Jury Theorem

A resurrection of the Condorcet Jury Theorem Theoretcal Economcs 4 (2009), 227 252 1555-7561/20090227 A resurrecton of the Condorcet Jury Theorem YUKIO KORIYAMA Département d Économe, École Polytechnque, Palaseau BALÁZS SZENTES Department of Economcs,

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract Endogenous tmng n a mxed olgopoly consstng o a sngle publc rm and oregn compettors Yuanzhu Lu Chna Economcs and Management Academy, Central Unversty o Fnance and Economcs Abstract We nvestgate endogenous

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting.

x yi In chapter 14, we want to perform inference (i.e. calculate confidence intervals and perform tests of significance) in this setting. The Practce of Statstcs, nd ed. Chapter 14 Inference for Regresson Introducton In chapter 3 we used a least-squares regresson lne (LSRL) to represent a lnear relatonshp etween two quanttatve explanator

More information

Information Acquisition in Global Games of Regime Change

Information Acquisition in Global Games of Regime Change Informaton Acquston n Global Games of Regme Change Mchal Szkup and Isabel Trevno y Abstract We study costly nformaton acquston n global games of regme change (that s, coordnaton games where payo s are

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

CS286r Assign One. Answer Key

CS286r Assign One. Answer Key CS286r Assgn One Answer Key 1 Game theory 1.1 1.1.1 Let off-equlbrum strateges also be that people contnue to play n Nash equlbrum. Devatng from any Nash equlbrum s a weakly domnated strategy. That s,

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium?

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium? APPLIED WELFARE ECONOMICS AND POLICY ANALYSIS Welfare Propertes of General Equlbrum What can be sad about optmalty propertes of resource allocaton mpled by general equlbrum? Any crteron used to compare

More information

A Note on Preference Uncertainty and Communication in Committees 1

A Note on Preference Uncertainty and Communication in Committees 1 A Note on Preference Uncertanty and Communcaton n Commttees 1 Davd Austen-Smth MEDS, Kellogg Graduate School of Management Northwestern Unversty Evanston, IL 60208 Tm Feddersen MEDS, Kellogg Graduate School

More information

Internet Appendix for "Nonbinding Voting for Shareholder Proposals"

Internet Appendix for Nonbinding Voting for Shareholder Proposals Internet Appendx for "Nonbndng Votng for Shareholder Proposals" DORON LEVIT and NADYA MALENKO The Internet Appendx contans the omtted proofs from the man appendx (Secton I) and the analyss correspondng

More information

Online Appendix. t=1 (p t w)q t. Then the first order condition shows that

Online Appendix. t=1 (p t w)q t. Then the first order condition shows that Artcle forthcomng to ; manuscrpt no (Please, provde the manuscrpt number!) 1 Onlne Appendx Appendx E: Proofs Proof of Proposton 1 Frst we derve the equlbrum when the manufacturer does not vertcally ntegrate

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Perfect Competition and the Nash Bargaining Solution

Perfect Competition and the Nash Bargaining Solution Perfect Competton and the Nash Barganng Soluton Renhard John Department of Economcs Unversty of Bonn Adenauerallee 24-42 53113 Bonn, Germany emal: rohn@un-bonn.de May 2005 Abstract For a lnear exchange

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

(1 ) (1 ) 0 (1 ) (1 ) 0

(1 ) (1 ) 0 (1 ) (1 ) 0 Appendx A Appendx A contans proofs for resubmsson "Contractng Informaton Securty n the Presence of Double oral Hazard" Proof of Lemma 1: Assume that, to the contrary, BS efforts are achevable under a blateral

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

A Note on Preference Uncertainty and Communication in Committees 1

A Note on Preference Uncertainty and Communication in Committees 1 A Note on Preference Uncertanty and Communcaton n Commttees 1 Davd Austen-Smth MEDS, Kellogg Graduate School of Management Northwestern Unversty Evanston, IL 60208 Tm Feddersen MEDS, Kellogg Graduate School

More information

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper

Games of Threats. Elon Kohlberg Abraham Neyman. Working Paper Games of Threats Elon Kohlberg Abraham Neyman Workng Paper 18-023 Games of Threats Elon Kohlberg Harvard Busness School Abraham Neyman The Hebrew Unversty of Jerusalem Workng Paper 18-023 Copyrght 2017

More information

Module 17: Mechanism Design & Optimal Auctions

Module 17: Mechanism Design & Optimal Auctions Module 7: Mechansm Desgn & Optmal Auctons Informaton Economcs (Ec 55) George Georgads Examples: Auctons Blateral trade Producton and dstrbuton n socety General Setup N agents Each agent has prvate nformaton

More information

Implementation and Detection

Implementation and Detection 1 December 18 2014 Implementaton and Detecton Htosh Matsushma Department of Economcs Unversty of Tokyo 2 Ths paper consders mplementaton of scf: Mechansm Desgn wth Unqueness CP attempts to mplement scf

More information

Hila Etzion. Min-Seok Pang

Hila Etzion. Min-Seok Pang RESERCH RTICLE COPLEENTRY ONLINE SERVICES IN COPETITIVE RKETS: INTINING PROFITILITY IN THE PRESENCE OF NETWORK EFFECTS Hla Etzon Department of Technology and Operatons, Stephen. Ross School of usness,

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Market structure and Innovation

Market structure and Innovation Market structure and Innovaton Ths presentaton s based on the paper Market structure and Innovaton authored by Glenn C. Loury, publshed n The Quarterly Journal of Economcs, Vol. 93, No.3 ( Aug 1979) I.

More information

Online Appendix: Reciprocity with Many Goods

Online Appendix: Reciprocity with Many Goods T D T A : O A Kyle Bagwell Stanford Unversty and NBER Robert W. Stager Dartmouth College and NBER March 2016 Abstract Ths onlne Appendx extends to a many-good settng the man features of recprocty emphaszed

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Polynomials. 1 More properties of polynomials

Polynomials. 1 More properties of polynomials Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

ON THE EQUIVALENCE OF ORDINAL BAYESIAN INCENTIVE COMPATIBILITY AND DOMINANT STRATEGY INCENTIVE COMPATIBILITY FOR RANDOM RULES

ON THE EQUIVALENCE OF ORDINAL BAYESIAN INCENTIVE COMPATIBILITY AND DOMINANT STRATEGY INCENTIVE COMPATIBILITY FOR RANDOM RULES ON THE EQUIVALENCE OF ORDINAL BAYESIAN INCENTIVE COMPATIBILITY AND DOMINANT STRATEGY INCENTIVE COMPATIBILITY FOR RANDOM RULES Madhuparna Karmokar 1 and Souvk Roy 1 1 Economc Research Unt, Indan Statstcal

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Robust Implementation: The Role of Large Type Spaces

Robust Implementation: The Role of Large Type Spaces Robust Implementaton: The Role of Large Type Spaces Drk Bergemann y Stephen Morrs z Frst Verson: March 2003 Ths Verson: Aprl 2004 Abstract We analyze the problem of fully mplementng a socal choce functon

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

Infinitely Split Nash Equilibrium Problems in Repeated Games

Infinitely Split Nash Equilibrium Problems in Repeated Games Infntely Splt ash Equlbrum Problems n Repeated Games Jnlu L Department of Mathematcs Shawnee State Unversty Portsmouth, Oho 4566 USA Abstract In ths paper, we ntroduce the concept of nfntely splt ash equlbrum

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

Notes on Bias Uncertainty and Communication in Committees 1

Notes on Bias Uncertainty and Communication in Committees 1 Notes on Bas Uncertanty and Communcaton n Commttees 1 Davd Austen-Smth MEDS, Kellogg Graduate School of Management Northwestern Unversty Evanston, IL 60208 Tm Feddersen MEDS, Kellogg Graduate School of

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

What would be a reasonable choice of the quantization step Δ?

What would be a reasonable choice of the quantization step Δ? CE 108 HOMEWORK 4 EXERCISE 1. Suppose you are samplng the output of a sensor at 10 KHz and quantze t wth a unform quantzer at 10 ts per sample. Assume that the margnal pdf of the sgnal s Gaussan wth mean

More information

Implementation in Mixed Nash Equilibrium

Implementation in Mixed Nash Equilibrium Department of Economcs Workng Paper Seres Implementaton n Mxed Nash Equlbrum Claudo Mezzett & Ludovc Renou May 2012 Research Paper Number 1146 ISSN: 0819-2642 ISBN: 978 0 7340 4496 9 Department of Economcs

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Pricing and Resource Allocation Game Theoretic Models

Pricing and Resource Allocation Game Theoretic Models Prcng and Resource Allocaton Game Theoretc Models Zhy Huang Changbn Lu Q Zhang Computer and Informaton Scence December 8, 2009 Z. Huang, C. Lu, and Q. Zhang (CIS) Game Theoretc Models December 8, 2009

More information

Conjectures in Cournot Duopoly under Cost Uncertainty

Conjectures in Cournot Duopoly under Cost Uncertainty Conjectures n Cournot Duopoly under Cost Uncertanty Suyeol Ryu and Iltae Km * Ths paper presents a Cournot duopoly model based on a condton when frms are facng cost uncertanty under rsk neutralty and rsk

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

On the correction of the h-index for career length

On the correction of the h-index for career length 1 On the correcton of the h-ndex for career length by L. Egghe Unverstet Hasselt (UHasselt), Campus Depenbeek, Agoralaan, B-3590 Depenbeek, Belgum 1 and Unverstet Antwerpen (UA), IBW, Stadscampus, Venusstraat

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

Appendix B. Criterion of Riemann-Stieltjes Integrability

Appendix B. Criterion of Riemann-Stieltjes Integrability Appendx B. Crteron of Remann-Steltes Integrablty Ths note s complementary to [R, Ch. 6] and [T, Sec. 3.5]. The man result of ths note s Theorem B.3, whch provdes the necessary and suffcent condtons for

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ]

Richard Socher, Henning Peters Elements of Statistical Learning I E[X] = arg min. E[(X b) 2 ] 1 Prolem (10P) Show that f X s a random varale, then E[X] = arg mn E[(X ) 2 ] Thus a good predcton for X s E[X] f the squared dfference s used as the metrc. The followng rules are used n the proof: 1.

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Demand Response with Linear Bidding: Efficiency vs. Risk. Munther A. Dahleh MIT Institute for Data, Systems, and Society

Demand Response with Linear Bidding: Efficiency vs. Risk. Munther A. Dahleh MIT Institute for Data, Systems, and Society Demand Response wth Lnear Bddng: Effcency vs. Rsk Munther A. Dahleh MIT Insttute for Data, Systems, and Socety Collaoraton Na L : Harvard Unversty Ljun Chen: Unversty of Colorado at Boulder Qngqng Huang:

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

Economics 2450A: Public Economics Section 10: Education Policies and Simpler Theory of Capital Taxation

Economics 2450A: Public Economics Section 10: Education Policies and Simpler Theory of Capital Taxation Economcs 2450A: Publc Economcs Secton 10: Educaton Polces and Smpler Theory of Captal Taxaton Matteo Parads November 14, 2016 In ths secton we study educaton polces n a smplfed verson of framework analyzed

More information

Information Structures in Optimal Auctions

Information Structures in Optimal Auctions Informaton Structures n Optmal Auctons Dr Bergemann y Martn Pesendorfer z January 2007 Abstract A seller wshes to sell an obect to one of multple bdders. The valuatons of the bdders are prvately nown.

More information

Finding Primitive Roots Pseudo-Deterministically

Finding Primitive Roots Pseudo-Deterministically Electronc Colloquum on Computatonal Complexty, Report No 207 (205) Fndng Prmtve Roots Pseudo-Determnstcally Ofer Grossman December 22, 205 Abstract Pseudo-determnstc algorthms are randomzed search algorthms

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India February 2008

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India February 2008 Game Theory Lecture Notes By Y. Narahar Department of Computer Scence and Automaton Indan Insttute of Scence Bangalore, Inda February 2008 Chapter 10: Two Person Zero Sum Games Note: Ths s a only a draft

More information

Uniqueness of Nash Equilibrium in Private Provision of Public Goods: Extension. Nobuo Akai *

Uniqueness of Nash Equilibrium in Private Provision of Public Goods: Extension. Nobuo Akai * Unqueness of Nash Equlbrum n Prvate Provson of Publc Goods: Extenson Nobuo Aka * nsttute of Economc Research Kobe Unversty of Commerce Abstract Ths note proves unqueness of Nash equlbrum n prvate provson

More information

Complete subgraphs in multipartite graphs

Complete subgraphs in multipartite graphs Complete subgraphs n multpartte graphs FLORIAN PFENDER Unverstät Rostock, Insttut für Mathematk D-18057 Rostock, Germany Floran.Pfender@un-rostock.de Abstract Turán s Theorem states that every graph G

More information

Graph Reconstruction by Permutations

Graph Reconstruction by Permutations Graph Reconstructon by Permutatons Perre Ille and Wllam Kocay* Insttut de Mathémathques de Lumny CNRS UMR 6206 163 avenue de Lumny, Case 907 13288 Marselle Cedex 9, France e-mal: lle@ml.unv-mrs.fr Computer

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

and problem sheet 2

and problem sheet 2 -8 and 5-5 problem sheet Solutons to the followng seven exercses and optonal bonus problem are to be submtted through gradescope by :0PM on Wednesday th September 08. There are also some practce problems,

More information

Subjective Uncertainty Over Behavior Strategies: A Correction

Subjective Uncertainty Over Behavior Strategies: A Correction Subjectve Uncertanty Over Behavor Strateges: A Correcton The Harvard communty has made ths artcle openly avalable. Please share how ths access benefts you. Your story matters. Ctaton Publshed Verson Accessed

More information

The Mixed Strategy Nash Equilibrium of the Television News Scheduling Game

The Mixed Strategy Nash Equilibrium of the Television News Scheduling Game The Mxed Strategy Nash Equlbrum of the Televson News Schedulng Game Jean Gabszewcz Dder Laussel Mchel Le Breton July 007 Abstract We characterze the unque mxed-strategy equlbrum of an extenson of the "televson

More information

Introduction. 1. The Model

Introduction. 1. The Model H23, Q5 Introducton In the feld of polluton regulaton the problems stemmng from the asymmetry of nformaton between the regulator and the pollutng frms have been thoroughly studed. The semnal works by Wetzman

More information

Folk Theorem in Stotchastic Games with Private State and Private Monitoring Preliminary: Please do not circulate without permission

Folk Theorem in Stotchastic Games with Private State and Private Monitoring Preliminary: Please do not circulate without permission Folk Theorem n Stotchastc Games wth Prvate State and Prvate Montorng Prelmnary: Please do not crculate wthout permsson Takuo Sugaya Stanford Graduate School of Busness December 9, 202 Abstract We show

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Dirichlet s Theorem In Arithmetic Progressions

Dirichlet s Theorem In Arithmetic Progressions Drchlet s Theorem In Arthmetc Progressons Parsa Kavkan Hang Wang The Unversty of Adelade February 26, 205 Abstract The am of ths paper s to ntroduce and prove Drchlet s theorem n arthmetc progressons,

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Société de Calcul Mathématique SA

Société de Calcul Mathématique SA Socété de Calcul Mathématque SA Outls d'ade à la décson Tools for decson help Probablstc Studes: Normalzng the Hstograms Bernard Beauzamy December, 202 I. General constructon of the hstogram Any probablstc

More information

Elections and Strategic Voting: Condorcet and Borda. P. Dasgupta E. Maskin

Elections and Strategic Voting: Condorcet and Borda. P. Dasgupta E. Maskin Electons and Strategc Votng: ondorcet and Borda P. Dasgupta E. Maskn votng rule (socal choce functon) method for choosng socal alternatve (canddate) on bass of voters preferences (rankngs, utlt functons)

More information

Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement

Efficient many-party controlled teleportation of multi-qubit quantum information via entanglement Effcent many-party controlled teleportaton of mult-qut quantum nformaton va entanglement Chu-Png Yang, Shh-I Chu, Syuan Han Physcal Revew A, 24 Presentng: Vctora Tchoudakov Motvaton Teleportaton va the

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence Remarks on the Propertes of a Quas-Fbonacc-lke Polynomal Sequence Brce Merwne LIU Brooklyn Ilan Wenschelbaum Wesleyan Unversty Abstract Consder the Quas-Fbonacc-lke Polynomal Sequence gven by F 0 = 1,

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

Competitive Experimentation and Private Information

Competitive Experimentation and Private Information Compettve Expermentaton an Prvate Informaton Guseppe Moscarn an Francesco Squntan Omtte Analyss not Submtte for Publcaton Dervatons for te Gamma-Exponental Moel Dervaton of expecte azar rates. By Bayes

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Investment Secrecy and Competitive R&D

Investment Secrecy and Competitive R&D BE J. Econ. nal. Polcy 2016; aop Letter dt Sengupta* Investment Secrecy and Compettve R&D DOI 10.1515/beeap-2016-0047 bstract: Secrecy about nvestment n research and development (R&D) can promote greater

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

(A1) and bˆ represents the expected price conditional on b. being one of the winning bids. Rewrite expression (A1) as follows:.

(A1) and bˆ represents the expected price conditional on b. being one of the winning bids. Rewrite expression (A1) as follows:. Aendx: Proo o Prooston : Bdder s (lnear) exected utlty rom dng s: S Q U (A) where Q reresents the roalty that she wns the aucton wth and reresents the exected rce condtonal on eng one o the wnnng ds Rewrte

More information

Fuzzy Boundaries of Sample Selection Model

Fuzzy Boundaries of Sample Selection Model Proceedngs of the 9th WSES Internatonal Conference on ppled Mathematcs, Istanbul, Turkey, May 7-9, 006 (pp309-34) Fuzzy Boundares of Sample Selecton Model L. MUHMD SFIIH, NTON BDULBSH KMIL, M. T. BU OSMN

More information