Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter

Size: px
Start display at page:

Download "Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter"

Transcription

1 Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter Jun Zhu, inghui Zhong, Chi-Wang Shu 3 and Jianxian Qiu 4 Abstract In this paper, we propose a new type of weighted essentially non-oscillatory (WENO) limiter, which belongs to the class of Hermite WENO (HWENO) limiters, for the Runge- Kutta discontinuous Galerkin (RKDG) methods solving hyperbolic conservation laws. This new HWENO limiter is a modification of the simple WENO limiter proposed recently by Zhong and Shu [3]. Both limiters use information of the DG solutions only from the target cell and its immediate neighboring cells, thus maintaining the original compactness of the DG scheme. The goal of both limiters is to obtain high order accuracy and non-oscillatory properties simultaneously. The main novelty of the new HWENO limiter in this paper is to reconstruct the polynomial on the target cell in a least square fashion while the simple WENO limiter [3] is to use the entire polynomial of the original DG solutions in the neighboring cells with an addition of a constant for conservation. This modification improves the robustness in the computation of problems with strong shocks or contact discontinuities, without changing the compact stencil of the DG scheme. Numerical results for both one and two dimensional equations including Euler equations of compressible gas dynamics are provided to illustrate the viability of this modified limiter. Key Words: Runge-Kutta discontinuous Galerkin method; HWENO limiter; conservation law AMS(MOS) subject classification: 65M6, 35L65 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 6, P.R. China. zhujun@nuaa.edu.cn. Research supported by NSFC grants 375, 93 and 7. Department of Mathematics, Michigan State University, East Lansing, MI 4884, USA. zhongxh@math.msu.edu. 3 Division of Applied Mathematics, Brown University, Providence, RI 9, USA. shu@dam.brown.edu. Research supported by DOE grant DE-FG-8ER5863 and NSF grant DMS School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, iamen University, iamen, Fujian 365, P.R. China. jxqiu@xmu.edu.cn. Research supported by NSFC grants 93, 384, ISTCP of China Grant No. DFR7.

2 Introduction In this paper, we are interested in solving the hyperbolic conservation law { ut + f(u) x =, u(x, ) = u (x). (.) and its two-dimensional version { ut + f(u) x + g(u) y =, u(x, y, ) = u (x, y), (.) using the Runge-Kutta discontinuous Galerkin methods (RKDG) [7, 6, 5, 8], where u, f(u) and g(u) can be either scalars or vectors. One of the major difficulties to solve (.) and (.) is that the solution may contain discontinuities even if the initial conditions are smooth. Discontinuous Galerkin (DG) methods can capture the weak shocks and other discontinuities without further modification. However, for problems with strong discontinuous solutions, the numerical solution has significant oscillations near discontinuities, which may lead to nonlinear instability. A common strategy to control these spurious oscillations is to apply a nonlinear limiter. Many limiters have been studied in the literature on RKDG methods, including the minmod type total variation bounded (TVB) limiter [7, 6, 5, 8], which is a slope limiter using a technique borrowed from the finite volume methodology [5], and the moment based limiter [] and an improved moment limiter [3], which are specifically designed for discontinuous Galerkin methods to work on the moments of the numerical solution. These limiters do control the oscillations well, however they may degrade accuracy when mistakenly used in smooth regions of the solution. It is usually difficult to design limiters that can achieve both high order accuracy and non-oscillatory properties. Such an attempt has been made in [,, 3, 33, 34, 35, 36, 9], where the weighted essentially non-oscillatory (WENO) finite volume methodology [, 4, 5, 8] or the Hermite WENO finite volume methodology [, 3, 33] are used as limiters for the RKDG methods. More recently, a particularly simple and compact WENO limiter, which utilizes fully the advantage of DG schemes in that a complete polynomial is available in each cell without the need of reconstruction, is designed

3 for RKDG schemes in [3]. The two major advantages of this simple WENO limiter are the compactness of its stencil, which contains only immediate neighboring cells, and the simplicity in implementation, especially for the unstructured meshes [37]. However, it was observed in [3] that the limiter might not be robust enough for problems containing very strong shocks, for example the blast wave problems, making it necessary to apply additional positivity-preserving limiters [3] in such situation. In order to overcome this difficulty, without compromising the advantages of compact stencil and simplicity of linear weights, we present a modification of the limiter in the step of preprocessing the polynomials in the immediate neighboring cells before applying the WENO reconstruction procedure. This preprocessing is necessary to maintain strict conservation, and is designed in [3] to be a simple addition of a constant to make the cell average of the preprocessed neighboring cell polynomial in the target cell matching the original cell average. In this paper, a more involved least square process is used in this step. The objective is to achieve strict conservation while maintaining more information of the original neighboring cell polynomial before applying the WENO procedure. Numerical experiments indicate that this modification does improve the robustness of the limiter. This paper is organized as follows: In Section, we provide a brief review of RKDG for one dimensional and two dimensional cases. In Section 3, we provide the details of the new HWENO limiter for one dimensional scalar and system cases. In Section 4, we provide the details of the HWENO limiter for two dimensional scalar and system cases. We demonstrate the performance of our HWENO limiter with one and two dimensional numerical examples including Euler equations of compressible gas dynamics in Section 5. Concluding remarks are given in Section 6. Review of RKDG methods In this subsection, we give a brief review of the RKDG methods for solving one and two dimensional conservation laws. 3

4 One dimensional case. Given a partition of the computational domain consisting of cells I j = [x j, x j+ cell size by x j = x j+ ], j =,, N, denote the cell center by x j = (x j + x j+ ), and the x j. The DG method has its solution as well as the test function space given by V k h = {v(x) : v(x) I j P k (I j )}, where P k (I j ) denotes the set of polynomials of degree at most k defined on I j. The semi-discrete DG method for solving (.) is defined as follows: find the unique function u h (, t) Vh k such that for j =,, N, (u h ) t v dx f(u h )v x dx + ˆf j+ v(x ) ˆf j+ j v(x + ) = (.3) I j I j j holds for all test functions v V k h, where u± j+ the discontinuous solution u h at the interface x j+ = u h (x ±, t) are the left and right limits of j+ and ˆf j+ = ˆf(u, u + ) is a monotone j+ j+ flux for the scalar case and an exact or approximate Riemann solver for the system case. Two dimensional case. Given a partition of the computational domain consisting of rectangular mesh consisting of cells I ij = [x i and j =,, N y with the cell sizes x i+ centers (x i, y j ) = ( (x i+ + x i ), (y j+ x i, x i+ ] [y j = x i, y j+, y j+ ], for i =,, N x y j = y j and cell + y j )). We now give the new test function space W k h = {p : p I ij P k (I ij )} as the polynomial spaces of degree of at most k on the cell I ij. The semi-discrete DG method for solving (.) is defined as follows: find the unique function u Wh k such that, for all i N x and j N y, (u h ) t v dx dy = I i,j f(u h )v x dx dy I i,j + g(u h )v y dx dy I i,j I j ˆfi+ (y)v(x i+, y) dy + I i ĝ j+ (x)v(x, y j+ ) dx + ˆfi (y)v(x +, y) dy i I j ĝ i (x)v(x, y + ) dx, j I i (.4) hold for all the test function v Wh k, where the hat terms are again numerical fluxes. The semi-discrete schemes (.3) and (.4) can be written as u t = L(u) where L(u) is the spatial discretization operator. They can be discretized in time by a 4

5 non-linearly stable Runge-Kutta time discretization [8], e.g. the third-order version: u () = u n + tl(u n ), u () = 3 4 un + 4 u() + 4 tl(u() ), (.5) u n+ = 3 un + 3 u() + 3 tl(u() ). As in [3], to apply a nonlinear limiter for the RKDG methods, for simplicity, we take the forward Euler time discretization of the semi-discrete scheme (.3) as an example. Starting from a solution u n h V k h at time level n (u h is taken as the L projection of the analytical initial condition into V k h ). We would like to limit it to obtain a new function un,new before advancing it to next time level. That is: find u n+ h Ij u n+ h u n,new h v dx t f(u n,new h I j )v x dx + Vh k, such that, for j =,, N, n,new ˆf v(x ) j+ j+ n,new ˆf v(x + ) = (.6) j j holds for all test functions v V k h. The limiting procedure to go from un h to un,new h will be discussed in the following sections. 3 New HWENO limiter in one dimension In this section, we describe the details of the modified HWENO reconstruction procedure as a limiter for the RKDG method in the one dimensional scalar and system cases. 3. The troubled cell indicator in one dimension An important component of the simple WENO limiter in [3] is the identification of troubled cells, which are cells that may contain discontinuities and in which the WENO limiter is applied. We will use the KRCF shock detection technique developed in [6] to detect troubled cells. We divide the boundary of the target cell I j into two parts: I + j and I j, where the flow is into (v n <, n is the normal vector to I j and v is the velocity) and out of (v n > ) I j, respectively. Here, we define v, taking its value from inside the cell I j as f (u) and take u as the indicator variable for the scalar case. The target cell I j is 5

6 identified as a troubled cell when (u I h (x, t) Ij u h (x, t) Il )ds j > C x k+ k, (3.) j I j u h(x, t) Ij where C k is a constant, usually, we take C k = as in [6]. Here I l, for l = j or j +, denotes the neighboring cell sharing the end point I j with I j. u h is the numerical solution corresponding to the indicator variable(s) and u h (x, t) Ij is the standard L norm in the cell I j. 3. HWENO limiting procedure in one dimension: scalar case In this subsection, we present the details of the HWENO limiting procedure for the scalar case. The idea of this new HWENO limiter is to reconstruct a new polynomial on the troubled cell I j which is a convex combination of three polynomials: DG solution polynomial on this cell and the modified DG solution polynomials on its two immediate neighboring cells. The modification procedure is in a least square fashion. The construction of the nonlinear weights in the convex combination coefficients follows the classical WENO procedure. Assume I j is a troubled cell. Step.. Denote the DG solution polynomials of u h on I j, I j+, I j as polynomials p (x), p (x) and p (x), respectively. Now we want to find the modified version of p (x), denoted as p (x) on the cell I j in a least square fashion. The modification procedure is defined as follows: p (x) is the solution of the minimization problem { subject to φ = p, where min φ(x) P k (I j ) φ = x j I j (φ(x) p (x)) dx I j φ(x) dx, p = x j } I j p (x) dx. Here and below denotes the cell average of the function on the target cell., (3.) Similarly, p (x) is the solution of the minimization problem { } min (φ(x) p (x)) dx φ(x) P k (I j+ ) I j+ (3.3) 6

7 subject to φ = p. For notational consistency we denote p (x) = p (x). The final nonlinear HWENO reconstruction polynomial p new (x) is now defined by a convex combination of these modified polynomials: p new (x) = ω p (x) + ω p (x) + ω p (x). (3.4) According to the modification procedure, it is easy to prove that p new has the same cell average and order of accuracy as p if the weights satisfy ω + ω + ω =. The convex combination coefficients ω l, l =,, follow the classical WENO procedure [5, 4, ]. We discuss it in the following steps. Step.. We choose the linear weights denoted by γ, γ, γ. As in [3], we have used complete information of the three polynomials p (x), p (x), p (x) in the three cells I j, I j+, I j, hence we do not have extra requirements on the linear weights in order to maintain the original high order accuracy. The linear weights can be chosen to be any set of positive numbers adding up to one. The choice of these linear weights is then solely based on the consideration of a balance between accuracy and ability to achieve essentially nonoscillatory shock transitions. In all of our numerical tests, following the practice in [, 3], we take γ =.998 and γ = γ =.. Step.3. We compute the smoothness indicators, denoted by β l, l =,,, which measure how smooth the functions p l (x), l =,,, are on the target cell I j. The smaller these smoothness indicators are, the smoother the functions are on the target cell. We use the similar recipe for the smoothness indicators as in [5]: k ( ) β l = x l d l j l! dx p l(x) dx, l =,,. (3.5) l l= I j Step.4. We compute the non-linear weights based on the smoothness indicators: ω i = ω i l= ω, ω l = l γ l (ε + β l ). (3.6) Here ε is a small positive number to avoid the denominator to become zero. We take ε = 6 in our computation. 7

8 Step.5. The final nonlinear HWENO reconstruction polynomial is given by (3.4), i.e. u new h Ij = p new (x) = ω p (x) + ω p (x) + ω p (x). It is easy to verify that p new (x) has the same cell average and order of accuracy as the original one p (x), on the condition that l= ω l =. 3.3 HWENO limiting procedure in one dimension: system case In this subsection, we present the details of the HWENO limiting procedure for one dimensional systems. Consider equation (.) where u and f(u) are vectors with m components. In order to achieve better non-oscillatory qualities, the HWENO reconstruction limiter is used with a local characteristic field decomposition. In this paper, we consider the following Euler system with m = 3. t ρ ρµ E + x ρµ ρµ + p µ(e + p) =, (3.7) where ρ is the density, µ is the x-direction velocity, E is the total energy, p is the pressure and γ =.4 in our test cases. We denote the Jacobian matrix as f (u), where u = (ρ, ρµ, E) T. We then give the left and right eigenvector matrices of such Jacobian matrix as: and L j (u) = B + µ/c B µ + /c B B B µ B B µ/c R j (u) = B µ /c µ c µ µ + c H cµ µ / H + cµ where c = γp/ρ, B = (γ )/c, B = B µ / and H = (E + p)/ρ. B, (3.8), (3.9) Assume the troubled cell I j is detected by the KRCF technique [6] by using (3.), where v = µ is the velocity and again v takes its value from inside the cell I j. We take both the density ρ and the total energy E as the indicator variables. Denote p, p, p to be the 8

9 DG polynomial vectors, corresponding to I j s two immediate neighbors and itself. Then we perform the characteristic-wise HWENO limiting procedure as follows: Step. Compute L j = L j (ū j ) and R j = R j (ū j ) as defined in (3.8) and (3.9), where ū j is the cell average of u on the cell I j. Step.. Project the polynomial vectors p, p, p into the characteristic fields p l = L j p l, l =,,, each of them being a 3-component vector and each component of the vector is a k-th degree polynomial. Step.3. Perform Step. to Step.5 of the HWENO limiting procedure that has been specified for the scalar case, to obtain a new 3-component vector on the troubled cell I j as p new. Step..4. Project p new back into the physical space to get the reconstruction polynomial, i.e. u new h Ij = R j p new. 4 New HWENO limiter in two dimension 4. The troubled cell indicator in two dimension We use the KRCF shock detection technique developed in [6] to detect troubled cells in two dimensions. We divide the boundary of the target cell I ij into two parts: I + ij and I ij, where the flow is into (v n <, n is the normal vector to I ij) and out of (v n > ) I ij, respectively. Here we define v, taking its value from inside the cell I ij, as the vector (f (u), g (u)) and take u as the indicator variable for the scalar case. For the Euler system (4.4), v, again taking its value from inside the cell I ij, is (µ, ν) where µ is the x-direction velocity and ν is the y-direction velocity, and we take both the density ρ and the total energy E as the indicator variables. The target cell I ij is identified as a troubled cell when I ij (u h (x, y, t) Iij u h (x, y, t) Il )ds h k+ ij I ij u h(x, y, t) Iij > C k, (4.) where C k is a constant, usually, we take C k = as in [6]. Here we choose h ij as the radius of the circumscribed circle in I ij, and I l, l = (i, j ); (i, j); (i +, j); (i, j + ), denote 9

10 the neighboring cells sharing the edge(s) in I ij. u h is the numerical solution corresponding to the indicator variable(s) and u h (x, y, t) Iij is the standard L norm in the cell I ij. 4. HWENO limiting procedure in two dimensions: scalar case In this subsection, we give details of the HWENO limiter for the two dimensional scalar case. The idea is similar to the one dimensional case, i.e. to reconstruct a new polynomial on the troubled cell I ij which is a convex combination of the following polynomials: DG solution polynomial on this cell and the modified DG solution polynomials on its immediate neighboring cells. The nonlinear weights in the convex combination coefficients follow the classical WENO procedure. To achieve better non-oscillatory property, the modification procedure now is in a least square fashion with necessary adjustment. Assume I ij is a troubled cell. Step 3.. We select the HWENO reconstruction stencil as S = {I i,j, I i,j, I i+,j, I i,j+, I ij }, for simplicity, we renumber these cells as I l, l =,, 4, and denote the DG solutions on these five cells to be p l (x, y), respectively. Now we want to find the modified version of p l (x, y), denoted as p l (x, y), in a least square fashion with necessary adjustment. The modification procedure not only use the complete information of the polynomial p l (x, y), but also use the cell averages of the polynomials from its other neighbors. For p (x, y), the modification procedure is defined as follows: p (x, y) is the solution of the minimization problem { ( ) ( ) } min (φ(x, y) p (x, y)) dxdy + l L (φ(x, y) p l (x, y))dxdy, φ(x,y) P k (I ) I I l subject to φ = p 4 and L = {,, 3} {l : p l p 4 < max ( p p 4, p p 4, p 3 p 4 )}, where p l = p l (x, y)dxdy is the cell average of the polynomial p l (x, y) on the cell I l I l I l

11 and I l is the area of I l. Here and below denotes the cell average of the function on its own associated cell. For this modification, we try to find the polynomial p, which has the same cell average as the polynomial on the troubled cell p 4, to optimize the distance to p (x, y) and to the cell averages of those useful polynomials on the other neighboring cells. By comparing the distance between the cell averages of the polynomials on the other neighboring cells and the cell average of p 4 on the target cell, if one is not the farthest, then this polynomial is considered useful. Remark: The one dimensional algorithm is consistent with the two dimensional one, because in one dimension we only have two immediate neighbors and hence L = is the empty set. In the extreme case (for example, if p p 4 = p p 4 = p 3 p 4 ), this two dimensional algorithm could degenerate to the one dimensional case and L could also be. Similarly, p (x, y) is the solution of the minimization problem { ( ) ( ) } min (φ(x, y) p (x, y)) dxdy + l L (φ(x, y) p l (x, y))dxdy, φ(x,y) P k (I ) I I l subject to φ = p 4, where L = {,, 3} {l : p l p 4 < max ( p p 4, p p 4, p 3 p 4 )}. p (x, y) is the solution of the minimization problem { ( ) ( ) } min (φ(x, y) p (x, y)) dxdy + l L (φ(x, y) p l (x, y))dxdy, φ(x,y) P k (I ) I I l subject to φ = p 4, where L = {,, 3} {l : p l p 4 < max ( p p 4, p p 4, p 3 p 4 )}. p 3 (x, y) is the solution of the minimization problem { ( ) ( ) } min (φ(x, y) p 3 (x, y)) dxdy + l L3 (φ(x, y) p l (x, y))dxdy, φ(x,y) P k (I 3 ) I 3 I l

12 subject to φ = p 4, where L 3 = {,, } {l : p l p 4 < max ( p p 4, p p 4, p p 4 )}. We also define p 4 (x, y) = p 4 (x, y). Step 3.. We choose the linear weights denoted by γ, γ, γ, γ 3, γ 4. Similar as in the one dimensional case, we put a larger linear weight on the troubled cell and the neighboring cells get smaller linear weights. In all of our numerical tests, following the practice in [, 3], we take γ 4 =.996 and γ = γ = γ = γ 3 =.. Step 3.3. We compute the smoothness indicators, denoted by β l, l =,..., 4, which measure how smooth the functions p l (x, y), l =,..., 4, are on the target cell I ij. We use the similar recipe for the smoothness indicators as in [5,, 7]: β l = k I ij α α = where α = (α, α ) and α = α + α. I ij ( ) α α! x α y α p l (x, y) dx dy, l =,, 4, (4.) Step 3.4. We compute the nonlinear weights based on the smoothness indicators. Step 3.5. The final nonlinear HWENO reconstruction polynomial p new 4 (x, y) is defined by a convex combination of the (modified) polynomials in the stencil: u new h Ii,j = p new 4 (x, y) = 4 ω l p l (x, y). (4.3) It is easy to verify that p new 4 (x, y) has the same cell average and order of accuracy as the original one p 4 (x, y) on condition that 4 l= ω l =. 4.3 HWENO limiting procedure in two dimensions: system case In this subsection, we present the details of the HWENO limiting procedure for two dimensional systems. Consider equation (.) where u, f(u) and g(u) are vectors with m components. In order to achieve better non-oscillatory qualities, the HWENO reconstruction limiter is used with a l=

13 local characteristic field decomposition. In this paper, we only consider the following Euler system with m = 4. t ρ ρµ ρν E + x ρµ ρµ + p ρµν µ(e + p) + y ρν ρµν ρν + p ν(e + p) = (4.4) where ρ is the density, µ is the x-direction velocity, ν is the y-direction velocity, E is the total energy, p is the pressure and γ =.4 in our test cases. We then give the left and right eigenvector matrices of Jacobian matrices f (u) and g (u) as: L x ij(u) = B + µ/c B µ + /c B ν B ν B B µ B ν B B µ/c B µ /c B ν B, (4.5) µ c µ µ + c Rij(u) x = ν ν ν, (4.6) µ + ν H cµ ν H + cµ L y ij (u) = B + ν/c B µ B ν + /c B µ B B µ B ν B B ν/c B µ B ν /c B, (4.7) R y ij (u) = µ µ µ ν c ν ν + c, (4.8) H cν µ µ + ν H + cν 3

14 where c = γp/ρ, B = (γ )/c, B = B (µ + ν )/ and H = (E + p)/ρ. The troubled cell I ij is detected by the KRCF technique [6] using (4.). Denote p l, l =,, 4, to be the DG polynomial vectors, corresponding to I ij s four immediate neighbors and itself. The HWENO limiting procedure is then performed as follows: Step 4.. We reconstruct the new polynomial vectors p x,new 4 and p y,new 4 by using the characteristic-wise HWENO limiting procedure: Step 4.. Compute L x ij = L x ij(ū ij ), L y ij = Ly ij (ū ij), R x ij = R x ij(ū ij ) and R y ij = Rx ij(ū ij ) as defined in (4.5)-(4.8), where again ū ij is the cell average of u on the cell I ij. Step 4... Project the polynomial vectors p l, l =,, 4, into the characteristic fields p x l = Lx ij p l and p y l = Ly ij p l, l =,, 4, each of them being a 4-component vector and each component of the vector is a k-th degree polynomial. Step Perform Step 3. to Step 3.5 of the HWENO limiting procedure that has been specified for the scalar case, to obtain the new 4-component vectors on the troubled cell I ij such as p x,new 4 and p y,new 4. Step Project p x,new 4 and p y,new 4 into the physical space p x,new 4 = R x ij p x,new 4 and p y,new 4 = R y ij p y,new 4, respectively. Step 4.. The final new 4-component vector on the troubled cell I ij is defined as u new h Iij = 4 + p y,new 4. p x,new 5 Numerical results In this section, we provide numerical results to demonstrate the performance of the HWENO reconstruction limiters for the RKDG methods described in previous sections. We would like to remark that, for some cases with fourth order RKDG methods, the usage of the WENO limiters in [3] might not work well or might even break down, while the new HWENO limiters in this paper could obtain good resolutions. The simple Lax-Friedrichs flux is used in all of our numerical tests. We first test the accuracy of the schemes in one and two dimensional problems. We 4

15 adjust the constant C k in (3.) or (4.) to be a small number. from Example 3. to Example 3.4, for the purpose of artificially generating a larger percentage of troubled cells in order to test accuracy when the HWENO reconstruction procedure is enacted in more cells. The CFL number is set to be.3 for the second order (P ),.8 for the third order (P ) and. for the fourth order (P 3 ) RKDG methods both in one and two dimensions. Example 5.. We solve the following nonlinear scalar Burgers equation: ( ) µ µ t + x =, (5.) with the initial condition µ(x, ) =.5 + sin(πx) and periodic boundary conditions. We compute the solution up to t =.5/π, when the solution is still smooth. The errors and numerical orders of accuracy for the RKDG method with the HWENO limiter comparing with the original RKDG method without a limiter are shown in Table 5.. We can see that the HWENO limiter keeps the designed order of accuracy, even when a large percentage of good cells are artificially identified as troubled cells. Example 5.. We solve the D Euler equations (3.7). The initial conditions are: ρ(x, ) = +. sin(πx), µ(x, ) =. and p(x, ) =. Periodic boundary conditions are applied in this test. The exact solution is ρ(x, t) = +. sin(π(x t)). We compute the solution up to t =. The errors and numerical orders of accuracy of the density for the RKDG method with the HWENO limiter comparing with the original RKDG method without a limiter are shown in Table 5.. Similar to the previous example, we can see that the HWENO limiter again keeps the designed order of accuracy when the mesh size is small enough, even when a large percentage of good cells are artificially identified as troubled cells. Example 5.3. We solve the following nonlinear scalar Burgers equation in two dimensions: ( ) µ µ t + x ( ) µ + y = (5.) with the initial condition µ(x, y, ) =.5+sin(π(x+y)/) and periodic boundary conditions in both directions. We compute the solution up to t =.5/π, when the solution is still 5

16 ( ) µ Table 5.: µ t + =. µ(x, ) =.5 + sin(πx). Periodic boundary condition. t =.5/π. x L and L errors. RKDG with the HWENO limiter compared to RKDG without limiter. DG with HWENO limiter DG without limiter cells L error order L error order L error order L error order.e-.3e-.38e-.4e- 5.6E E E E-.67 P 4.E-3..6E E E E E-3.3.E-4..53E E E E E E-5..69E E-5..68E E-3.83E-.7E-3.8E-.6E E-3.7.E E-3.7 P 4.73E E E E E E E E E E E E E E E E E-4.44E-3.76E-4.35E-3.69E E E E-4.5 P E E E E E E E E E E E E E E E E

17 Table 5.: D-Euler equations: initial data ρ(x, ) = +. sin(πx), µ(x, ) =. and p(x, ) =. Periodic boundary condition. t =.. L and L errors. RKDG with the HWENO limiter compared to RKDG without limiter. DG with HWENO limiter DG without limiter cells L error order L error order L error order L error order.55e- 3.53E- 3.6E-3 8.9E-3.73E E E E-3.63 P 4 3.8E E E E E E E E E E-5.9.E E E-6..3E-5..49E-6..7E E-4 8.E-4.3E E-4.77E E E-5 3..E-4.94 P 4.9E E E E E E E E E E E-8 3..E E E E E E-5.83E-4 5.4E E-5.7E E E E P E E E E E E-9 4..E E E E E E E E E E- 4. 7

18 ( Table 5.3: µ t + ) ( µ + x ) µ y =. µ(x, y, ) =.5 + sin(π(x + y)/). Periodic boundary condition. t =.5/π. L and L errors. RKDG with the HWENO limiter compared to RKDG without limiter. DG with HWENO limiter DG without limiter cells L error order L error order L error order L error order 3.99E- 3.7E- 3.9E- 3.4E- 9.78E-3.3.E E-3..5E-.68 P 4 4.3E E E E E-4. 9.E E E E-4..38E E-4..4E E-3.77E- 5.E-3.8E- 8.6E E E E-. P 4 4.E E-3.77.E E E-5.96.E E-5.96.E E E E E E-3 8.E-.9E-3 8.9E-.5E E E E P E E E E E E E E E E E E smooth. The errors and numerical orders of accuracy for the RKDG method with the HWENO limiter comparing with the original RKDG method without limiter are shown in Table 5.3. We can see that the HWENO limiter keeps the designed order of accuracy, even when a large percentage of good cells are artificially identified as troubled cells. Example 5.4. We solve the Euler equations (4.4). The initial conditions are: ρ(x, y, ) = +. sin(π(x + y)), µ(x, y, ) =.7, ν(x, y, ) =.3, p(x, y, ) =. Periodic boundary conditions are applied in both directions. The exact solution is ρ(x, y, t) = +. sin(π(x + y t)). We compute the solution up to t =. The errors and numerical orders of accuracy of the density for the RKDG method with the HWENO limiter comparing with the original RKDG method without a limiter are shown in Table 5.4. Similar to the previous example, we can see that the HWENO limiter again keeps the designed order of accuracy when the mesh size is small enough, even when a large percentage of good cells are artificially identified 8

19 Table 5.4: D-Euler equations: initial data ρ(x, y, ) = +. sin(π(x + y)), µ(x, y, ) =.7, ν(x, y, ) =.3, and p(x, y, ) =. Periodic boundary condition. t =.. L and L errors. RKDG with the HWENO limiter compared to RKDG without limiter. DG with HWENO limiter DG without limiter cells L error order L error order L error order L error order 4.6E- 7.98E-.55E- 4.44E- 5.6E E E E-3.5 P E E E-4.8.5E E E E E E E-4..89E-5.7.3E E-4 5.7E E-4 5.5E-3.6E E-4.63.E E-4.65 P E E E E E E E E E E E E E E E-5 6.7E-4.85E E E E P E E E E E E E E E E E E-9 4. as troubled cells. We now test the performance of the RKDG method with the HWENO limiters for problems containing shocks. From now on, we reset the constant to C k =. For comparison with the RKDG method using the minmod TVB limiter, we refer to the results in [5, 8]. For comparison with the RKDG method using the previous versions of HWENO type limiters, we refer to the results in [9, 36]. Example 5.5. We consider the D Euler equations (3.7) with a Riemann initial condition for the Lax problem: (ρ, µ, p) T = (.445,.698, 3.58) T for x ; (ρ, µ, p) T = (.5,,.57) T for x >. The computed density ρ is plotted at t =.3 against the exact solution in Figure 5. and the time history of the troubled cells is shown in Figure 5.. We observe that the new RKDG methods do a better job in keeping sharp contact discontinuities and simultaneously saving the computing time. 9

20 Density.8 Density.8 Density Figure 5.: The Lax problem. RKDG with the HWENO limiter. Solid line: the exact solution; squares: numerical solution. Left: second order (P ); middle: third order (P ); right: fourth order (P 3 ). Cells: T.7.6 T.7.6 T Figure 5.: The Lax problem. RKDG with the HWENO limiter. Troubled cells. Squares denote cells which are identified as troubled cells subject to the HWENO limiting. Left: second order (P ); middle: third order (P ); right: fourth order (P 3 ). Cells:.

21 Example 5.6. A higher order scheme would show its advantage when the solution contains both shocks and complex smooth region structures. the problem of shock interaction with entropy waves [9]. A typical example for this is We solve the Euler equations (3.7) with a moving Mach = 3 shock interacting with sine waves in density: (ρ, µ, p) T = ( ,.69369, ) T for x < 4; (ρ, µ, p) T = ( +. sin(5x),, ) T for x 4. The computed density ρ is plotted at t =.8 against the referenced exact solution which is a converged solution computed by the fifth order finite difference WENO scheme [5] with grid points in Figure 5.3 and the time history of the troubled cells is shown in Figure 5.4. We observe that the new RKDG methods do well and simultaneously saving the computing time Density 3.5 Density 3.5 Density Figure 5.3: The shock density wave interaction problem. RKDG with the HWENO limiter. Solid line: the exact solution; squares: numerical solution. Left: second order (P ); middle: third order (P ); right: fourth order (P 3 ). Cells:. Example 5.7. We consider the interaction of blast waves of Euler equation (3.7) with the initial conditions: (ρ, µ, p) T = (,, ) T for x <.; (ρ, µ, p) T = (,,.) T for. x <.9; (ρ, µ, p) T = (,, ) T for.9 x.. The computed density ρ is plotted at t =.38 against the reference exact solution which is a converged solution computed by the fifth order finite difference WENO scheme [5] with grid points in Figure 5.5 and the time history of the troubled cells is shown in Figure 5.6. We observe that the new RKDG methods do a better job than in [3] and simultaneously saving the computing time.

22 T T T Figure 5.4: The shock density wave interaction problem. RKDG with the HWENO limiter. Troubled cells. Squares denote cells which are identified as troubled cells subject to the HWENO limiting. Left: second order (P ); middle: third order (P ); right: fourth order (P 3 ). Cells: Density 4 3 Density 4 3 Density Figure 5.5: The blast wave problem. RKDG with the HWENO limiter. Solid line: the exact solution; squares: numerical solution. Left: second order (P ); middle: third order (P ); right: fourth order (P 3 ). Cells: T. T. T Figure 5.6: The blast wave problem. RKDG with the HWENO limiter. Troubled cells. Squares denote cells which are identified as troubled cells subject to the HWENO limiting. Left: second order (P ); middle: third order (P ); right: fourth order (P 3 ). Cells: 4.

23 Remark. For the P 3 case, the RKDG methods with the WENO limiters specified in [3] used the positivity-preserving limiter to avoid negative density or negative pressure during the time evolution, but the resolution was affected, especially for the smearing of contact discontinuities. The RKDG methods with the new HWENO limiters in this paper can work well without the help from the positivity-preserving limiter. Example 5.8. Double Mach reflection problem. This model problem is originally from [3]. We solve the Euler equations (4.4) in a computational domain of [, 4] [, ]. The reflection boundary condition is used at the wall, which for the rest of the bottom boundary (the part from x = to x = ), the exact post-shock condition is imposed. At the top boundary is the 6 exact motion of the Mach shock. The results shown are at t =.. Three different orders of accuracy for the RKDG with HWENO limiters, k=, k= and k=3 (second order, third order and fourth order), are used in the numerical experiments. The simulation results are shown in Figure 5.7. The zoomed-in pictures around the double Mach stem to show more details are given in Figure 5.8. The troubled cells identified at the last time step are shown in Figure 5.9. Clearly, the resolution improves with an increasing k on the same mesh. 6 Concluding remarks We constructed a class of Hermite weighted essentially non-oscillatory (WENO) limiters, based on the procedure of [3], for the Runge-Kutta discontinuous Galerkin (RKDG) methods. The general framework of such HWENO limiters for RKDG methods, namely first identifying troubled cells subject to the HWENO limiting, then reconstructing the polynomial solution inside the troubled cell by the freedoms of the solutions of the DG method on the target cell and its adjacent neighboring cells by a HWENO procedure in a least square sense, is followed in this paper. The main novelty of this paper is the HWENO reconstruction procedure, which uses only the information from the troubled cell and its immediate neighbors (two cells in D and four cells in D), without any other extensive usage of geometric information of the meshes, and with simple positive linear weights in the reconstruction 3

24 Y.5 3 Y.5 3 Y.5 3 Figure 5.7: Double Mach refection problem. RKDG with the HWENO limiter. 3 equally spaced density contours from.5 to.5. Top: second order (P ); middle: third order (P ); bottom: fourth order (P 3 ). Cells: 8. 4

25 .5.5 Y Y Y.5.5 Figure 5.8: Double Mach refection problem. RKDG with HWENO limiter. Zoom-in pictures around the Mach stem. 3 equally spaced density contours from.5 to.5. Left: second order (P ); right: third order (P ); bottom: fourth order (P 3 ). Cells: 8. 5

26 Y.5 3 Y.5 3 Y.5 3 Figure 5.9: Double Mach refection problem. RKDG with the HWENO limiter. Troubled cells. Squares denote cells which are identified as troubled cells subject to the HWENO limiting. Top: second order (P ); middle: third order (P ); bottom: fourth order (P 3 ). Cells: 8. 6

27 procedure. Such methodology is more sophisticated than the original one specified in [3], but can get better resolutions for some examples for the P 3 case, such as those in Example 5.7 and Example 5.8, without the help of positivity-preserving limiters, in one and two dimensions. Extensive numerical results are provided to demonstrate good results, both in accuracy and in non-oscillatory performance, comparable with those in earlier literature with more complicated WENO [,, 34, 35] or HWENO [9,, 3, 33] limiters. References [] D. S. Balsara and C.-W. Shu, Monotonicity preserving weighted essentially nonoscillatory schemes with increasingly high order of accuracy, Journal of Computational Physics, 6 (), [] R. Biswas, K.D. Devine and J. Flaherty, Parallel, adaptive finite element methods for conservation laws, Applied Numerical Mathematics, 4 (994), [3] A. Burbeau, P. Sagaut and C.H. Bruneau, A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods, Journal of Computational Physics, 69 (), -5. [4] B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems, in T. Barth and H. Deconinck, editors, High-Order Methods for Computational Physics, Volume 9 of Lecture Notes in Computational Science and Engineering, Springer, Berlin, 999, [5] B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Mathematics of Computation, 54 (99),

28 [6] B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, Journal of Computational Physics, 84 (989), 9-3. [7] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Mathematics of Computation, 5 (989), [8] B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics, 4 (998), [9] B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin method for convection-dominated problems, Journal of Scientific Computing, 6 (), [] M. Dumbser and M. Käser, Arbitrary high order non-oscillatory Finite Volume schemes on unstructured meshes for linear hyperbolic systems, Journal of Computational Physics, (7), [] O. Friedrichs, Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids, Journal of Computational Physics, 44 (998), 94-. [] A. Harten, B. Engquist, S. Osher and S. Chakravathy, Uniformly high order accurate essentially non-oscillatory schemes, III, Journal of Computational Physics, 7 (987), [3] J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods, Springer, New York, 8. [4] C. Hu and C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes, Journal of Computational Physics, 5 (999),

29 [5] G. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 6 (996), -8. [6] L. Krivodonova, J. in, J.-F. Remacle, N. Chevaugeon and J.E. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Applied Numerical Mathematics, 48 (4), [7] B. Li, Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Birkhauser, Basel, 6. [8]. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 5 (994), -. [9] H. Luo, J.D. Baum and R. Lohner, A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, Journal of Computational Physics, 5 (7), [] J. Qiu and C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case, Journal of Computational Physics, 93 (3), [] J. Qiu and C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM Journal on Scientific Computing, 6 (5), [] J. Qiu and C.-W. Shu, A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM Journal on Scientific Computing, 7 (5), [3] J. Qiu and C.-W. Shu, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case, Computers and Fluids, 34 (5),

30 [4] W.H. Reed and T.R. Hill, Triangular mesh methods for neutron transport equation, Tech. Report LA-UR , Los Alamos Scientific Laboratory, 973. [5] C.-W. Shu, TVB uniformly high-order schemes for conservation laws, Mathematics of Computation, 49 (987), 5-. [6] C.-W. Shu, Discontinuous Galerkin methods: general approach and stability, in Numerical Solutions of Partial Differential Equations, S. Bertoluzza, S. Falletta, G. Russo and C.-W. Shu, Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, Basel, 9, 49-. [7] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor (Editor: A. Quarteroni), Lecture Notes in Mathematics, volume 697, Springer, 998, [8] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shockcapturing schemes, Journal of Computational Physics, 77 (988), [9] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes II, Journal of Computational Physics, 83 (989), [3] C. Wang,. Zhang, C.-W. Shu and J. Ning, Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations, Journal of Computational Physics, 3 (), [3] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, 54 (984), [3]. Zhong and C.-W. Shu, A simple weighted essentially nonoscillatory limiter for Runge- Kutta discontinuous Galerkin methods, Journal of Computational Physics, 3 (3),

31 [33] J. Zhu, J. Qiu, Hermite WENO schemes and their application as limiters for Runge- Kutta discontinuous Galerkin method III: Unstructured meshes, Journal of Scientific Computing, 39 (9), [34] J. Zhu and J. Qiu, Runge-Kutta discontinuous Galerkin method using WENO type limiters: Three dimensional unstructured meshes, Communications in Computational Physics, (), [35] J. Zhu, J. Qiu, WENO schemes and their application as limiters for RKDG methods based on trigonometric approximation spaces, Journal of Scientific Computing, to appear. DOI:.7/s [36] J. Zhu, J. Qiu, C.-W. Shu and M. Dumbser, Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes, Journal of Computational Physics, 7 (8), [37] J. Zhu,. Zhong, C.-W. Shu and J.. Qiu, Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes, Journal of Computational Physics, 48 (3), -. 3

Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter

Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter Jun Zhu, inghui Zhong, Chi-Wang Shu 3 and Jianxian Qiu, College of Science, Nanjing University of Aeronautics and

More information

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Jianxian Qiu School of Mathematical Science Xiamen University jxqiu@xmu.edu.cn http://ccam.xmu.edu.cn/teacher/jxqiu

More information

A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes

A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes Science in China Series A: Mathematics Aug., 008, Vol. 51, No. 8, 1549 1560 www.scichina.com math.scichina.com www.springerlink.com A class of the fourth order finite volume Hermite weighted essentially

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang Abstract This paper deals with

More information

Fourier analysis for discontinuous Galerkin and related methods. Abstract

Fourier analysis for discontinuous Galerkin and related methods. Abstract Fourier analysis for discontinuous Galerkin and related methods Mengping Zhang and Chi-Wang Shu Abstract In this paper we review a series of recent work on using a Fourier analysis technique to study the

More information

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A. A. I. Peer a,, A. Gopaul a, M. Z. Dauhoo a, M. Bhuruth a, a Department of Mathematics, University of Mauritius, Reduit,

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Mathematics, Vol.4, No.3, 6, 39 5. ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT ) Zhengfu Xu (Department of Mathematics, Pennsylvania

More information

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract Improvement of convergence to steady state solutions of Euler equations with the WENO schemes Shuhai Zhang, Shufen Jiang and Chi-Wang Shu 3 Abstract The convergence to steady state solutions of the Euler

More information

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant Anti-diffusive finite difference WENO methods for shallow water with transport of pollutant Zhengfu Xu 1 and Chi-Wang Shu 2 Dedicated to Professor Qun Lin on the occasion of his 70th birthday Abstract

More information

ICES REPORT A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws

ICES REPORT A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws ICES REPORT 7- August 7 A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws by Todd Arbogast, Chieh-Sen Huang, and Xikai Zhao The Institute for Computational Engineering and Sciences The

More information

Positivity-preserving high order schemes for convection dominated equations

Positivity-preserving high order schemes for convection dominated equations Positivity-preserving high order schemes for convection dominated equations Chi-Wang Shu Division of Applied Mathematics Brown University Joint work with Xiangxiong Zhang; Yinhua Xia; Yulong Xing; Cheng

More information

CENTRAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS WITH A NON-OSCILLATORY HIERARCHICAL RECONSTRUCTION

CENTRAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS WITH A NON-OSCILLATORY HIERARCHICAL RECONSTRUCTION CENTRAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS WITH A NON-OSCILLATORY HIERARCHICAL RECONSTRUCTION YINGJIE LIU, CHI-WANG SHU, EITAN TADMOR, AND MENGPING ZHANG Abstract. The central scheme of

More information

YINGJIE LIU, CHI-WANG SHU, EITAN TADMOR, AND MENGPING ZHANG

YINGJIE LIU, CHI-WANG SHU, EITAN TADMOR, AND MENGPING ZHANG CENTRAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS WITH A NON-OSCILLATORY HIERARCHICAL RECONSTRUCTION YINGJIE LIU, CHI-WANG SHU, EITAN TADMOR, AND MENGPING ZHANG Abstract. The central scheme of

More information

Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu

Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu Division of Applied Mathematics Brown University Outline Introduction Maximum-principle-preserving for scalar conservation

More information

High order finite difference Hermite WENO schemes for the Hamilton-Jacobi equations on unstructured meshes

High order finite difference Hermite WENO schemes for the Hamilton-Jacobi equations on unstructured meshes High order finite difference Hermite WENO schemes for the Hamilton-Jacobi equations on unstructured meshes Feng Zheng, Chi-Wang Shu and Jianxian Qiu 3 Abstract In this paper, a new type of high order Hermite

More information

On limiting for higher order discontinuous Galerkin method for 2D Euler equations

On limiting for higher order discontinuous Galerkin method for 2D Euler equations On limiting for higher order discontinuous Galerkin method for 2D Euler equations Juan Pablo Gallego-Valencia, Christian Klingenberg, Praveen Chandrashekar October 6, 205 Abstract We present an implementation

More information

Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations 1

Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations 1 Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations Feng Zheng, Chi-Wang Shu 3 and Jianian Qiu 4 Abstract In this paper, a new type of finite difference Hermite weighted essentially

More information

Entropy stable high order discontinuous Galerkin methods. for hyperbolic conservation laws

Entropy stable high order discontinuous Galerkin methods. for hyperbolic conservation laws Entropy stable high order discontinuous Galerkin methods for hyperbolic conservation laws Chi-Wang Shu Division of Applied Mathematics Brown University Joint work with Tianheng Chen, and with Yong Liu

More information

Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of. Conservation Laws 1. Abstract

Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of. Conservation Laws 1. Abstract Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of Conservation Laws Sirui Tan and Chi-Wang Shu 3 Abstract We develop a high order finite difference numerical boundary condition for solving

More information

A minimum entropy principle of high order schemes for gas dynamics. equations 1. Abstract

A minimum entropy principle of high order schemes for gas dynamics. equations 1. Abstract A minimum entropy principle of high order schemes for gas dynamics equations iangxiong Zhang and Chi-Wang Shu 3 Abstract The entropy solutions of the compressible Euler equations satisfy a minimum principle

More information

A numerical study of SSP time integration methods for hyperbolic conservation laws

A numerical study of SSP time integration methods for hyperbolic conservation laws MATHEMATICAL COMMUNICATIONS 613 Math. Commun., Vol. 15, No., pp. 613-633 (010) A numerical study of SSP time integration methods for hyperbolic conservation laws Nelida Črnjarić Žic1,, Bojan Crnković 1

More information

Discontinuous Galerkin method for hyperbolic equations with singularities

Discontinuous Galerkin method for hyperbolic equations with singularities Discontinuous Galerkin method for hyperbolic equations with singularities Chi-Wang Shu Division of Applied Mathematics Brown University Joint work with Qiang Zhang, Yang Yang and Dongming Wei Outline Introduction

More information

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations Hao Li Math Dept, Purdue Univeristy Ocean University of China, December, 2017 Joint work with

More information

DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS

DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS CHI-WANG SHU Abstract. In these lectures we give a general survey on discontinuous Galerkin methods for solving

More information

A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws

A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws Kilian Cooley 1 Prof. James Baeder 2 1 Department of Mathematics, University of Maryland - College Park 2 Department of Aerospace

More information

TOTAL VARIATION DIMINISHING RUNGE-KUTTA SCHEMES

TOTAL VARIATION DIMINISHING RUNGE-KUTTA SCHEMES MATHEMATICS OF COMPUTATION Volume 67 Number 221 January 1998 Pages 73 85 S 0025-5718(98)00913-2 TOTAL VARIATION DIMINISHING RUNGE-KUTTA SCHEMES SIGAL GOTTLIEB AND CHI-WANG SHU Abstract. In this paper we

More information

A new type of Hermite WENO schemes for Hamilton-Jacobi equations

A new type of Hermite WENO schemes for Hamilton-Jacobi equations A new type of Hermite WENO schemes for Hamilton-Jacobi equations Jun Zhu and Jianxian Qiu Abstract In this paper, a new type of Hermite weighted essentially non-oscillatory (HWENO) schemes is designed

More information

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws Mehdi Dehghan, Rooholah Jazlanian Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. ) :545 563 DOI.7/s--443-7 Numerische Mathematik A minimum entropy principle of high order schemes for gas dynamics equations iangxiong Zhang Chi-Wang Shu Received: 7 July / Revised: 5 September

More information

A Fifth Order Flux Implicit WENO Method

A Fifth Order Flux Implicit WENO Method A Fifth Order Flux Implicit WENO Method Sigal Gottlieb and Julia S. Mullen and Steven J. Ruuth April 3, 25 Keywords: implicit, weighted essentially non-oscillatory, time-discretizations. Abstract The weighted

More information

A High Order WENO Scheme for a Hierarchical Size-Structured Model. Abstract

A High Order WENO Scheme for a Hierarchical Size-Structured Model. Abstract A High Order WENO Scheme for a Hierarchical Size-Structured Model Jun Shen 1, Chi-Wang Shu 2 and Mengping Zhang 3 Abstract In this paper we develop a high order explicit finite difference weighted essentially

More information

A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows.

A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows Tao Xiong Jing-ei Qiu Zhengfu Xu 3 Abstract In Xu [] a class of

More information

A Speed-Up Strategy for Finite Volume WENO Schemes for Hyperbolic Conservation Laws

A Speed-Up Strategy for Finite Volume WENO Schemes for Hyperbolic Conservation Laws J Sci Comput (011) 46: 359 378 DOI 10.1007/s10915-010-9407-9 A Speed-Up Strategy for Finite Volume WENO Schemes for Hyperbolic Conservation Laws Fei Teng Li Yuan Tao Tang Received: 3 February 010 / Revised:

More information

Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: Survey and new developments

Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: Survey and new developments Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: Survey and new developments By Xiangxiong Zhang 1 and Chi-Wang Shu 1 Department of Mathematics, Brown University,

More information

ALTERNATING EVOLUTION DISCONTINUOUS GALERKIN METHODS FOR HAMILTON-JACOBI EQUATIONS

ALTERNATING EVOLUTION DISCONTINUOUS GALERKIN METHODS FOR HAMILTON-JACOBI EQUATIONS ALTERNATING EVOLUTION DISCONTINUOUS GALERKIN METHODS FOR HAMILTON-JACOBI EQUATIONS HAILIANG LIU AND MICHAEL POLLACK Abstract. In this work, we propose a high resolution Alternating Evolution Discontinuous

More information

An interface treating technique for compressible multi-medium flow with. Runge-Kutta discontinuous Galerkin method. Abstract

An interface treating technique for compressible multi-medium flow with. Runge-Kutta discontinuous Galerkin method. Abstract An interface treating technique for compressible multi-medium flow with Runge-Kutta discontinuous Galerkin method Chunwu Wang 1 and Chi-Wang Shu 2 Abstract The high-order accurate Runge-Kutta discontinuous

More information

Weighted ENO Schemes

Weighted ENO Schemes Xiaolei Chen Advisor: Prof. Xiaolin Li Department of Applied Mathematics and Statistics Stony Brook University, The State University of New York February 7, 014 1 3 Mapped WENO-Z Scheme 1D Scalar Hyperbolic

More information

Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers

Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers Alexander Kurganov, 1, * Eitan Tadmor 2 1 Department of Mathematics, University of Michigan, Ann Arbor, Michigan

More information

An efficient implementation of the divergence free constraint in a discontinuous Galerkin method for magnetohydrodynamics on unstructured meshes

An efficient implementation of the divergence free constraint in a discontinuous Galerkin method for magnetohydrodynamics on unstructured meshes An efficient implementation of the divergence free constraint in a discontinuous Galerkin method for magnetohydrodynamics on unstructured meshes Christian Klingenberg, Frank Pörner, Yinhua Xia Abstract

More information

A central discontinuous Galerkin method for Hamilton-Jacobi equations

A central discontinuous Galerkin method for Hamilton-Jacobi equations A central discontinuous Galerkin method for Hamilton-Jacobi equations Fengyan Li and Sergey Yakovlev Abstract In this paper, a central discontinuous Galerkin method is proposed to solve for the viscosity

More information

AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION

AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION Fareed Hussain Mangi*, Umair Ali Khan**, Intesab Hussain Sadhayo**, Rameez Akbar Talani***, Asif Ali Memon* ABSTRACT High order

More information

ENO and WENO schemes. Further topics and time Integration

ENO and WENO schemes. Further topics and time Integration ENO and WENO schemes. Further topics and time Integration Tefa Kaisara CASA Seminar 29 November, 2006 Outline 1 Short review ENO/WENO 2 Further topics Subcell resolution Other building blocks 3 Time Integration

More information

Investigation of Godunov Flux Against Lax Friedrichs' Flux for the RKDG Methods on the Scalar Nonlinear Conservation Laws Using Smoothness Indicator

Investigation of Godunov Flux Against Lax Friedrichs' Flux for the RKDG Methods on the Scalar Nonlinear Conservation Laws Using Smoothness Indicator American Review of Mathematics and Statistics December 2014, Vol. 2, No. 2, pp. 43-53 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright The Author(s). 2014. All Rights Reserved. Published by American

More information

Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation

Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation Numerical Analysis and Scientific Computing Preprint Seria Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation W. Guo J. Qiu Preprint #21 Department of Mathematics University

More information

FUNDAMENTALS OF LAX-WENDROFF TYPE APPROACH TO HYPERBOLIC PROBLEMS WITH DISCONTINUITIES

FUNDAMENTALS OF LAX-WENDROFF TYPE APPROACH TO HYPERBOLIC PROBLEMS WITH DISCONTINUITIES 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 018, Glasgow, UK FUNDAMENTALS OF LAX-WENDROFF TYPE APPROACH TO HYPERBOLIC

More information

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws Zhengfu Xu, Jinchao Xu and Chi-Wang Shu 0th April 010 Abstract In this note, we apply the h-adaptive streamline

More information

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS HASEENA AHMED AND HAILIANG LIU Abstract. High resolution finite difference methods

More information

On the positivity of linear weights in WENO approximations. Abstract

On the positivity of linear weights in WENO approximations. Abstract On the positivity of linear weights in WENO approximations Yuanyuan Liu, Chi-Wang Shu and Mengping Zhang 3 Abstract High order accurate weighted essentially non-oscillatory (WENO) schemes have been used

More information

Strong Stability-Preserving (SSP) High-Order Time Discretization Methods

Strong Stability-Preserving (SSP) High-Order Time Discretization Methods Strong Stability-Preserving (SSP) High-Order Time Discretization Methods Xinghui Zhong 12/09/ 2009 Outline 1 Introduction Why SSP methods Idea History/main reference 2 Explicit SSP Runge-Kutta Methods

More information

A genuinely high order total variation diminishing scheme for one-dimensional. scalar conservation laws 1. Abstract

A genuinely high order total variation diminishing scheme for one-dimensional. scalar conservation laws 1. Abstract A genuinely high order total variation diminishing scheme for one-dimensional scalar conservation laws Xiangxiong Zhang and Chi-Wang Shu 3 Abstract It is well known that finite difference or finite volume

More information

Entropic Schemes for Conservation Laws

Entropic Schemes for Conservation Laws CONSTRUCTVE FUNCTON THEORY, Varna 2002 (B. Bojanov, Ed.), DARBA, Sofia, 2002, pp. 1-6. Entropic Schemes for Conservation Laws Bojan Popov A new class of Godunov-type numerical methods (called here entropic)

More information

Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws NASA/CR-97-0653 ICASE Report No. 97-65 Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws Chi-Wang Shu Brown University Institute for Computer

More information

Received 6 August 2005; Accepted (in revised version) 22 September 2005

Received 6 August 2005; Accepted (in revised version) 22 September 2005 COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol., No., pp. -34 Commun. Comput. Phys. February 6 A New Approach of High OrderWell-Balanced Finite Volume WENO Schemes and Discontinuous Galerkin Methods for a

More information

Convex ENO Schemes for Hamilton-Jacobi Equations

Convex ENO Schemes for Hamilton-Jacobi Equations Convex ENO Schemes for Hamilton-Jacobi Equations Chi-Tien Lin Dedicated to our friend, Xu-Dong Liu, notre Xu-Dong. Abstract. In one dimension, viscosit solutions of Hamilton-Jacobi (HJ equations can be

More information

The Runge Kutta Discontinuous Galerkin Method for Conservation Laws V

The Runge Kutta Discontinuous Galerkin Method for Conservation Laws V JOURNAL OF COMPUTATIONAL PHYSICS 141, 199 224 1998) ARTICLE NO. CP985892 The Runge Kutta Discontinuous Galerkin Method for Conservation Laws V Multidimensional Systems Bernardo Cockburn,1 and Chi-Wang

More information

The Discontinuous Galerkin (dg) method is a popular numerical method that has received much attention

The Discontinuous Galerkin (dg) method is a popular numerical method that has received much attention Fluid Dynamics and Co-located Conferences June 24-27, 2013, San Diego, CA 21st AIAA Computational Fluid Dynamics Conference AIAA 2013-2595 Discontinuous Galerkin method for multifluid Euler equations Marc

More information

30 crete maximum principle, which all imply the bound-preserving property. But most

30 crete maximum principle, which all imply the bound-preserving property. But most 3 4 7 8 9 3 4 7 A HIGH ORDER ACCURATE BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME FOR SCALAR CONVECTION DIFFUSION EQUATIONS HAO LI, SHUSEN XIE, AND XIANGXIONG ZHANG Abstract We show that the classical

More information

An Improved Non-linear Weights for Seventh-Order WENO Scheme

An Improved Non-linear Weights for Seventh-Order WENO Scheme An Improved Non-linear Weights for Seventh-Order WENO Scheme arxiv:6.06755v [math.na] Nov 06 Samala Rathan, G Naga Raju Department of Mathematics, Visvesvaraya National Institute of Technology, Nagpur,

More information

Hermite WENO schemes and their application as limiters for Runge Kutta discontinuous Galerkin method: one-dimensional case

Hermite WENO schemes and their application as limiters for Runge Kutta discontinuous Galerkin method: one-dimensional case Journal of Computational Physics 93 (3) 5 35 www.elsevier.com/locate/jcp Hermite WENO schemes and their application as limiters for Runge Kutta discontinuous Galerkin method: one-dimensional case Jianian

More information

Simulations of Shallow Water Equations with Finite Difference Lax-Wendroff Weighted Essentially Non-oscillatory Schemes

Simulations of Shallow Water Equations with Finite Difference Lax-Wendroff Weighted Essentially Non-oscillatory Schemes J Sci Comput (2011) 47: 281 302 DOI 10.1007/s10915-010-9437-3 Simulations of Shallow Water Equations with Finite Difference Lax-Wendroff Weighted Essentially Non-oscillatory Schemes Changna Lu Jianxian

More information

HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS

HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS June 6, 7 :7 WSPC/Lecture Notes Series: 9in x 6in chapter HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS Chi-Wang Shu Division of Applied Mathematics, Brown University Providence,

More information

THE RUNGE KUTTA DISCONTINUOUS GALERKIN METHOD FOR CONSERVATION LAWS V: MULTIDIMENSIONAL SYSTEMS. Bernardo Cockburn 1. School of Mathematics

THE RUNGE KUTTA DISCONTINUOUS GALERKIN METHOD FOR CONSERVATION LAWS V: MULTIDIMENSIONAL SYSTEMS. Bernardo Cockburn 1. School of Mathematics THE RUNGE KUTTA DISCONTINUOUS GALERKIN METHOD FOR CONSERVATION LAWS V: MULTIDIMENSIONAL SYSTEMS Bernardo Cockburn School of Mathematics University of Minnesota Minneapolis, Minnesota 55455 and Chi-Wang

More information

Compact Central WENO Schemes for Multidimensional Conservation Laws

Compact Central WENO Schemes for Multidimensional Conservation Laws arxiv:math/9989v [math.na] 3 Nov 999 Compact Central WENO Schemes for Multidimensional Conservation Laws Doron Levy Gabriella Puppo Giovanni Russo Abstract We present a new third-order central scheme for

More information

A general well-balanced finite volume scheme for Euler equations with gravity

A general well-balanced finite volume scheme for Euler equations with gravity A general well-balanced finite volume scheme for Euler equations with gravity Jonas P. Berberich, Praveen Chandrashekar, Christian Klingenberg Abstract We present a second order well-balanced Godunov-type

More information

Numerical resolution of discontinuous Galerkin methods for time dependent. wave equations 1. Abstract

Numerical resolution of discontinuous Galerkin methods for time dependent. wave equations 1. Abstract Numerical resolution of discontinuous Galerkin methods for time dependent wave equations Xinghui Zhong 2 and Chi-Wang Shu Abstract The discontinuous Galerkin DG method is known to provide good wave resolution

More information

ARTICLE IN PRESS Mathematical and Computer Modelling ( )

ARTICLE IN PRESS Mathematical and Computer Modelling ( ) Mathematical and Computer Modelling Contents lists available at ScienceDirect Mathematical and Computer Modelling ournal homepage: wwwelseviercom/locate/mcm Total variation diminishing nonstandard finite

More information

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients Superconvergence of discontinuous Galerkin methods for -D linear hyperbolic equations with degenerate variable coefficients Waixiang Cao Chi-Wang Shu Zhimin Zhang Abstract In this paper, we study the superconvergence

More information

Sung-Ik Sohn and Jun Yong Shin

Sung-Ik Sohn and Jun Yong Shin Commun. Korean Math. Soc. 17 (2002), No. 1, pp. 103 120 A SECOND ORDER UPWIND METHOD FOR LINEAR HYPERBOLIC SYSTEMS Sung-Ik Sohn and Jun Yong Shin Abstract. A second order upwind method for linear hyperbolic

More information

Conservation Laws & Applications

Conservation Laws & Applications Rocky Mountain Mathematics Consortium Summer School Conservation Laws & Applications Lecture V: Discontinuous Galerkin Methods James A. Rossmanith Department of Mathematics University of Wisconsin Madison

More information

The RAMSES code and related techniques I. Hydro solvers

The RAMSES code and related techniques I. Hydro solvers The RAMSES code and related techniques I. Hydro solvers Outline - The Euler equations - Systems of conservation laws - The Riemann problem - The Godunov Method - Riemann solvers - 2D Godunov schemes -

More information

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations Semi-Lagrangian Formulations for Linear Advection and Applications to Kinetic Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Chi-Wang Shu Supported by NSF and AFOSR.

More information

ADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws

ADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws ADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws Martin Käser and Armin Iske Abstract. ADER schemes are recent finite volume methods for hyperbolic conservation laws, which can be

More information

Extremum-Preserving Limiters for MUSCL and PPM

Extremum-Preserving Limiters for MUSCL and PPM arxiv:0903.400v [physics.comp-ph] 7 Mar 009 Extremum-Preserving Limiters for MUSCL and PPM Michael Sekora Program in Applied and Computational Mathematics, Princeton University Princeton, NJ 08540, USA

More information

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra Semi-discrete central schemes for balance laws. Application to the Broadwell model. Alexander Kurganov * *Department of Mathematics, Tulane University, 683 St. Charles Ave., New Orleans, LA 708, USA kurganov@math.tulane.edu

More information

Sub-Cell Shock Capturing for Discontinuous Galerkin Methods

Sub-Cell Shock Capturing for Discontinuous Galerkin Methods Sub-Cell Shock Capturing for Discontinuous Galerkin Methods Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology, Cambridge, MA 39, U.S.A. A shock capturing strategy for higher order

More information

Introduction In this paper we review existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equ

Introduction In this paper we review existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equ Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives Jue Yan and Chi-Wang Shu 3 Division of Applied Mathematics Brown University Providence, Rhode Island

More information

Adaptive TVD-RK Discontinuous Galerkin Algorithms for Shallow Water Equations

Adaptive TVD-RK Discontinuous Galerkin Algorithms for Shallow Water Equations Adaptive TVD-RK Discontinuous Galerkin Algorithms for Shallow Water Equations Thida Pongsanguansin, Khamron Mekchay and Montri Maleewong Abstract The adaptive Discontinuous Galerkin DG method for solving

More information

Runge Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems

Runge Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems Journal of Scientific Computing, Vol. 16, No. 3, September 2001 ( 2001) Review Article Runge Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems Bernardo Cockburn 1 and Chi-Wang Shu

More information

Solving the Euler Equations!

Solving the Euler Equations! http://www.nd.edu/~gtryggva/cfd-course/! Solving the Euler Equations! Grétar Tryggvason! Spring 0! The Euler equations for D flow:! where! Define! Ideal Gas:! ρ ρu ρu + ρu + p = 0 t x ( / ) ρe ρu E + p

More information

On the Comparison of the Finite Volume and Discontinuous Galerkin Methods

On the Comparison of the Finite Volume and Discontinuous Galerkin Methods Diploma Thesis Institute for Numerical Simulation, TUHH On the Comparison of the Finite Volume and Discontinuous Galerkin Methods Corrected version Katja Baumbach August 17, 2006 Supervisor: Prof. Dr.

More information

A Finite Volume Code for 1D Gas Dynamics

A Finite Volume Code for 1D Gas Dynamics A Finite Volume Code for 1D Gas Dynamics Michael Lavell Department of Applied Mathematics and Statistics 1 Introduction A finite volume code is constructed to solve conservative systems, such as Euler

More information

SMOOTHNESS INDICATORS FOR WENO SCHEME USING UNDIVIDED DIFFERENCES

SMOOTHNESS INDICATORS FOR WENO SCHEME USING UNDIVIDED DIFFERENCES Proceedings of ALGORITMY 2016 pp. 155 164 SMOOTHNESS INDICATORS FOR WENO SCHEME USING UNDIVIDED DIFFERENCES TAMER H. M. A. KASEM AND FRANÇOIS G. SCHMITT Abstract. The weighted essentially non-oscillatory

More information

Chapter 1. Introduction and Background. 1.1 Introduction

Chapter 1. Introduction and Background. 1.1 Introduction Chapter 1 Introduction and Background 1.1 Introduction Over the past several years the numerical approximation of partial differential equations (PDEs) has made important progress because of the rapid

More information

A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway

A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway Manuscript A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway Peng Zhang, S.C. Wong and Chi-Wang Shu. Department of Civil Engineering,

More information

arxiv: v3 [math.na] 10 Mar 2015

arxiv: v3 [math.na] 10 Mar 2015 A Posteriori Subcell Limiting of the Discontinuous Galerkin Finite Element Method for Hyperbolic Conservation Laws Michael Dumbser a, Olindo Zanotti a, Raphaël Loubère b, Steven Diot c a Department of

More information

RESEARCH HIGHLIGHTS. WAF: Weighted Average Flux Method

RESEARCH HIGHLIGHTS. WAF: Weighted Average Flux Method RESEARCH HIGHLIGHTS (Last update: 3 rd April 2013) Here I briefly describe my contributions to research on numerical methods for hyperbolic balance laws that, in my view, have made an impact in the scientific

More information

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes Math 660-Lecture 3: Gudonov s method and some theories for FVM schemes 1 The idea of FVM (You can refer to Chapter 4 in the book Finite volume methods for hyperbolic problems ) Consider the box [x 1/,

More information

Well-balanced DG scheme for Euler equations with gravity

Well-balanced DG scheme for Euler equations with gravity Well-balanced DG scheme for Euler equations with gravity Praveen Chandrashekar praveen@tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore 560065 Higher Order

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

A Second Order Discontinuous Galerkin Fast Sweeping Method for Eikonal Equations

A Second Order Discontinuous Galerkin Fast Sweeping Method for Eikonal Equations A Second Order Discontinuous Galerkin Fast Sweeping Method for Eikonal Equations Fengyan Li, Chi-Wang Shu, Yong-Tao Zhang 3, and Hongkai Zhao 4 ABSTRACT In this paper, we construct a second order fast

More information

A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations

A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations J Sci Comput (00) 45: 404 48 DOI 0.007/s095-009-9340-y A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations Fengyan Li Sergey Yakovlev Received: 6 August 009 / Revised: November 009 /

More information

Discontinuous Galerkin methods for Hyperbolic PDEs. Lecture 1

Discontinuous Galerkin methods for Hyperbolic PDEs. Lecture 1 Discontinuous Galerkin methods for Hyperbolic PDEs. Lecture 1 Olindo Zanotti olindo.zanotti@unitn.it University of Trento Laboratory of Applied Mathematics PiTP 2016 Computational Plasma Astrophysics 18

More information

High order finite difference WENO schemes with positivity-preserving. limiter for correlated random walk with density-dependent turning rates

High order finite difference WENO schemes with positivity-preserving. limiter for correlated random walk with density-dependent turning rates High order finite difference WENO schemes with positivity-preserving limiter for correlated random walk with density-dependent turning rates Yan Jiang, Chi-Wang Shu and Mengping Zhang 3 Abstract In this

More information

H. L. Atkins* NASA Langley Research Center. Hampton, VA either limiters or added dissipation when applied to

H. L. Atkins* NASA Langley Research Center. Hampton, VA either limiters or added dissipation when applied to Local Analysis of Shock Capturing Using Discontinuous Galerkin Methodology H. L. Atkins* NASA Langley Research Center Hampton, A 68- Abstract The compact form of the discontinuous Galerkin method allows

More information

Accepted Manuscript. A Second Order Discontinuous Galerkin Fast Sweeping Method for Eikonal Equations

Accepted Manuscript. A Second Order Discontinuous Galerkin Fast Sweeping Method for Eikonal Equations Accepted Manuscript A Second Order Discontinuous Galerkin Fast Sweeping Method for Eikonal Equations Fengyan Li, Chi-Wang Shu, Yong-Tao Zhang, Hongkai Zhao PII: S-()- DOI:./j.jcp... Reference: YJCPH To

More information

Non-linear Methods for Scalar Equations

Non-linear Methods for Scalar Equations Non-linear Methods for Scalar Equations Professor Dr. E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro October 3, 04 / 56 Abstract

More information

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Romain Teyssier CEA Saclay Romain Teyssier 1 Outline - Euler equations, MHD, waves, hyperbolic

More information