Strong Stability-Preserving (SSP) High-Order Time Discretization Methods

Size: px
Start display at page:

Download "Strong Stability-Preserving (SSP) High-Order Time Discretization Methods"

Transcription

1 Strong Stability-Preserving (SSP) High-Order Time Discretization Methods Xinghui Zhong 12/09/ 2009

2 Outline 1 Introduction Why SSP methods Idea History/main reference 2 Explicit SSP Runge-Kutta Methods SSP Theory Optimal SSPRK Methods for Nonlinear Problems Optimal SSPRK methods for Linear Operator Low Storage Methods 3 Explicit SSP Multi Step Methods SSP Theory Order Barriers 4 Implicit SSP Methods Diagonally Implicit Runge-Kutta methods Implicit SSP Multi Step Methods 5 Summary

3 Why SSP methods Time-dependent PDE = ODE Lax equivalence theorem: A linear method consistent with a linear problem stability convergence. Strang s theorem For nonlinear problems with sufficiently smooth solution, if an approximation is consistent and its linearized version is L 2 stable, = convergence problems with discontinuous solutions??? high order spatial discretization + forward Euler time stepping method

4 Why SSP methods hyperbolic conservation law u t = f (u) x. ODE u t = L(u) L(u)+ forward Euler: stability properties L(u)+ high order time discretization??

5 Why SSP methods Burger s equation Initial condition ( ) u 2 u t + 2 x = 0. u(x, 0) = { 1, if x 0, 0.5, if x > 0, Spatial discretization 2nd order minmod based Monotone Upstream-centered Schemes for Conservation Law (MUSCL)

6 Why SSP methods Time discretization SSP 2nd order RK non-ssp method u (1) = u n + tl(u n ) u n+1 = 1 2 un u(1) tl(u(1) ). u (1) = u n 20 tl(u n ) u n+1 = u n u(1) 1 40 tl(u(1) ).

7 Idea Idea Assume first order forward Euler time discretization of the method of lines ODE is strongly stable under, when t t FE, and then try to find a higher order time discretization that maintains the strong stability for the same norm, under t t. strong stability A sequence u n is said to be strongly stable in a given norm, provided u n+1 u n total variation diminishing (TVD) property TV (u n+1 ) TV (u n ) where TV (u) = j u j+1 u j.

8 History/main reference 1988 C.-W. Shu and S. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, II 1988 C.-W. Shu, Total-Variation-Diminishing Time Discretizations 1998 S. Gottlieb and C.-W. Shu Total-Variation-Diminishing Runge-Kutta Schemes 2001 S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong Stability Preserving High-Order Time Discretization Methods 2002 S. J. Ruuth and R. J. Spiteri. Two Barriers on Strong-Stability-Preserving Time Discretization Methods 2005 S. Gottlieb. On High Order Strong Stability Preserving Runge-Kutta and Multi Step Time Discretizations. J.S. Hesthaven, S. Gottlieb and D. Gottlieb, Spectral Methods for Time-Dependent Problems

9 SSP Theory A general m-stage Runge-Kutta method u (0) = u n, i 1 ( ) u (i) = α i,k u (k) + tβ i,k L(u (k) ), α i,k 0, i = 1,, m, k=0 u n+1 = u (m). Consistency = i 1 k=0 α i,k = 1 β i,k 0, t β i,k α i,k t β i,k < 0, L is replace by L t β i,k α i,k t L approximates the same spatial derivative as L Strong stability property where u n+1 u n u n+1 = u n t L(u n ).

10 SSP Theory Theory (C.-W. Shu and S. Osher) If under CFL restriction and if u n + t L(u n ) u n t t FE, (1) u n t L(u n ) u n under the CFL restriction (1), Then the RK method is SSP u n+1 u n, under the CFL restriction, t c t FE, c = min i,k α i,k β i,k Provided L is replaced by L whenever β i,k is negative.

11 Optimal SSPRK Methods for Nonlinear Problems Optimal c: as large as possible L and L: avoid negative β i,k whenever possible definition effective CFL c eff = c l, where c: CFL coefficient l: the number of computations of L and L required per time step.

12 Optimal SSPRK Methods for Nonlinear Problems SSPRK (2,2): If we require β i,k 0, then u (1) = u n + t L(u n ) u n+1 = 1 2 un u(1) t L(u(1) ). with c = 1 and c eff = 1/2. SSPRK (3,3): If we require β i,k 0, then u (1) = u n + tl(u n ) u (2) = 3 4 un u(1) t L(u(1) ) u n+1 = 1 3 un u(2) t L(u(2) ) with c = 1 and c eff = 1/3. Shu-Osher method

13 Optimal SSPRK Methods for Nonlinear Problems Proposition (S.Gottlieb and C.-W. Shu) The four-stage, fourth-order SSP Runge-Kutta scheme with a nonzero CFL coefficient c must have at least one negative β i,k. Spiteri and Ruuth proved that any SSPRK with nonzero CFL of order p > 4 will have negative β i,k. Spiteri and Ruuth developed fourth order methods with m = 5, 6, 7 and 8 stages.

14 Optimal SSPRK Methods for Nonlinear Problems SSPRK(5,4) u (1) =u n t L(u n ), u (2) = u n u (1) tl(u (1) ), u (3) = u n u (2) t L(u (2) ), u (4) = u n u (3) t L(u (3) ), u n+1 = u (2) u (3) t L(u (3) u (4) t L(u (4) ) with c = and c eff =

15 Optimal SSPRK methods for Linear Operator Denote If L is a linear constant coefficient operator, then L(u) = L u. Theory (Spiteri and Ruuth) Consider SSPRK (m,p) methods with α i,k, β i,k 0 applied to u t = L u. The CFL restriction then satisfies t (m p + 1) t FE.

16 Optimal SSPRK methods for Linear Operator Table 1. Optimal CFL coefficients c, and the Corresponding Effective CFL c eff of SSPRK linear (m, p)

17 Optimal SSPRK methods for Linear Operator SSPRK linear (m,m) u (i) = u (i 1) + t Lu (i 1), i = 1,, m 1, u (m) = m 2 k=0 where α 1,0 = 1 and α m,k u (k) + α m,m 1 (u (m 1) + t L u (m 1)), α m,k = 1 k α m 1,k 1, k = 1,, m 2, α m,m 1 = 1 m!, m 1 α m,0 = 1 α m,k. k=1 with c = 1 and c eff = 1/m.

18 Optimal SSPRK methods for Linear Operator Table 2. Coefficients α m,j of SSPRK linear (m, m)

19 Optimal SSPRK methods for Linear Operator SSPRK linear (m, 1) ( u (i) = 1 + t ) m L u (i 1), i = 1,, m. with c = m and c eff = 1. SSPRK linear (m, 2) ( u (i) = 1 + t ) m 1 L u (i 1), i = 1,, m 1, u (m) = 1 m u(0) + m 1 ( 1 + t ) m m 1 L u (m 1), with c = m 1 and c eff = (m 1)/m.

20 Low Storage Methods The general low-storage RK methods: u (0) = u n, k i = A i k i 1 + t L(u (i 1) ), i = 1,, m u (i) = u (i 1) + B i k i, i = 1,, m, B 1 = c. u n+1 = u (m). M. Carpenter and C. Kennedy Fourth-order 2N-storage Runge-Kutta schemes, all the low-storage RK (3, 3). the best SSP 3rd order with c = 0.92 and c eff = 0.32(S. Gottlieb and C.-W. Shu). less optimal than SSPRK (3,3) useful for large-scale calculations classes of the low-storage RK (5, 4) unable to find SSP methods with β i,k > 0.

21 The Need for SSP Property in the Intermediate Stages Remark SSPRK methods have also intermediate stage SSP properties. u (i) u (i 1), i = 1, m Consider u t u x = 0, 0 x 1 { 0 if x 1 u(0, x) = 2, 1 if x > 1 2. Spatial discretization u t = L(u) = u(t, x j+1) u(t, x j ) x

22 Time discretization SSPRK (2, 2) non SSPRK u (1) = u n + tl(u n ) u (1) = u n 20 tl(u n ) u n+1 = 1 2 un u(1) u n+1 = u n u(1) tl(u(1) ) tl(u(1) ). Figure: Intermediate stage solution u (1) after 10 time steps.

23 SSP Theory Explicit SSP multi step methods m ( ) u n+1 = α i u n+1 i + tβ i L(u n+1 i ), α i 0. i=1 Theory (S. Gottlieb, C.-W. Shu and E. Tadmor) If u n + t L(u n ) u n under CFL restriction t t FE, (2) and if u n t L(u n ) u n under the CFL restriction (2), Then the multi step method is SSP u n+1 u n, under the CFL restriction, t c t FE, c = min i,k α i β i Provided L is replaced by L whenever β i is negative.

24 Order Barriers The explicit SSP multi step methods are p-th order accurate if m α i = 1, i=1 ( m m ) i k α i = k i k 1 β i.k = 1,, p. i=1 i=1 Proposition (S. Gottlieb, C.-W. Shu and E. Tadmor) For m 2, there is no m-step, mth-order SSP method with all nonnegative β i, and there is no m-step SSP method of order (m + 1).

25 Diagonally Implicit Runge-Kutta methods DIRK method u (0) = u n i 1 u (i) = α i,k u (k) + tβ i L(u (i) ), α i,k 0, i = 1,, m, k=0 u n+1 = u (m). Remark β i < 0, introduce an associated operator L approximate the same spatial derivative(s) as L unconditionally strong stable for first-order implicit Euler, backward in time: u n+1 = u n t L(u n+1 ).

26 Diagonally Implicit Runge-Kutta methods If u n+1 = u n + t L(u n+1 ) and u n+1 = u n t L(u n+1 ) is unconditionally strong stable, u n+1 u n Then the above DIRK methods are unconditionally strong stable under the same norm. Provided L is replaced by L whenever β i is negative. Proposition (S.Gottlieb, C.-W. Shu and E. Tadmor) If the above DIRK is at least second-order accurate, then α i,k cannot be all nonnegative.

27 Implicit SSP Multi Step Methods Implicit SSP multi step methods u n+1 = m α i u n+1 i + tβ 0 L(u n+1 ). i=1 If u n+1 = u n + t L(u n+1 ) and u n+1 = u n t L(u n+1 ) is unconditionally strong stable, u n+1 u n. Then this method would be unconditionally strong stable under the same norm Provided L is replaced by L whenever β 0 is negative. Proposition (S.Gottlieb, C.-W. Shu and E. Tadmor) If the above multi-step method is at least second-order accurate, then α i cannot be all nonnegative.

28 Summary SSP methods preserves the strong stability, in any norm or semi-norm, of the forward Euler (for explicit methods) or the backward Euler (for implicit methods). SSP methods are very useful for method of lines numerical schemes for PDEs, especially in solving hyperbolic problems. The goal to design higher order implicit SSP methods, which share the strong stability properties of implicit Euler, without any restriction on the time step, cannot be realized.

29 Thank you

On High Order Strong Stability Preserving Runge Kutta and Multi Step Time Discretizations

On High Order Strong Stability Preserving Runge Kutta and Multi Step Time Discretizations Journal of Scientific Computing, Vol. 5, Nos. /, November 005 ( 005) DOI: 0.007/s095-00-65-5 On High Order Strong Stability Preserving Runge Kutta and Multi Step Time Discretizations Sigal Gottlieb Received

More information

A numerical study of SSP time integration methods for hyperbolic conservation laws

A numerical study of SSP time integration methods for hyperbolic conservation laws MATHEMATICAL COMMUNICATIONS 613 Math. Commun., Vol. 15, No., pp. 613-633 (010) A numerical study of SSP time integration methods for hyperbolic conservation laws Nelida Črnjarić Žic1,, Bojan Crnković 1

More information

Strong Stability Preserving Properties of Runge Kutta Time Discretization Methods for Linear Constant Coefficient Operators

Strong Stability Preserving Properties of Runge Kutta Time Discretization Methods for Linear Constant Coefficient Operators Journal of Scientific Computing, Vol. 8, No., February 3 ( 3) Strong Stability Preserving Properties of Runge Kutta Time Discretization Methods for Linear Constant Coefficient Operators Sigal Gottlieb

More information

Strong Stability Preserving Time Discretizations

Strong Stability Preserving Time Discretizations AJ80 Strong Stability Preserving Time Discretizations Sigal Gottlieb University of Massachusetts Dartmouth Center for Scientific Computing and Visualization Research November 20, 2014 November 20, 2014

More information

ENO and WENO schemes. Further topics and time Integration

ENO and WENO schemes. Further topics and time Integration ENO and WENO schemes. Further topics and time Integration Tefa Kaisara CASA Seminar 29 November, 2006 Outline 1 Short review ENO/WENO 2 Further topics Subcell resolution Other building blocks 3 Time Integration

More information

TOTAL VARIATION DIMINISHING RUNGE-KUTTA SCHEMES

TOTAL VARIATION DIMINISHING RUNGE-KUTTA SCHEMES MATHEMATICS OF COMPUTATION Volume 67 Number 221 January 1998 Pages 73 85 S 0025-5718(98)00913-2 TOTAL VARIATION DIMINISHING RUNGE-KUTTA SCHEMES SIGAL GOTTLIEB AND CHI-WANG SHU Abstract. In this paper we

More information

A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods

A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods Raymond J. Spiteri Steven J. Ruuth Technical Report CS-- May 6, Faculty of Computer Science 65 University Ave.,

More information

Design of optimal Runge-Kutta methods

Design of optimal Runge-Kutta methods Design of optimal Runge-Kutta methods David I. Ketcheson King Abdullah University of Science & Technology (KAUST) D. Ketcheson (KAUST) 1 / 36 Acknowledgments Some parts of this are joint work with: Aron

More information

ARTICLE IN PRESS Mathematical and Computer Modelling ( )

ARTICLE IN PRESS Mathematical and Computer Modelling ( ) Mathematical and Computer Modelling Contents lists available at ScienceDirect Mathematical and Computer Modelling ournal homepage: wwwelseviercom/locate/mcm Total variation diminishing nonstandard finite

More information

A Strong Stability Preserving Analysis for Explicit Multistage Two-Derivative Time-Stepping Schemes Based on Taylor Series Conditions.

A Strong Stability Preserving Analysis for Explicit Multistage Two-Derivative Time-Stepping Schemes Based on Taylor Series Conditions. A Strong Stability Preserving Analysis for Explicit Multistage Two-Derivative Time-Stepping Schemes Based on Taylor Series Conditions. Zachary Grant 1, Sigal Gottlieb 2, David C. Seal 3 1 Department of

More information

Optimal Implicit Strong Stability Preserving Runge Kutta Methods

Optimal Implicit Strong Stability Preserving Runge Kutta Methods Optimal Implicit Strong Stability Preserving Runge Kutta Methods David I. Ketcheson, Colin B. Macdonald, Sigal Gottlieb. February 21, 2008 Abstract Strong stability preserving (SSP) time discretizations

More information

Optimal Implicit Strong Stability Preserving Runge Kutta Methods

Optimal Implicit Strong Stability Preserving Runge Kutta Methods Optimal Implicit Strong Stability Preserving Runge Kutta Methods David I. Ketcheson, Colin B. Macdonald, Sigal Gottlieb. August 3, 2007 Abstract Strong stability preserving (SSP) time discretizations were

More information

Strong Stability Preserving High-order Time Discretization Methods

Strong Stability Preserving High-order Time Discretization Methods NASA/CR-000-009 ICASE Report No. 000-5 Strong Stability Preserving High-order Time Discretization Methods Sigal Gottlieb University of Massachusetts, Dartmouth, Massachusetts Chi-Wang Shu Brown University,

More information

c 2013 Society for Industrial and Applied Mathematics

c 2013 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 5, No. 4, pp. 249 265 c 203 Society for Industrial and Applied Mathematics STRONG STABILITY PRESERVING EXPLICIT RUNGE KUTTA METHODS OF MAXIMAL EFFECTIVE ORDER YIANNIS HADJIMICHAEL,

More information

ABSTRACT. In this paper we review and further develop a class of strong stability preserving (SSP)

ABSTRACT. In this paper we review and further develop a class of strong stability preserving (SSP) ........................ c000 00 Strong Stability Preserving High Order Time Discretization Methods Sigal Gottlieb Chi-Wang Shu y and Eitan Tadmor z ABSTRACT In this paper we review and further develop

More information

Surprising Computations

Surprising Computations .... Surprising Computations Uri Ascher Department of Computer Science University of British Columbia ascher@cs.ubc.ca www.cs.ubc.ca/ ascher/ Uri Ascher (UBC) Surprising Computations Fall 2012 1 / 67 Motivation.

More information

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Jianxian Qiu School of Mathematical Science Xiamen University jxqiu@xmu.edu.cn http://ccam.xmu.edu.cn/teacher/jxqiu

More information

A Fifth Order Flux Implicit WENO Method

A Fifth Order Flux Implicit WENO Method A Fifth Order Flux Implicit WENO Method Sigal Gottlieb and Julia S. Mullen and Steven J. Ruuth April 3, 25 Keywords: implicit, weighted essentially non-oscillatory, time-discretizations. Abstract The weighted

More information

Stepsize Restrictions for Boundedness and Monotonicity of Multistep Methods

Stepsize Restrictions for Boundedness and Monotonicity of Multistep Methods Stepsize Restrictions for Boundedness and Monotonicity of Multistep Methods W. Hundsdorfer, A. Mozartova, M.N. Spijker Abstract In this paper nonlinear monotonicity and boundedness properties are analyzed

More information

Strong Stability of Singly-Diagonally-Implicit Runge-Kutta Methods

Strong Stability of Singly-Diagonally-Implicit Runge-Kutta Methods Strong Stability of Singly-Diagonally-Implicit Runge-Kutta Methods L. Ferracina and M. N. Spijker 2007, June 4 Abstract. This paper deals with the numerical solution of initial value problems, for systems

More information

Introduction to numerical schemes

Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes Heat equation The simple parabolic PDE with the initial values u t = K 2 u 2 x u(0, x) = u 0 (x) and some boundary conditions

More information

30 crete maximum principle, which all imply the bound-preserving property. But most

30 crete maximum principle, which all imply the bound-preserving property. But most 3 4 7 8 9 3 4 7 A HIGH ORDER ACCURATE BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME FOR SCALAR CONVECTION DIFFUSION EQUATIONS HAO LI, SHUSEN XIE, AND XIANGXIONG ZHANG Abstract We show that the classical

More information

FDM for parabolic equations

FDM for parabolic equations FDM for parabolic equations Consider the heat equation where Well-posed problem Existence & Uniqueness Mass & Energy decreasing FDM for parabolic equations CNFD Crank-Nicolson + 2 nd order finite difference

More information

Numerical Methods for the Optimal Control of Scalar Conservation Laws

Numerical Methods for the Optimal Control of Scalar Conservation Laws Numerical Methods for the Optimal Control of Scalar Conservation Laws Sonja Steffensen, Michael Herty, and Lorenzo Pareschi RWTH Aachen University, Templergraben 55, D-52065 Aachen, GERMANY {herty,steffensen}@mathc.rwth-aachen.de

More information

Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations

Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations mathematics Article Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations Michael Machen and Yong-Tao Zhang * Department of Applied and Computational Mathematics and Statistics,

More information

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations Hao Li Math Dept, Purdue Univeristy Ocean University of China, December, 2017 Joint work with

More information

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang Abstract This paper deals with

More information

Positivity-preserving high order schemes for convection dominated equations

Positivity-preserving high order schemes for convection dominated equations Positivity-preserving high order schemes for convection dominated equations Chi-Wang Shu Division of Applied Mathematics Brown University Joint work with Xiangxiong Zhang; Yinhua Xia; Yulong Xing; Cheng

More information

A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows.

A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows Tao Xiong Jing-ei Qiu Zhengfu Xu 3 Abstract In Xu [] a class of

More information

THE CLOSEST POINT METHOD FOR TIME-DEPENDENT PROCESSES ON SURFACES

THE CLOSEST POINT METHOD FOR TIME-DEPENDENT PROCESSES ON SURFACES THE CLOSEST POINT METHOD FOR TIME-DEPENDENT PROCESSES ON SURFACES by Colin B. Macdonald B.Sc., Acadia University, 200 M.Sc., Simon Fraser University, 2003 a thesis submitted in partial fulfillment of the

More information

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A. A. I. Peer a,, A. Gopaul a, M. Z. Dauhoo a, M. Bhuruth a, a Department of Mathematics, University of Mauritius, Reduit,

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

The RAMSES code and related techniques I. Hydro solvers

The RAMSES code and related techniques I. Hydro solvers The RAMSES code and related techniques I. Hydro solvers Outline - The Euler equations - Systems of conservation laws - The Riemann problem - The Godunov Method - Riemann solvers - 2D Godunov schemes -

More information

Numerical Oscillations and how to avoid them

Numerical Oscillations and how to avoid them Numerical Oscillations and how to avoid them Willem Hundsdorfer Talk for CWI Scientific Meeting, based on work with Anna Mozartova (CWI, RBS) & Marc Spijker (Leiden Univ.) For details: see thesis of A.

More information

Tutorial 2. Introduction to numerical schemes

Tutorial 2. Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes c 2012 Classifying PDEs Looking at the PDE Au xx + 2Bu xy + Cu yy + Du x + Eu y + Fu +.. = 0, and its discriminant, B 2

More information

Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu

Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu Division of Applied Mathematics Brown University Outline Introduction Maximum-principle-preserving for scalar conservation

More information

Gradient Method Based on Roots of A

Gradient Method Based on Roots of A Journal of Scientific Computing, Vol. 5, No. 4, 000 Solving Ax =b Using a Modified Conjugate Gradient Method Based on Roots of A Paul F. Fischer and Sigal Gottlieb Received January 3, 00; accepted February

More information

An Assessment of Semi-Discrete Central Schemes for Hyperbolic Conservation Laws

An Assessment of Semi-Discrete Central Schemes for Hyperbolic Conservation Laws SANDIA REPORT SAND2003-3238 Unlimited Release Printed September 2003 An Assessment of Semi-Discrete Central Schemes for Hyperbolic Conservation Laws Mark A. Christon David I. Ketcheson Allen C. Robinson

More information

A High Order WENO Scheme for a Hierarchical Size-Structured Model. Abstract

A High Order WENO Scheme for a Hierarchical Size-Structured Model. Abstract A High Order WENO Scheme for a Hierarchical Size-Structured Model Jun Shen 1, Chi-Wang Shu 2 and Mengping Zhang 3 Abstract In this paper we develop a high order explicit finite difference weighted essentially

More information

RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS

RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS Dean Wang April 30, 2015 24.505 Nuclear Reactor Physics Outline 2 Introduction and Background Coupled T-H/Neutronics Safety Analysis Numerical schemes

More information

FDM for wave equations

FDM for wave equations FDM for wave equations Consider the second order wave equation Some properties Existence & Uniqueness Wave speed finite!!! Dependence region Analytical solution in 1D Finite difference discretization Finite

More information

Constructing High-Order Runge-Kutta Methods with Embedded Strong-Stability-Preserving Pairs

Constructing High-Order Runge-Kutta Methods with Embedded Strong-Stability-Preserving Pairs Constructing High-Order Runge-Kutta Methods with Embedded Strong-Stability-Preserving Pairs by Colin Barr Macdonald B.Sc., Acadia University, 200 a thesis submitted in partial fulfillment of the requirements

More information

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS HASEENA AHMED AND HAILIANG LIU Abstract. High resolution finite difference methods

More information

Entropy stable high order discontinuous Galerkin methods. for hyperbolic conservation laws

Entropy stable high order discontinuous Galerkin methods. for hyperbolic conservation laws Entropy stable high order discontinuous Galerkin methods for hyperbolic conservation laws Chi-Wang Shu Division of Applied Mathematics Brown University Joint work with Tianheng Chen, and with Yong Liu

More information

Runge Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems

Runge Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems Journal of Scientific Computing, Vol. 16, No. 3, September 2001 ( 2001) Review Article Runge Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems Bernardo Cockburn 1 and Chi-Wang Shu

More information

An Improved Non-linear Weights for Seventh-Order WENO Scheme

An Improved Non-linear Weights for Seventh-Order WENO Scheme An Improved Non-linear Weights for Seventh-Order WENO Scheme arxiv:6.06755v [math.na] Nov 06 Samala Rathan, G Naga Raju Department of Mathematics, Visvesvaraya National Institute of Technology, Nagpur,

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Many astrophysical scenarios are modeled using the field equations of fluid dynamics. Fluids are generally challenging systems to describe analytically, as they form a nonlinear

More information

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler:

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: Lecture 7 18.086 Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: U j,n+1 t U j,n = U j+1,n 2U j,n + U j 1,n x 2 Expected accuracy: O(Δt) in time,

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information

A minimum entropy principle of high order schemes for gas dynamics. equations 1. Abstract

A minimum entropy principle of high order schemes for gas dynamics. equations 1. Abstract A minimum entropy principle of high order schemes for gas dynamics equations iangxiong Zhang and Chi-Wang Shu 3 Abstract The entropy solutions of the compressible Euler equations satisfy a minimum principle

More information

A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws

A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws Kilian Cooley 1 Prof. James Baeder 2 1 Department of Mathematics, University of Maryland - College Park 2 Department of Aerospace

More information

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Romain Teyssier CEA Saclay Romain Teyssier 1 Outline - Euler equations, MHD, waves, hyperbolic

More information

Strong Stability Preserving High-order Time Discretization Methods

Strong Stability Preserving High-order Time Discretization Methods NASA/CR-2000-20093 ICASE Report No. 2000-5 Strong Stability Preserving High-order Time Discretization Methods Sigal Gottlieb University of Massachusetts, Dartmouth, Massachusetts Chi-WangShu Brown University,

More information

CONSTRUCTION OF HIGH-ORDER ADAPTIVE IMPLICIT METHODS FOR RESERVOIR SIMULATION

CONSTRUCTION OF HIGH-ORDER ADAPTIVE IMPLICIT METHODS FOR RESERVOIR SIMULATION CONSTRUCTION OF HIGH-ORDER ADAPTIVE IMPLICIT METHODS FOR RESERVOIR SIMULATION A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter

Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter Jun Zhu, inghui Zhong, Chi-Wang Shu 3 and Jianxian Qiu 4 Abstract In this paper, we propose a new type of weighted

More information

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes Math 660-Lecture 3: Gudonov s method and some theories for FVM schemes 1 The idea of FVM (You can refer to Chapter 4 in the book Finite volume methods for hyperbolic problems ) Consider the box [x 1/,

More information

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II

Advection / Hyperbolic PDEs. PHY 604: Computational Methods in Physics and Astrophysics II Advection / Hyperbolic PDEs Notes In addition to the slides and code examples, my notes on PDEs with the finite-volume method are up online: https://github.com/open-astrophysics-bookshelf/numerical_exercises

More information

Efficient time discretization for local discontinuous Galerkin methods

Efficient time discretization for local discontinuous Galerkin methods Efficient time discretization for local discontinuous Galerkin methods Yinhua Xia, Yan Xu and Chi-Wang Shu Abstract In this paper, we explore a few efficient time discretization techniques for the local

More information

ON MONOTONICITY AND BOUNDEDNESS PROPERTIES OF LINEAR MULTISTEP METHODS

ON MONOTONICITY AND BOUNDEDNESS PROPERTIES OF LINEAR MULTISTEP METHODS MATHEMATICS OF COMPUTATION Volume 75, Number 254, Pages 655 672 S 0025-578(05)0794- Article electronically published on November 7, 2005 ON MONOTONICITY AND BOUNDEDNESS PROPERTIES OF LINEAR MULTISTEP METHODS

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Mathematics, Vol.4, No.3, 6, 39 5. ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT ) Zhengfu Xu (Department of Mathematics, Pennsylvania

More information

AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION

AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION AN OPTIMALLY ACCURATE SPECTRAL VOLUME FORMULATION WITH SYMMETRY PRESERVATION Fareed Hussain Mangi*, Umair Ali Khan**, Intesab Hussain Sadhayo**, Rameez Akbar Talani***, Asif Ali Memon* ABSTRACT High order

More information

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation Chapter 3. Finite Difference Methods for Hyperbolic Equations 3.1. Introduction Most hyperbolic problems involve the transport of fluid properties. In the equations of motion, the term describing the transport

More information

Approximation des systemes hyperboliques par elements finis continus non uniformes en dimension quelconque

Approximation des systemes hyperboliques par elements finis continus non uniformes en dimension quelconque Approximation des systemes hyperboliques par elements finis continus non uniformes en dimension quelconque Jean-Luc Guermond and Bojan Popov Department of Mathematics Texas A&M University Séminaire du

More information

A second-order asymptotic-preserving and positive-preserving discontinuous. Galerkin scheme for the Kerr-Debye model. Abstract

A second-order asymptotic-preserving and positive-preserving discontinuous. Galerkin scheme for the Kerr-Debye model. Abstract A second-order asymptotic-preserving and positive-preserving discontinuous Galerkin scheme for the Kerr-Debye model Juntao Huang 1 and Chi-Wang Shu Abstract In this paper, we develop a second-order asymptotic-preserving

More information

Fourier analysis for discontinuous Galerkin and related methods. Abstract

Fourier analysis for discontinuous Galerkin and related methods. Abstract Fourier analysis for discontinuous Galerkin and related methods Mengping Zhang and Chi-Wang Shu Abstract In this paper we review a series of recent work on using a Fourier analysis technique to study the

More information

Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of. Conservation Laws 1. Abstract

Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of. Conservation Laws 1. Abstract Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of Conservation Laws Sirui Tan and Chi-Wang Shu 3 Abstract We develop a high order finite difference numerical boundary condition for solving

More information

Research Article Solution of the Porous Media Equation by a Compact Finite Difference Method

Research Article Solution of the Porous Media Equation by a Compact Finite Difference Method Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2009, Article ID 9254, 3 pages doi:0.55/2009/9254 Research Article Solution of the Porous Media Equation by a Compact Finite Difference

More information

A Stable Spectral Difference Method for Triangles

A Stable Spectral Difference Method for Triangles A Stable Spectral Difference Method for Triangles Aravind Balan 1, Georg May 1, and Joachim Schöberl 2 1 AICES Graduate School, RWTH Aachen, Germany 2 Institute for Analysis and Scientific Computing, Vienna

More information

Time stepping methods

Time stepping methods Time stepping methods ATHENS course: Introduction into Finite Elements Delft Institute of Applied Mathematics, TU Delft Matthias Möller (m.moller@tudelft.nl) 19 November 2014 M. Möller (DIAM@TUDelft) Time

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. ) :545 563 DOI.7/s--443-7 Numerische Mathematik A minimum entropy principle of high order schemes for gas dynamics equations iangxiong Zhang Chi-Wang Shu Received: 7 July / Revised: 5 September

More information

Deutscher Wetterdienst

Deutscher Wetterdienst Stability Analysis of the Runge-Kutta Time Integration Schemes for the Convection resolving Model COSMO-DE (LMK) COSMO User Seminar, Langen 03.+04. March 2008 Michael Baldauf Deutscher Wetterdienst, Offenbach,

More information

Scalable Non-Linear Compact Schemes

Scalable Non-Linear Compact Schemes Scalable Non-Linear Compact Schemes Debojyoti Ghosh Emil M. Constantinescu Jed Brown Mathematics Computer Science Argonne National Laboratory International Conference on Spectral and High Order Methods

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

MA/CS 615 Spring 2019 Homework #2

MA/CS 615 Spring 2019 Homework #2 MA/CS 615 Spring 019 Homework # Due before class starts on Feb 1. Late homework will not be given any credit. Collaboration is OK but not encouraged. Indicate on your report whether you have collaborated

More information

Lie Algebras and Burger s Equation: A Total Variation Diminishing Method on Manifold

Lie Algebras and Burger s Equation: A Total Variation Diminishing Method on Manifold Applied Mathematical Sciences, Vol. 11, 2017, no. 27, 1313-1325 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.74127 Lie Algebras and Burger s Equation: A Total Variation Diminishing Method

More information

Method of Lines. Received April 20, 2009; accepted July 9, 2009

Method of Lines. Received April 20, 2009; accepted July 9, 2009 Method of Lines Samir Hamdi, William E. Schiesser and Graham W. Griffiths * Ecole Polytechnique, France; Lehigh University, USA; City University,UK. Received April 20, 2009; accepted July 9, 2009 The method

More information

A Finite Volume Code for 1D Gas Dynamics

A Finite Volume Code for 1D Gas Dynamics A Finite Volume Code for 1D Gas Dynamics Michael Lavell Department of Applied Mathematics and Statistics 1 Introduction A finite volume code is constructed to solve conservative systems, such as Euler

More information

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws Mehdi Dehghan, Rooholah Jazlanian Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University

More information

Entropic Schemes for Conservation Laws

Entropic Schemes for Conservation Laws CONSTRUCTVE FUNCTON THEORY, Varna 2002 (B. Bojanov, Ed.), DARBA, Sofia, 2002, pp. 1-6. Entropic Schemes for Conservation Laws Bojan Popov A new class of Godunov-type numerical methods (called here entropic)

More information

Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme

Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme Improvements of Unsteady Simulations for Compressible Navier Stokes Based on a RK/Implicit Smoother Scheme Oren Peles and Eli Turkel Department of Applied Mathematics, Tel-Aviv University In memoriam of

More information

Strong stability preserving high order time discretizations.

Strong stability preserving high order time discretizations. SIGAL GOTTLIEB Mathematics Department 285 Old Westport Road North Dartmouth, MA 02747 sgottlieb@umassd.edu 322 Cole Avenue Providence, RI 02906 Phone: (401) 751-9416 sigalgottlieb@yahoo.com Current Research

More information

A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes

A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes Science in China Series A: Mathematics Aug., 008, Vol. 51, No. 8, 1549 1560 www.scichina.com math.scichina.com www.springerlink.com A class of the fourth order finite volume Hermite weighted essentially

More information

YINGJIE LIU, CHI-WANG SHU, EITAN TADMOR, AND MENGPING ZHANG

YINGJIE LIU, CHI-WANG SHU, EITAN TADMOR, AND MENGPING ZHANG CENTRAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS WITH A NON-OSCILLATORY HIERARCHICAL RECONSTRUCTION YINGJIE LIU, CHI-WANG SHU, EITAN TADMOR, AND MENGPING ZHANG Abstract. The central scheme of

More information

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant Anti-diffusive finite difference WENO methods for shallow water with transport of pollutant Zhengfu Xu 1 and Chi-Wang Shu 2 Dedicated to Professor Qun Lin on the occasion of his 70th birthday Abstract

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Implicit Schemes for the Model Problem The Crank-Nicolson scheme and θ-scheme

More information

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract Improvement of convergence to steady state solutions of Euler equations with the WENO schemes Shuhai Zhang, Shufen Jiang and Chi-Wang Shu 3 Abstract The convergence to steady state solutions of the Euler

More information

Riemann Solvers and Numerical Methods for Fluid Dynamics

Riemann Solvers and Numerical Methods for Fluid Dynamics Eleuterio R Toro Riemann Solvers and Numerical Methods for Fluid Dynamics A Practical Introduction With 223 Figures Springer Table of Contents Preface V 1. The Equations of Fluid Dynamics 1 1.1 The Euler

More information

Selected HW Solutions

Selected HW Solutions Selected HW Solutions HW1 1 & See web page notes Derivative Approximations. For example: df f i+1 f i 1 = dx h i 1 f i + hf i + h h f i + h3 6 f i + f i + h 6 f i + 3 a realmax 17 1.7014 10 38 b realmin

More information

Numerical resolution of discontinuous Galerkin methods for time dependent. wave equations 1. Abstract

Numerical resolution of discontinuous Galerkin methods for time dependent. wave equations 1. Abstract Numerical resolution of discontinuous Galerkin methods for time dependent wave equations Xinghui Zhong 2 and Chi-Wang Shu Abstract The discontinuous Galerkin DG method is known to provide good wave resolution

More information

Stability of the fourth order Runge-Kutta method for time-dependent partial. differential equations 1. Abstract

Stability of the fourth order Runge-Kutta method for time-dependent partial. differential equations 1. Abstract Stability of the fourth order Runge-Kutta method for time-dependent partial differential equations 1 Zheng Sun 2 and Chi-Wang Shu 3 Abstract In this paper, we analyze the stability of the fourth order

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 29 Almost Done! No

More information

Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers

Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers Solution of Two-Dimensional Riemann Problems for Gas Dynamics without Riemann Problem Solvers Alexander Kurganov, 1, * Eitan Tadmor 2 1 Department of Mathematics, University of Michigan, Ann Arbor, Michigan

More information

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra Semi-discrete central schemes for balance laws. Application to the Broadwell model. Alexander Kurganov * *Department of Mathematics, Tulane University, 683 St. Charles Ave., New Orleans, LA 708, USA kurganov@math.tulane.edu

More information

Adaptive WENO Schemes for Singular in Space and Time Solutions of Nonlinear Degenerate Reaction-Diffusion Problems

Adaptive WENO Schemes for Singular in Space and Time Solutions of Nonlinear Degenerate Reaction-Diffusion Problems EPJ Web of Conferences 108, 0019 (016) DOI: 10.1051/ epjconf/ 0161080019 C Owned by the authors, published by EDP Sciences, 016 Adaptive WENO Schemes for Singular in Space and Time Solutions of Nonlinear

More information

arxiv: v2 [math.na] 24 Mar 2016

arxiv: v2 [math.na] 24 Mar 2016 arxiv:1504.04107v2 [math.na] 24 Mar 2016 Strong stability preserving explicit linear multistep methods with variable step size Yiannis Hadjimichael David I. Ketcheson Lajos Lóczi Adrián Németh March 21,

More information

POSITIVITY PROPERTY OF SECOND-ORDER FLUX-SPLITTING SCHEMES FOR THE COMPRESSIBLE EULER EQUATIONS. Cheng Wang. Jian-Guo Liu

POSITIVITY PROPERTY OF SECOND-ORDER FLUX-SPLITTING SCHEMES FOR THE COMPRESSIBLE EULER EQUATIONS. Cheng Wang. Jian-Guo Liu DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS SERIES B Volume 3 Number May003 pp. 0 8 POSITIVITY PROPERTY OF SECOND-ORDER FLUX-SPLITTING SCHEMES FOR THE COMPRESSIBLE EULER EQUATIONS

More information

Spectral collocation and waveform relaxation methods with Gegenbauer reconstruction for nonlinear conservation laws

Spectral collocation and waveform relaxation methods with Gegenbauer reconstruction for nonlinear conservation laws Spectral collocation and waveform relaxation methods with Gegenbauer reconstruction for nonlinear conservation laws Z. Jackiewicz and B. Zubik Kowal November 2, 2004 Abstract. We investigate Chebyshev

More information

Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms

Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms Future Generation Computer Systems () 65 7 Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms R. Naidoo a,b, S. Baboolal b, a Department

More information