Fubini in practice. Tonelli. Sums and integrals. Fubini

Size: px
Start display at page:

Download "Fubini in practice. Tonelli. Sums and integrals. Fubini"

Transcription

1 Tonelli Fubini in practice Tonelli s Theorem: If (X, E, µ and (Y, K, ν are two σ-finite measure spaces and f M + (X Y, E K then ( fdµ ν ( f(x, ydν(y dµ(x A product of Lebesgue measures is a Lebesgue measure: m k m... m }{{} k times f(x, ydµ(x dν(y. and we can put parentheses as we like (associative law of. In particular m p m q m p+q, and we can use this to show that all hyperplanes in R k Note that to use Fubini we need to first verify that f is integrable w.r.t. µ ν and then compute the integral using either of the successive integration orders. Verification of integrability follows from Tonelli s theorem. First verify that f is integrable by Tonelli ( f dµ ν f(x, y dν(y dµ(x... < then compute the value of the integral by Fubini ( fdµ ν f(x, ydν(y dµ(x. are m k -nullsets.. p./32 This is Fubinelli s theorem.. p.3/32 Fubini Sums and integrals Fubini s Theorem: If (X, E, µ and (Y, K, ν are two σ-finite measure spaces and if f M(X Y, E K is integrable w.r.t. µ ν then fdµ ν A ( ( f(x, ydν(y dµ(x B f(x, ydµ(x dν(y. Here A E with µ(a c and B K with ν(b c are given by and A {x X f(x, y dν(y < } B {y Y f(x, y dµ(x < }. If f, f 2,... : X R are function we can define the function f : X N R by f(x, n f n (x. Then f is E P(N-B-measurable if and only if all the functions f n are E-B-measurable (Exercise 4.8. Recall that integration w.r.t. the counting measure τ on N is the same as infinite sums. Thus f n (x f(x, ndτ(n whenever the sum and the integral make sense.. p.2/32. p.4/32

2 Interchanging sums and integrals Interchanging the order of integration Let (X, E be a mesurable space. Theorem: If f, f 2,... : X R are measurable functions and µ is a measure on (X, E then if f n dµ < each f n is integrable, the sum f n(x is finite for all x A where A {x X f n (x < } and µ(a c. Moreover, f n(x is µ-a.e. (on A equal to an integrable function and f n (xdµ(x f n (xdµ(x. A. p.5/32 Using Fubini on gives We find from this that though f(x, y sinxe xy for x (, K, y (, K K sinx x dx + y dy sinx x dx π 2 sinx x dx for K. p.7/32 Interchanging sums and integrals Image measures Proof: Fubinelli with the product measure µ τ. Catch, requires a priori µ to be σ-finite! Workaround: The purpose of σ-finiteness is to assure uniqueness of the product measure as well as existence in terms of the technical measurability lemma 8.6. If we can check that by other means, Tonelli and Fubini applies! For all A E P(N we have the disjoint decomposition A X {n} A A n {n}, A n {x X (x, n A} thus µ τ(a µ(an, which defines this particular product measure and shows that it is uniquely specified by it s values on product sets. Let (X, E, µ be a measurable space. Let (Y, K be a measurable, and let t : X Y be E-K-measurable. Definition: The image measure t(µ is the measure on (Y, K, which is given by t(µ(b µ ( t (B for all B K X t B Y Alternative proof: Use dominated convergence as in the proof of Theorem 7... p.6/32. p.8/32

3 Image measures Let (X, E, µ be a measurable space. Let (Y, K be a measurable, and let t : X Y be E-K-measurable. Familiar example Let m (, denote the Lebesgue measure restricted to the positive halfline; formally m (, (A m(a (, Definition: The image measure t(µ is the measure on (Y, K, which is given by t(µ(b µ ( t (B for all B K X t Y for all A B. Define t : R R by log(x for x > t(x for x t (B B Then t(m (, ((, x] m (, (t ((, x] m(t ((, x] (, m((, e x ] e x.. p.9/32. p./32 The image measure is a measure Lemma: The image measure t(µ is a measure on (Y, K. Proof: Obviously t(µ(a µ(t (A [, ] and we see that t(µ( µ ( t ( µ ( Total mass of the image measure Lemma: It holds that t(µ(y µ(x. Proof: Observe that t(µ(y µ ( t (Y µ(x If B, B 2,... are disjoint K-sets then t (B i t (B j t (B i B j t ( and therefore ( ( ( ( t(µ B n µ t B n µ t (B n µ ( t (B n t(µ(b n. p./32 Corollary: If µ is a probability measure then t(µ is a probability measure. Probability theory is essentially a theory about image measures given one measure and a map t, what is t(µ? The abstract simplicity cheats the eye. Finding t(µ, characterizing t(µ or just computing certain characteristics of t(µ can by arbitrarily complicated for concrete t and µ.. p.2/32

4 Let µ be the uniform distribution on X {, 2, 3, 4, 5, 6} {, 2, 3, 4, 5, 6}. Every point (i, j X has probability. Interpretation: µ has something to do with throwing two dice. The map: t : X {,, 2, 3, 4, 5} is given by t(i, j i j Image measure: Interpretation: t represents the difference between the two dice. t(µ({} µ ( {(,, (2, 2, (3, 3, (4, 4, (5, 5, (6, 6} 6. p.3/32. p.5/ Image measure: t(µ({} µ ( {(,, (2, 2, (3, 3, (4, 4, (5, 5, (6, 6} 6 Image measure: t(µ({} µ ( {(,, (2, 2, (3, 3, (4, 4, (5, 5, (6, 6} 6. p.4/32. p.6/32

5 Succesive transformations Likewise, t(µ({} Lemma: Let t : X Y and s : Y Z be measurable. Let µ be a measure on X. Then Proof: X t A t (B s ( t(µ (s t(µ s t Y s B s (C s (t(µ(c t(µ ( s (C µ ( t ( s (C µ ( (s t (C (s t(µ(c C Z. p.7/32. p.9/32 : Marginalization If λ is a measure on (X Y, E K the image measures ˆX(λ og Ŷ (λ are the marginal measures of λ s. Let X X X 2, and consider ˆX : X X 3 X, ˆX : X (X 2 X 3 X and ˆX : X X 2 X. Then ˆX ˆX ˆX and by the theorem on successive transformation And so on and so forth. k t(µ({k} p.8/32 ˆX (λ ˆX ( ˆX(λ. Moral: For marginalization on multiple product spaces it does not matter if we do several succesive marginalizations or one combined. p.2/32 marginalization.

6 : Marginalization Integral transformation for M + : Consider m 2 m m on (R 2, B 2. Then if m(a > ˆX(m 2 (A m 2 (A R m(am(r if m(a Theorem: Let t : X Y be measurable. Let µ be a measure on X. Then g d t(µ g t dµ for all g M + (Y, K. : If λ is a probability measure on (X Y, E K then the marginals are probability measures and λ is a product measure if and only if it is a product of it s marginals; Indicator functions: Let B K. Then B d t(µ t(µ(b µ ( t (B So the formula is correct in this case. t (B dµ B t dµ λ ˆX(λ Ŷ (λ.. p.2/32. p.23/32 Integral transformation for M + Integral transformation for M + Theorem: Let t : X Y be measurable. Let µ be a measure on X. Then g d t(µ g t dµ Theorem: Let t : X Y be measurable. Let µ be a measure on X. Then g d t(µ g t dµ for all g M + (Y, K. for all g M + (Y, K. Proof: Strategy: Show the formula for Simple functions: Consider indicator functions 2 simple functions 3 M + -functions Point 3 is shown from 2 via monotone convergence. Then n g d t(µ c i i g Bi d t(µ n c i Bi i n c i Bi t dµ i n i c i Bi t dµ. p.22/32 So the formula is correct in this case.. p.24/32

7 Integral transformation for M + Theorem: Let t : X Y be measurable. Let µ be a measure on X. Then for all g M + (Y, K. g d t(µ g t dµ All functions: Let g M + and choose S + -functions s n such that s n ր g. Then s n t ր g t and by the theorem on monotone convergence g d t(µ lim n s n d t(µ lim n s n t dµ g t dµ The function x (, (xe αx is M + and we find that e αx dµ(x (, (t(xe αt(x dm(x e α log(x dm(x x α dm(x α for α > for α In conclusion, the formula holds for all g M +.. p.25/32. p.27/32 Consider the measure µ with µ((, x] e x for all x R. We know that µ t(m (, The function x e αx is M + and we find that e αx dµ(x e αt(x dm(x for all α R e α log(x dm(x x α dm(x Integral transformation for L Theorem: Let t : X Y be measurable. Let µ be a measure on X. A function g M(Y, K is integrable w.r.t. t(µ if and only if in which case g t d µ <, g d t(µ g t dµ. Proof: We know that g is integrable if and only if g dt(µ <. But this integral is computed from the previous theorem. In case we have integrability, the actual integral is computed as: g d t(µ g + d t(µ (g t + dµ g d t(µ (g t dµ g t dµ g + t dµ g t dµ. p.26/32. p.28/32

8 Translations in R k Translation and integrals Definition: The translation with w R k is the map τ w : R k R k defined by τ w (x x + w for all x R k, If f M + (R k or if f L(R k, m k then in general f(x + wdµ(x f τ w (xdµ(x f(xdτ w (µ(x Definition: A measure µ on (R k, B k is translation invariant if τ w (µ µ for all w R k and for the Lebesgue measure f(x + w dx f(x dx for all w R k.. p.29/32. p.3/32 The Lebesgue measure Linear transformations on R k Theorem: A measure µ on (R k, B k, which is finite on bounded sets is translation invariant if and only if A linear map s : R k R k is given in terms of a k k matrix A, s(x Ax. for some constant c. µ cm k The map is an isomorphism if A is invertible, that is, if deta, in which case the inverse map is given by A. Theorem: If s is a linear transformation given by an invertible matrix A then s(m k deta m k. Remark: Note that for an orthonormal matrix Q (QQ T Q T Q I we have detq ±, which shows that m k is invariant under orthonormal transformations.. p.3/32. p.32/32

The Γ-function. Continuity. Systematic computations with improper integrals

The Γ-function. Continuity. Systematic computations with improper integrals Continuity Let f be a function on U with U open in R k and (, E, µ) a measure space. Define ϕ(y) = f (x, y)dµ(x). Theorem: If all the sections y f (x, y) are continuous in y 0 U, and if there is an µ-integrable

More information

6.2 Fubini s Theorem. (µ ν)(c) = f C (x) dµ(x). (6.2) Proof. Note that (X Y, A B, µ ν) must be σ-finite as well, so that.

6.2 Fubini s Theorem. (µ ν)(c) = f C (x) dµ(x). (6.2) Proof. Note that (X Y, A B, µ ν) must be σ-finite as well, so that. 6.2 Fubini s Theorem Theorem 6.2.1. (Fubini s theorem - first form) Let (, A, µ) and (, B, ν) be complete σ-finite measure spaces. Let C = A B. Then for each µ ν- measurable set C C the section x C is

More information

Solutions: Problem Set 4 Math 201B, Winter 2007

Solutions: Problem Set 4 Math 201B, Winter 2007 Solutions: Problem Set 4 Math 2B, Winter 27 Problem. (a Define f : by { x /2 if < x

More information

REAL ANALYSIS I Spring 2016 Product Measures

REAL ANALYSIS I Spring 2016 Product Measures REAL ANALSIS I Spring 216 Product Measures We assume that (, M, µ), (, N, ν) are σ- finite measure spaces. We want to provide the Cartesian product with a measure space structure in which all sets of the

More information

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Wednesday, April 18, 2007 INSTRUCTIONS

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Wednesday, April 18, 2007 INSTRUCTIONS FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355 Analysis 4 Examiner: Professor S. W. Drury Date: Wednesday, April 18, 27 Associate Examiner: Professor K. N. GowriSankaran Time: 2: pm. 5: pm.

More information

2 Measure Theory. 2.1 Measures

2 Measure Theory. 2.1 Measures 2 Measure Theory 2.1 Measures A lot of this exposition is motivated by Folland s wonderful text, Real Analysis: Modern Techniques and Their Applications. Perhaps the most ubiquitous measure in our lives

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras Math 4121 Spring 2012 Weaver Measure Theory 1. σ-algebras A measure is a function which gauges the size of subsets of a given set. In general we do not ask that a measure evaluate the size of every subset,

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts. Tuesday, January 16th, 2018

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts. Tuesday, January 16th, 2018 NAME: Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts Tuesday, January 16th, 2018 Instructions 1. This exam consists of eight (8) problems

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

13. Examples of measure-preserving tranformations: rotations of a torus, the doubling map

13. Examples of measure-preserving tranformations: rotations of a torus, the doubling map 3. Examples of measure-preserving tranformations: rotations of a torus, the doubling map 3. Rotations of a torus, the doubling map In this lecture we give two methods by which one can show that a given

More information

MTH 404: Measure and Integration

MTH 404: Measure and Integration MTH 404: Measure and Integration Semester 2, 2012-2013 Dr. Prahlad Vaidyanathan Contents I. Introduction....................................... 3 1. Motivation................................... 3 2. The

More information

Measure and integration

Measure and integration Chapter 5 Measure and integration In calculus you have learned how to calculate the size of different kinds of sets: the length of a curve, the area of a region or a surface, the volume or mass of a solid.

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

Random experiments may consist of stages that are performed. Example: Roll a die two times. Consider the events E 1 = 1 or 2 on first roll

Random experiments may consist of stages that are performed. Example: Roll a die two times. Consider the events E 1 = 1 or 2 on first roll Econ 514: Probability and Statistics Lecture 4: Independence Stochastic independence Random experiments may consist of stages that are performed independently. Example: Roll a die two times. Consider the

More information

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS ANDREW TULLOCH Contents 1. Measure Theory 2 1.1. Properties of Measures 3 1.2. Constructing σ-algebras and measures 3 1.3. Properties of the Lebesgue measure

More information

4. Product measure spaces and the Lebesgue integral in R n.

4. Product measure spaces and the Lebesgue integral in R n. 4 M. M. PELOSO 4. Product measure spaces and the Lebesgue integral in R n. Our current goal is to define the Lebesgue measure on the higher-dimensional eucledean space R n, and to reduce the computations

More information

Solutions to Tutorial 11 (Week 12)

Solutions to Tutorial 11 (Week 12) THE UIVERSITY OF SYDEY SCHOOL OF MATHEMATICS AD STATISTICS Solutions to Tutorial 11 (Week 12) MATH3969: Measure Theory and Fourier Analysis (Advanced) Semester 2, 2017 Web Page: http://sydney.edu.au/science/maths/u/ug/sm/math3969/

More information

Measurable functions are approximately nice, even if look terrible.

Measurable functions are approximately nice, even if look terrible. Tel Aviv University, 2015 Functions of real variables 74 7 Approximation 7a A terrible integrable function........... 74 7b Approximation of sets................ 76 7c Approximation of functions............

More information

MAT 571 REAL ANALYSIS II LECTURE NOTES. Contents. 2. Product measures Iterated integrals Complete products Differentiation 17

MAT 571 REAL ANALYSIS II LECTURE NOTES. Contents. 2. Product measures Iterated integrals Complete products Differentiation 17 MAT 57 REAL ANALSIS II LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: SPRING 205 Contents. Convergence in measure 2. Product measures 3 3. Iterated integrals 4 4. Complete products 9 5. Signed measures

More information

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M.

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M. 1. Abstract Integration The main reference for this section is Rudin s Real and Complex Analysis. The purpose of developing an abstract theory of integration is to emphasize the difference between the

More information

QUANTUM MEASURE THEORY. Stanley Gudder. Department of Mathematics. University of Denver. Denver Colorado

QUANTUM MEASURE THEORY. Stanley Gudder. Department of Mathematics. University of Denver. Denver Colorado QUANTUM MEASURE THEORY Stanley Gudder Department of Mathematics University of Denver Denver Colorado 828 sgudder@math.du.edu 1. Introduction A measurable space is a pair (X, A) where X is a nonempty set

More information

4 Integration 4.1 Integration of non-negative simple functions

4 Integration 4.1 Integration of non-negative simple functions 4 Integration 4.1 Integration of non-negative simple functions Throughout we are in a measure space (X, F, µ). Definition Let s be a non-negative F-measurable simple function so that s a i χ Ai, with disjoint

More information

Real Analysis II, Winter 2018

Real Analysis II, Winter 2018 Real Analysis II, Winter 2018 From the Finnish original Moderni reaalianalyysi 1 by Ilkka Holopainen adapted by Tuomas Hytönen January 18, 2018 1 Version dated September 14, 2011 Contents 1 General theory

More information

Integral Jensen inequality

Integral Jensen inequality Integral Jensen inequality Let us consider a convex set R d, and a convex function f : (, + ]. For any x,..., x n and λ,..., λ n with n λ i =, we have () f( n λ ix i ) n λ if(x i ). For a R d, let δ a

More information

SOLUTIONS OF SELECTED PROBLEMS

SOLUTIONS OF SELECTED PROBLEMS SOLUTIONS OF SELECTED PROBLEMS Problem 36, p. 63 If µ(e n < and χ En f in L, then f is a.e. equal to a characteristic function of a measurable set. Solution: By Corollary.3, there esists a subsequence

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Signed Measures. Chapter Basic Properties of Signed Measures. 4.2 Jordan and Hahn Decompositions

Signed Measures. Chapter Basic Properties of Signed Measures. 4.2 Jordan and Hahn Decompositions Chapter 4 Signed Measures Up until now our measures have always assumed values that were greater than or equal to 0. In this chapter we will extend our definition to allow for both positive negative values.

More information

For example, the real line is σ-finite with respect to Lebesgue measure, since

For example, the real line is σ-finite with respect to Lebesgue measure, since More Measure Theory In this set of notes we sketch some results in measure theory that we don t have time to cover in full. Most of the results can be found in udin s eal & Complex Analysis. Some of the

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

1 Inner Product Space

1 Inner Product Space Ch - Hilbert Space 1 4 Hilbert Space 1 Inner Product Space Let E be a complex vector space, a mapping (, ) : E E C is called an inner product on E if i) (x, x) 0 x E and (x, x) = 0 if and only if x = 0;

More information

Partial Solutions to Folland s Real Analysis: Part I

Partial Solutions to Folland s Real Analysis: Part I Partial Solutions to Folland s Real Analysis: Part I (Assigned Problems from MAT1000: Real Analysis I) Jonathan Mostovoy - 1002142665 University of Toronto January 20, 2018 Contents 1 Chapter 1 3 1.1 Folland

More information

Probability and Measure. November 27, 2017

Probability and Measure. November 27, 2017 Probability and Measure November 27, 2017 1 CONTENTS 2 Contents 1 Measure Theory 4 1.1 History................................ 4 1.2 Lebesgue Measure.......................... 5 1.3 Measurable Functions........................

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017.

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017. Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 017 Nadia S. Larsen 17 November 017. 1. Construction of the product measure The purpose of these notes is to prove the main

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

Compendium and Solutions to exercises TMA4225 Foundation of analysis

Compendium and Solutions to exercises TMA4225 Foundation of analysis Compendium and Solutions to exercises TMA4225 Foundation of analysis Ruben Spaans December 6, 2010 1 Introduction This compendium contains a lexicon over definitions and exercises with solutions. Throughout

More information

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Tuesday, April 18, 2006 INSTRUCTIONS

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Tuesday, April 18, 2006 INSTRUCTIONS FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355 Analysis 4 Examiner: Professor S. W. Drury Date: Tuesday, April 18, 26 Associate Examiner: Professor K. N. GowriSankaran Time: 2: pm. 5: pm. INSTRUCTIONS

More information

Integration on Measure Spaces

Integration on Measure Spaces Chapter 3 Integration on Measure Spaces In this chapter we introduce the general notion of a measure on a space X, define the class of measurable functions, and define the integral, first on a class of

More information

Ergodic Theory and Topological Groups

Ergodic Theory and Topological Groups Ergodic Theory and Topological Groups Christopher White November 15, 2012 Throughout this talk (G, B, µ) will denote a measure space. We call the space a probability space if µ(g) = 1. We will also assume

More information

+ = x. ± if x > 0. if x < 0, x

+ = x. ± if x > 0. if x < 0, x 2 Set Functions Notation Let R R {, + } and R + {x R : x 0} {+ }. Here + and are symbols satisfying obvious conditions: for any real number x R : < x < +, (± + (± x + (± (± + x ±, (± (± + and (± (, ± if

More information

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first Math 632/6321: Theory of Functions of a Real Variable Sample Preinary Exam Questions 1. Let (, M, µ) be a measure space. (a) Prove that if µ() < and if 1 p < q

More information

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 2

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 2 Math 551 Measure Theory and Functional nalysis I Homework ssignment 2 Prof. Wickerhauser Due Friday, September 25th, 215 Please do Exercises 1, 4*, 7, 9*, 11, 12, 13, 16, 21*, 26, 28, 31, 32, 33, 36, 37.

More information

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias Notes on Measure, Probability and Stochastic Processes João Lopes Dias Departamento de Matemática, ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal E-mail address: jldias@iseg.ulisboa.pt

More information

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm Chapter 13 Radon Measures Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm (13.1) f = sup x X f(x). We want to identify

More information

Folland: Real Analysis, Chapter 2 Sébastien Picard

Folland: Real Analysis, Chapter 2 Sébastien Picard Folland: Real Analysis, Chapter 2 Sébastien Picard Problem 2.3 If {f n } is a sequence of measurable functions on X, then {x : limf n (x) exists} is a measurable set. Define h limsupf n, g liminff n. By

More information

be the set of complex valued 2π-periodic functions f on R such that

be the set of complex valued 2π-periodic functions f on R such that . Fourier series. Definition.. Given a real number P, we say a complex valued function f on R is P -periodic if f(x + P ) f(x) for all x R. We let be the set of complex valued -periodic functions f on

More information

Product spaces and Fubini s theorem. Presentation for M721 Dec 7 th 2011 Chai Molina

Product spaces and Fubini s theorem. Presentation for M721 Dec 7 th 2011 Chai Molina Product spaces and Fubini s theorem Presentation for M721 Dec 7 th 2011 Chai Molina Motivation When can we exchange a double integral with iterated integrals? When are the two iterated integrals equal?

More information

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1)

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1) 1.4. CONSTRUCTION OF LEBESGUE-STIELTJES MEASURES In this section we shall put to use the Carathéodory-Hahn theory, in order to construct measures with certain desirable properties first on the real line

More information

Part II Probability and Measure

Part II Probability and Measure Part II Probability and Measure Theorems Based on lectures by J. Miller Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Problem Set. Problem Set #1. Math 5322, Fall March 4, 2002 ANSWERS

Problem Set. Problem Set #1. Math 5322, Fall March 4, 2002 ANSWERS Problem Set Problem Set #1 Math 5322, Fall 2001 March 4, 2002 ANSWRS i All of the problems are from Chapter 3 of the text. Problem 1. [Problem 2, page 88] If ν is a signed measure, is ν-null iff ν () 0.

More information

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Three hours THE UNIVERSITY OF MANCHESTER. 24th January Three hours MATH41011 THE UNIVERSITY OF MANCHESTER FOURIER ANALYSIS AND LEBESGUE INTEGRATION 24th January 2013 9.45 12.45 Answer ALL SIX questions in Section A (25 marks in total). Answer THREE of the

More information

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define HILBERT SPACES AND THE RADON-NIKODYM THEOREM STEVEN P. LALLEY 1. DEFINITIONS Definition 1. A real inner product space is a real vector space V together with a symmetric, bilinear, positive-definite mapping,

More information

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s.

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s. 20 6. CONDITIONAL EXPECTATION Having discussed at length the limit theory for sums of independent random variables we will now move on to deal with dependent random variables. An important tool in this

More information

CONTENTS. 4 Hausdorff Measure Introduction The Cantor Set Rectifiable Curves Cantor Set-Like Objects...

CONTENTS. 4 Hausdorff Measure Introduction The Cantor Set Rectifiable Curves Cantor Set-Like Objects... Contents 1 Functional Analysis 1 1.1 Hilbert Spaces................................... 1 1.1.1 Spectral Theorem............................. 4 1.2 Normed Vector Spaces.............................. 7 1.2.1

More information

x n x or x = T -limx n, if every open neighbourhood U of x contains x n for all but finitely many values of n

x n x or x = T -limx n, if every open neighbourhood U of x contains x n for all but finitely many values of n Note: This document was written by Prof. Richard Haydon, a previous lecturer for this course. 0. Preliminaries This preliminary chapter is an attempt to bring together important results from earlier courses

More information

Real Analysis Qualifying Exam May 14th 2016

Real Analysis Qualifying Exam May 14th 2016 Real Analysis Qualifying Exam May 4th 26 Solve 8 out of 2 problems. () Prove the Banach contraction principle: Let T be a mapping from a complete metric space X into itself such that d(tx,ty) apple qd(x,

More information

MATH 650. THE RADON-NIKODYM THEOREM

MATH 650. THE RADON-NIKODYM THEOREM MATH 650. THE RADON-NIKODYM THEOREM This note presents two important theorems in Measure Theory, the Lebesgue Decomposition and Radon-Nikodym Theorem. They are not treated in the textbook. 1. Closed subspaces

More information

MATH 614 Dynamical Systems and Chaos Lecture 38: Ergodicity (continued). Mixing.

MATH 614 Dynamical Systems and Chaos Lecture 38: Ergodicity (continued). Mixing. MATH 614 Dynamical Systems and Chaos Lecture 38: Ergodicity (continued). Mixing. Ergodic theorems Let (X,B,µ) be a measured space and T : X X be a measure-preserving transformation. Birkhoff s Ergodic

More information

Probability and Random Processes

Probability and Random Processes Probability and Random Processes Lecture 7 Conditional probability and expectation Decomposition of measures Mikael Skoglund, Probability and random processes 1/13 Conditional Probability A probability

More information

A List of Problems in Real Analysis

A List of Problems in Real Analysis A List of Problems in Real Analysis W.Yessen & T.Ma December 3, 218 This document was first created by Will Yessen, who was a graduate student at UCI. Timmy Ma, who was also a graduate student at UCI,

More information

Dual Space of L 1. C = {E P(I) : one of E or I \ E is countable}.

Dual Space of L 1. C = {E P(I) : one of E or I \ E is countable}. Dual Space of L 1 Note. The main theorem of this note is on page 5. The secondary theorem, describing the dual of L (µ) is on page 8. Let (X, M, µ) be a measure space. We consider the subsets of X which

More information

1 Measurable Functions

1 Measurable Functions 36-752 Advanced Probability Overview Spring 2018 2. Measurable Functions, Random Variables, and Integration Instructor: Alessandro Rinaldo Associated reading: Sec 1.5 of Ash and Doléans-Dade; Sec 1.3 and

More information

An introduction to Geometric Measure Theory Part 2: Hausdorff measure

An introduction to Geometric Measure Theory Part 2: Hausdorff measure An introduction to Geometric Measure Theory Part 2: Hausdorff measure Toby O Neil, 10 October 2016 TCON (Open University) An introduction to GMT, part 2 10 October 2016 1 / 40 Last week... Discussed several

More information

LECTURE 7, WEDNESDAY

LECTURE 7, WEDNESDAY LECTURE 7, WEDNESDAY 25.02.04 FRANZ LEMMERMEYER 1. Singular Weierstrass Curves Consider cubic curves in Weierstraß form (1) E : y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6, the coefficients a i

More information

Chapter 8 Integral Operators

Chapter 8 Integral Operators Chapter 8 Integral Operators In our development of metrics, norms, inner products, and operator theory in Chapters 1 7 we only tangentially considered topics that involved the use of Lebesgue measure,

More information

Lecture 5 Theorems of Fubini-Tonelli and Radon-Nikodym

Lecture 5 Theorems of Fubini-Tonelli and Radon-Nikodym Lecture 5: Fubini-onelli and Radon-Nikodym 1 of 13 Course: heory of Probability I erm: Fall 2013 Instructor: Gordan Zitkovic Lecture 5 heorems of Fubini-onelli and Radon-Nikodym Products of measure spaces

More information

Lebesgue-Radon-Nikodym Theorem

Lebesgue-Radon-Nikodym Theorem Lebesgue-Radon-Nikodym Theorem Matt Rosenzweig 1 Lebesgue-Radon-Nikodym Theorem In what follows, (, A) will denote a measurable space. We begin with a review of signed measures. 1.1 Signed Measures Definition

More information

Checking measurability. Extension of continuous functions. Collages

Checking measurability. Extension of continuous functions. Collages Checking measurability Theorem: Let (X, E) and (Y, K) be two measurable spaces and let f : X Y be a map. If K = σ(d) and if then f is E-K-measurable. f 1 (D) E for all D D, Extension of continuous functions

More information

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32 Functional Analysis Martin Brokate Contents 1 Normed Spaces 2 2 Hilbert Spaces 2 3 The Principle of Uniform Boundedness 32 4 Extension, Reflexivity, Separation 37 5 Compact subsets of C and L p 46 6 Weak

More information

2 Lebesgue integration

2 Lebesgue integration 2 Lebesgue integration 1. Let (, A, µ) be a measure space. We will always assume that µ is complete, otherwise we first take its completion. The example to have in mind is the Lebesgue measure on R n,

More information

Lectures on Integration. William G. Faris

Lectures on Integration. William G. Faris Lectures on Integration William G. Faris March 4, 2001 2 Contents 1 The integral: properties 5 1.1 Measurable functions......................... 5 1.2 Integration.............................. 7 1.3 Convergence

More information

Signed Measures and Complex Measures

Signed Measures and Complex Measures Chapter 8 Signed Measures Complex Measures As opposed to the measures we have considered so far, a signed measure is allowed to take on both positive negative values. To be precise, if M is a σ-algebra

More information

Lecture Notes Introduction to Ergodic Theory

Lecture Notes Introduction to Ergodic Theory Lecture Notes Introduction to Ergodic Theory Tiago Pereira Department of Mathematics Imperial College London Our course consists of five introductory lectures on probabilistic aspects of dynamical systems,

More information

A Short Introduction to Ergodic Theory of Numbers. Karma Dajani

A Short Introduction to Ergodic Theory of Numbers. Karma Dajani A Short Introduction to Ergodic Theory of Numbers Karma Dajani June 3, 203 2 Contents Motivation and Examples 5 What is Ergodic Theory? 5 2 Number Theoretic Examples 6 2 Measure Preserving, Ergodicity

More information

MAT 449 : Problem Set 4

MAT 449 : Problem Set 4 MAT 449 : Problem Set 4 Due Thursday, October 11 Vector-valued integrals Note : ou are allowed to use without proof the following results : The Hahn-Banach theorem. The fact that every continuous linear

More information

Similar to sequence, note that a series converges if and only if its tail converges, that is, r 1 r ( 1 < r < 1), ( 1) k k. r k =

Similar to sequence, note that a series converges if and only if its tail converges, that is, r 1 r ( 1 < r < 1), ( 1) k k. r k = Infinite Series We say an infinite series a k converges to s if its sequence of initial sums converges to s, that is, lim( n a k : n N) = s. Similar to sequence, note that a series converges if and only

More information

Chapter 4. The dominated convergence theorem and applications

Chapter 4. The dominated convergence theorem and applications Chapter 4. The dominated convergence theorem and applications The Monotone Covergence theorem is one of a number of key theorems alllowing one to exchange limits and [Lebesgue] integrals (or derivatives

More information

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6 MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION Extra Reading Material for Level 4 and Level 6 Part A: Construction of Lebesgue Measure The first part the extra material consists of the construction

More information

The optimal partial transport problem

The optimal partial transport problem The optimal partial transport problem Alessio Figalli Abstract Given two densities f and g, we consider the problem of transporting a fraction m [0, min{ f L 1, g L 1}] of the mass of f onto g minimizing

More information

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define 1 Measures 1.1 Jordan content in R N II - REAL ANALYSIS Let I be an interval in R. Then its 1-content is defined as c 1 (I) := b a if I is bounded with endpoints a, b. If I is unbounded, we define c 1

More information

AN EXPLORATION OF KHINCHIN S CONSTANT

AN EXPLORATION OF KHINCHIN S CONSTANT AN EXPLORATION OF KHINCHIN S CONSTANT ALEJANDRO YOUNGER Abstract Every real number can be expressed as a continued fraction in the following form, with n Z and a i N for all i x = n +, a + a + a 2 + For

More information

( f ^ M _ M 0 )dµ (5.1)

( f ^ M _ M 0 )dµ (5.1) 47 5. LEBESGUE INTEGRAL: GENERAL CASE Although the Lebesgue integral defined in the previous chapter is in many ways much better behaved than the Riemann integral, it shares its restriction to bounded

More information

HARMONIC ANALYSIS. Date:

HARMONIC ANALYSIS. Date: HARMONIC ANALYSIS Contents. Introduction 2. Hardy-Littlewood maximal function 3. Approximation by convolution 4. Muckenhaupt weights 4.. Calderón-Zygmund decomposition 5. Fourier transform 6. BMO (bounded

More information

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing.

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing. 5 Measure theory II 1. Charges (signed measures). Let (Ω, A) be a σ -algebra. A map φ: A R is called a charge, (or signed measure or σ -additive set function) if φ = φ(a j ) (5.1) A j for any disjoint

More information

Basic Properties of Metric and Normed Spaces

Basic Properties of Metric and Normed Spaces Basic Properties of Metric and Normed Spaces Computational and Metric Geometry Instructor: Yury Makarychev The second part of this course is about metric geometry. We will study metric spaces, low distortion

More information

Let X and Y be two real valued stochastic variables defined on (Ω, F, P). Theorem: If X and Y are independent then. . p.1/21

Let X and Y be two real valued stochastic variables defined on (Ω, F, P). Theorem: If X and Y are independent then. . p.1/21 Multivariate transformations The remaining part of the probability course is centered around transformations t : R k R m and how they transform probability measures. For instance tx 1,...,x k = x 1 +...

More information

Measure Theory, 2009

Measure Theory, 2009 Measure Theory, 2009 Contents 1 Notational issues 2 2 The concept of a measure 4 3 The general notion of integration and measurable function 15 4 Convergence theorems 23 5 Radon-Nikodym and Conditional

More information

Reminder Notes for the Course on Measures on Topological Spaces

Reminder Notes for the Course on Measures on Topological Spaces Reminder Notes for the Course on Measures on Topological Spaces T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie

More information

Measures and Measure Spaces

Measures and Measure Spaces Chapter 2 Measures and Measure Spaces In summarizing the flaws of the Riemann integral we can focus on two main points: 1) Many nice functions are not Riemann integrable. 2) The Riemann integral does not

More information

Analysis Comprehensive Exam Questions Fall 2008

Analysis Comprehensive Exam Questions Fall 2008 Analysis Comprehensive xam Questions Fall 28. (a) Let R be measurable with finite Lebesgue measure. Suppose that {f n } n N is a bounded sequence in L 2 () and there exists a function f such that f n (x)

More information

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem Chapter 8 General Countably dditive Set Functions In Theorem 5.2.2 the reader saw that if f : X R is integrable on the measure space (X,, µ) then we can define a countably additive set function ν on by

More information

Probability and Random Processes

Probability and Random Processes Probability and Random Processes Lecture 4 General integration theory Mikael Skoglund, Probability and random processes 1/15 Measurable xtended Real-valued Functions R = the extended real numbers; a subset

More information

I. ANALYSIS; PROBABILITY

I. ANALYSIS; PROBABILITY ma414l1.tex Lecture 1. 12.1.2012 I. NLYSIS; PROBBILITY 1. Lebesgue Measure and Integral We recall Lebesgue measure (M411 Probability and Measure) λ: defined on intervals (a, b] by λ((a, b]) := b a (so

More information

Notes on Measure Theory. Let A 2 M. A function µ : A [0, ] is finitely additive if, A j ) =

Notes on Measure Theory. Let A 2 M. A function µ : A [0, ] is finitely additive if, A j ) = Notes on Measure Theory Definitions and Facts from Topic 1500 For any set M, 2 M := {subsets of M} is called the power set of M. The power set is the set of all sets. Let A 2 M. A function µ : A [0, ]

More information

Riesz Representation Theorems

Riesz Representation Theorems Chapter 6 Riesz Representation Theorems 6.1 Dual Spaces Definition 6.1.1. Let V and W be vector spaces over R. We let L(V, W ) = {T : V W T is linear}. The space L(V, R) is denoted by V and elements of

More information

The Banach Tarski Paradox and Amenability Lecture 19: Reiter s Property and the Følner Condition. 6 October 2011

The Banach Tarski Paradox and Amenability Lecture 19: Reiter s Property and the Følner Condition. 6 October 2011 The Banach Tarski Paradox and Amenability Lecture 19: Reiter s Property and the Følner Condition 6 October 211 Invariant means and amenability Definition Let G be a locally compact group. An invariant

More information

Measure Theory & Integration

Measure Theory & Integration Measure Theory & Integration Lecture Notes, Math 320/520 Fall, 2004 D.H. Sattinger Department of Mathematics Yale University Contents 1 Preliminaries 1 2 Measures 3 2.1 Area and Measure........................

More information

Lecture 4. f X T, (x t, ) = f X,T (x, t ) f T (t )

Lecture 4. f X T, (x t, ) = f X,T (x, t ) f T (t ) LECURE NOES 21 Lecture 4 7. Sufficient statistics Consider the usual statistical setup: the data is X and the paramter is. o gain information about the parameter we study various functions of the data

More information

Chapter 2 Conditional Measure-Theoretic Entropy

Chapter 2 Conditional Measure-Theoretic Entropy Chapter 2 Conditional Measure-Theoretic Entropy The basic entropy theory from Chapter 1 will become a more powerful and flexible tool after we extend the theory from partitions to σ-algebras. However,

More information