Math 5051 Measure Theory and Functional Analysis I Homework Assignment 2

Size: px
Start display at page:

Download "Math 5051 Measure Theory and Functional Analysis I Homework Assignment 2"

Transcription

1 Math 551 Measure Theory and Functional nalysis I Homework ssignment 2 Prof. Wickerhauser Due Friday, September 25th, 215 Please do Exercises 1, 4*, 7, 9*, 11, 12, 13, 16, 21*, 26, 28, 31, 32, 33, 36, 37. Exercises marked with (*) are especially important and you may wish to focus extra attention on those. You are encouraged to try the other problems in this list as well. Note: textbook refers to Real nalysis for Graduate Students, version 2.1, by Richard F. Bass. These exercises originate from that source. 1. Suppose (X, ) is a measurable space, f : X R is a function, and {x : f(x) > r} for all r Q. Prove that f is measurable. 2. Let f : (, 1) R be such that for every x (, 1) there exist r > and a Borel measurable function g, both depending on x, such that f and g agree on (x r, x + r) (, 1). Prove that f is Borel measurable. 3. Suppose f n is a sequence of measurable functions. Prove that is a measurable set. = {x : f n(x) exists} 4. If f : R R is Lebesgue measurable, prove that there exists a Borel measurable function g such that f = g a.e. 5. Give an example of a collection of measurable non-negative functions {f α } α such that if g is defined by g(x) = sup α f α (x), then g is finite for all x but g is non-measurable. (Hint: is allowed to be uncountable.) 1

2 6. Suppose f : R R is Lebesgue measurable and g : R R is continuous. Prove that g f is Lebesgue measurable. Is this true if g is Borel measurable instead of continuous? Is this true if g is Lebesgue measurable instead of continuous? 7. Suppose f : R R is Borel measurable. Define to be the smallest σ-algebra containing the sets {x : f(x) > a} for every a R. Suppose g is measurable with respect to, namely that ( a R){x : g(x) > a}. Prove that there exists a Borel measurable function h : R R such that g = h f. 8. It is known that there exist discontinuous real-valued functions f such that ( x, y R) f(x + y) = f(x) + f(y). (1) (n example may be constructed using Zorn s lemma.) Prove that if f satisfies (1) and in addition f is Lebesgue measurable, then f is continuous. 9. Verify Equation (6.5) on textbook p.48. Namely, for measure space (X,, µ), show that if ni=1 a i χ i = m j=1 b j χ Bj for i, B j and a i, b j R, then n m a i µ( i ) = b j µ(b j ). i=1 j=1 1. Suppose f is non-negative and measurable and µ is σ-finite. Show there exist simple functions s n increasing to f at each point such that µ({x : s n (x) }) < for each n. 11. Let f be a non-negative measurable function. Prove that min(f, n) = f. 12. Let (X,, µ) be a measure space and suppose µ is σ-finite. Suppose f is integrable. Prove that given ɛ > there exists δ > such that f(x) µ(dx) < ɛ whenever µ() < δ. 13. Suppose µ(x) < and f n is a sequence of bounded real-valued measurable functions that converge to f uniformly. Prove that f n dµ f dµ. 2

3 This is sometimes called the bounded convergence theorem. (Hint: prove this with or without the dominated convergence theorem.) 14. If f n is a sequence of non-negative integrable functions such that f n (x) decreases to f(x) for every x, prove that f n dµ f dµ. 15. Let (X,, µ) be a finite measure space and suppose f is a non-negative, measurable function that is finite at each point of X, but is not necessarily integrable. Prove that there exists a continuous increasing function g : [, ) [, ) such that x g(x) = and g f is integrable. 16. State and prove a version of the Dominated Convergence Theorem for complex-valued functions. (Hint: prove this as a corollary to the dominated convergence theorem for real-valued functions.) 17. Suppose f n, g n, f, g are integrable, f n f a.e., g n g a.e., f n g n for each n, and gn g. Prove that f n f. (Hint: use the dominated convergence theorem.) 18. Give an example of a sequence of non-negative functions f n tending to pointwise such that fn but there is no integrable function g such that f n g for all n. 19. Suppose (X,, µ) is a measure space, f and each f n is integrable and non-negative, f n f a.e, and f n f. Prove that for each, f n dµ f dµ. 2. Suppose f n and f are integrable, f n f a.e., and f n f. Prove that f n f. 21. Suppose f : R R is integrable, a R, and we define Show that F is a continuous function. F (x) def = x a f(y) dy. 22. Let f n be a sequence of non-negative Lebesgue measurable functions on R. Is it necessarily true that sup If not, give a counterexample. f n dx 3 sup f n dx?

4 23. Find the it and justify your reasoning. 24. Find the it and justify your reasoning. n n ( 1 + x n) n log(2 + cos(x/n)) dx ( 1 x n) n log(2 + cos(x/n)) dx 25. Prove that the it exists and find its value: nx 2 (1 + x 2 log(2 + cos(x/n)) dx ) n 26. Prove that the it exists and determine its value: ne nx sin(1/x) dx 27. Let g : R R be integrable and let f : R R be bounded, measurable, and continuous at 1. Prove that exists and determine its value. n f (1 + x ) n n 2 g(x) dx 28. Suppose µ(x) <, f n converges to f uniformly, and each f n is integrable. Prove that f is integrable and f n f. Is the condition µ(x) < necessary? 29. Prove that k=1 1 1 (p + k) 2 = x p log x dx 1 x for p >. (Hint: use the fundamental theorem of calculus, to be proved in textbook Chapter 8, namely if f is continuous on [a, b] and F is differentiable on [a, b] with derivative f, then b a f(x) dx = F (b) F (a).) 3. Let f n be a sequence of measurable real-valued functions on [, 1] that is uniformly bounded. a. Show that if is a Borel subset of [, 1], then there exists a subsequence n j such that f n j (x) dx converges. 4

5 b. Show that if { i } is a countable collection of Borel subsets of [, 1], then there exists a subsequence n j such that i f nj (x) dx converges for each i. c. Show that there exists a subsequence n j such that f n j (x) dx converges for each Borel subset of [, 1]. 31. Let (X,, µ) be a measure space. sequence of measurable functions {f n } is uniformly integrable if, given ɛ >, there exists M such that f n (x) dµ < ɛ {x: f n(x) >M} for each n. The sequence is uniformly absolutely continuous if, given ɛ >, there exists δ > such that for each n and each with µ() < δ. f n dµ < ɛ Suppose that µ is a finite measure. Prove that {f n } is uniformly integrable if and only if sup n fn dµ < and {f n } is uniformly absolutely continuous. 32. Suppose µ is a finite measure, f n f a.e., and {f n } is uniformly integrable (see Exercise 31). Prove that f n f. (This is known as the Vitali convergence theorem.) 33. Suppose µ is a finite measure, f n f a.e., each f n is integrable, and f n f. Prove that {f n } is uniformly integrable (see Exercise 31). 34. Suppose µ is a finite measure and for some ɛ >, sup f n 1+ɛ dµ <. n Prove that {f n } is uniformly integrable (see Exercise 31). 35. Suppose {f n } is a uniformly integrable sequence of functions defined on [, 1]. Prove that there is a subsequence n j such that 1 f n j g dx converges whenever g is a real-valued bounded measurable function. 36. Suppose µ n is a sequence of measures on (X, ) such that µ n (X) = 1 for all n and µ n () converges as n for each. Call the it µ(). a. Prove that µ is a measure. b. Prove that f dµ n f dµ whenever f is bounded and measurable. 5

6 c. Prove that f dµ inf whenever f is non-neagative and measurable. f dµ n 37. Let (X,, µ) be a measure space and let f be non-negative and integrable. Define ν on by a. Prove that ν is a measure. ν() def = f dµ. b. Prove that if g is integrable with respect to ν, then fg is integrable with respect to µ and g dν = fg dµ. 38. Suppose µ and ν are finite positive measures on the Borel σ-algebra on [, 1] such that f dµ = f dν whenever f is real-valued and continuous on [, 1]. Prove that µ = ν. 39. Let B be the Borel σ-algebra on [, 1]. Let µ n be a sequence of finite measures on ([, 1], B) and let µ be another finite measure on ([, 1], B). Suppose mu n ([, 1]) µ([, 1]). Prove that the following are equivalent: a. f dµn f dµ whenever f is a continuous real-valued function on [, 1]; b. sup µ n (F ) µ(f ) for all closed F [, 1]; c. inf µ n (G) µ(g) for all open G [, 1]; d. µ n () = µ() for all B such that µ( ) =, where def = Ā o is the boundary of ; e. µ n ([, x]) = µ([, x]) for all x [, 1] such that µ({x}) =. 4. Let B be the Borel σ-algebra on [, 1]. Suppose µ n are finite measures on ([, 1], B) such that f dµn 1 f(x) dx whenever f is a real-valued continuous function on [, 1]. Suppose that g is a bounded measurable function such that the set of discontinuities of g has measure. prove that g dµ n 1 g(x) dx. 41. Let B be the Borel σ-algebra on [, 1]. Let µ n be a sequence of finite measures on ([, 1], B) such that sup n µ n ([, 1]) <. Define α n (x) = µ n ([, x]). 6

7 a. If r [, 1] is rational, prove that there exists a subsequence {n j } such that α nj (r) converges. b. Prove that there exists a subsequence {n j } such that α nj (r) converges for every rational in [, 1]. c. Let ᾱ(r) def = α n (r) for rational r [, 1]. Prove that r > s with r, s Q [, 1] implies ᾱ(r) ᾱ(s). d. Define Prove that α(x) = ᾱ(r). r x+, r Q α(x) = inf{ᾱ(r) : r > x, r Q [, 1]}. e. Let µ be the Lebesgue-Stieltjes measure associated with α. Prove that f dµ n f dµ whenever f is a continuous real-valued function on [, 1]. 7

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 3 Math 551 Measure Theory and Functional Analysis I Homework Assignment 3 Prof. Wickerhauser Due Monday, October 12th, 215 Please do Exercises 3*, 4, 5, 6, 8*, 11*, 17, 2, 21, 22, 27*. Exercises marked with

More information

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7 Prof. Wickerhauser Due Friday, February 5th, 2016 Please do Exercises 3, 6, 14, 16*, 17, 18, 21*, 23*, 24, 27*. Exercises marked

More information

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M.

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M. 1. Abstract Integration The main reference for this section is Rudin s Real and Complex Analysis. The purpose of developing an abstract theory of integration is to emphasize the difference between the

More information

Integration on Measure Spaces

Integration on Measure Spaces Chapter 3 Integration on Measure Spaces In this chapter we introduce the general notion of a measure on a space X, define the class of measurable functions, and define the integral, first on a class of

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

A List of Problems in Real Analysis

A List of Problems in Real Analysis A List of Problems in Real Analysis W.Yessen & T.Ma December 3, 218 This document was first created by Will Yessen, who was a graduate student at UCI. Timmy Ma, who was also a graduate student at UCI,

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1 Appendix To understand weak derivatives and distributional derivatives in the simplest context of functions of a single variable, we describe without proof some results from real analysis (see [7] and

More information

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Three hours THE UNIVERSITY OF MANCHESTER. 24th January Three hours MATH41011 THE UNIVERSITY OF MANCHESTER FOURIER ANALYSIS AND LEBESGUE INTEGRATION 24th January 2013 9.45 12.45 Answer ALL SIX questions in Section A (25 marks in total). Answer THREE of the

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989),

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989), Real Analysis 2, Math 651, Spring 2005 April 26, 2005 1 Real Analysis 2, Math 651, Spring 2005 Krzysztof Chris Ciesielski 1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer

More information

Homework 11. Solutions

Homework 11. Solutions Homework 11. Solutions Problem 2.3.2. Let f n : R R be 1/n times the characteristic function of the interval (0, n). Show that f n 0 uniformly and f n µ L = 1. Why isn t it a counterexample to the Lebesgue

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

CHAPTER I THE RIESZ REPRESENTATION THEOREM

CHAPTER I THE RIESZ REPRESENTATION THEOREM CHAPTER I THE RIESZ REPRESENTATION THEOREM We begin our study by identifying certain special kinds of linear functionals on certain special vector spaces of functions. We describe these linear functionals

More information

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents MATH 3969 - MEASURE THEORY AND FOURIER ANALYSIS ANDREW TULLOCH Contents 1. Measure Theory 2 1.1. Properties of Measures 3 1.2. Constructing σ-algebras and measures 3 1.3. Properties of the Lebesgue measure

More information

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first Math 632/6321: Theory of Functions of a Real Variable Sample Preinary Exam Questions 1. Let (, M, µ) be a measure space. (a) Prove that if µ() < and if 1 p < q

More information

Exercise 1. Show that the Radon-Nikodym theorem for a finite measure implies the theorem for a σ-finite measure.

Exercise 1. Show that the Radon-Nikodym theorem for a finite measure implies the theorem for a σ-finite measure. Real Variables, Fall 2014 Problem set 8 Solution suggestions xercise 1. Show that the Radon-Nikodym theorem for a finite measure implies the theorem for a σ-finite measure. nswer: ssume that the Radon-Nikodym

More information

Measure and integration

Measure and integration Chapter 5 Measure and integration In calculus you have learned how to calculate the size of different kinds of sets: the length of a curve, the area of a region or a surface, the volume or mass of a solid.

More information

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems September, 27 Solve exactly 6 out of the 8 problems. Prove by denition (in ɛ δ language) that f(x) = + x 2 is uniformly continuous in (, ). Is f(x) uniformly continuous in (, )? Prove your conclusion.

More information

3 Measurable Functions

3 Measurable Functions 3 Measurable Functions Notation A pair (X, F) where F is a σ-field of subsets of X is a measurable space. If µ is a measure on F then (X, F, µ) is a measure space. If µ(x) < then (X, F, µ) is a probability

More information

Review of measure theory

Review of measure theory 209: Honors nalysis in R n Review of measure theory 1 Outer measure, measure, measurable sets Definition 1 Let X be a set. nonempty family R of subsets of X is a ring if, B R B R and, B R B R hold. bove,

More information

SOME PROBLEMS IN REAL ANALYSIS.

SOME PROBLEMS IN REAL ANALYSIS. SOME PROBLEMS IN REAL ANALYSIS. Prepared by SULEYMAN ULUSOY PROBLEM 1. (1 points) Suppose f n : X [, ] is measurable for n = 1, 2, 3,...; f 1 f 2 f 3... ; f n (x) f(x) as n, for every x X. a)give a counterexample

More information

Real Analysis Chapter 3 Solutions Jonathan Conder. ν(f n ) = lim

Real Analysis Chapter 3 Solutions Jonathan Conder. ν(f n ) = lim . Suppose ( n ) n is an increasing sequence in M. For each n N define F n : n \ n (with 0 : ). Clearly ν( n n ) ν( nf n ) ν(f n ) lim n If ( n ) n is a decreasing sequence in M and ν( )

More information

MTH 404: Measure and Integration

MTH 404: Measure and Integration MTH 404: Measure and Integration Semester 2, 2012-2013 Dr. Prahlad Vaidyanathan Contents I. Introduction....................................... 3 1. Motivation................................... 3 2. The

More information

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1)

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1) 1.4. CONSTRUCTION OF LEBESGUE-STIELTJES MEASURES In this section we shall put to use the Carathéodory-Hahn theory, in order to construct measures with certain desirable properties first on the real line

More information

Austin Mohr Math 704 Homework 6

Austin Mohr Math 704 Homework 6 Austin Mohr Math 704 Homework 6 Problem 1 Integrability of f on R does not necessarily imply the convergence of f(x) to 0 as x. a. There exists a positive continuous function f on R so that f is integrable

More information

Defining the Integral

Defining the Integral Defining the Integral In these notes we provide a careful definition of the Lebesgue integral and we prove each of the three main convergence theorems. For the duration of these notes, let (, M, µ) be

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhof.tex April 25, 2018 van Rooij, Schikhof: A Second Course on Real Functions Notes from [vrs]. Introduction A monotone function is Riemann integrable. A continuous function is Riemann integrable.

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm Chapter 13 Radon Measures Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm (13.1) f = sup x X f(x). We want to identify

More information

LEBESGUE INTEGRATION. Introduction

LEBESGUE INTEGRATION. Introduction LEBESGUE INTEGATION EYE SJAMAA Supplementary notes Math 414, Spring 25 Introduction The following heuristic argument is at the basis of the denition of the Lebesgue integral. This argument will be imprecise,

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ =

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ = Chapter 6. Integration 1. Integrals of Nonnegative Functions Let (, S, µ) be a measure space. We denote by L + the set of all measurable functions from to [0, ]. Let φ be a simple function in L +. Suppose

More information

Weak convergence. Amsterdam, 13 November Leiden University. Limit theorems. Shota Gugushvili. Generalities. Criteria

Weak convergence. Amsterdam, 13 November Leiden University. Limit theorems. Shota Gugushvili. Generalities. Criteria Weak Leiden University Amsterdam, 13 November 2013 Outline 1 2 3 4 5 6 7 Definition Definition Let µ, µ 1, µ 2,... be probability measures on (R, B). It is said that µ n converges weakly to µ, and we then

More information

1. Is the set {f a,b (x) = ax + b a Q and b Q} of all linear functions with rational coefficients countable or uncountable?

1. Is the set {f a,b (x) = ax + b a Q and b Q} of all linear functions with rational coefficients countable or uncountable? Name: Instructions. Show all work in the space provided. Indicate clearly if you continue on the back side, and write your name at the top of the scratch sheet if you will turn it in for grading. No books

More information

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras Math 4121 Spring 2012 Weaver Measure Theory 1. σ-algebras A measure is a function which gauges the size of subsets of a given set. In general we do not ask that a measure evaluate the size of every subset,

More information

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts. Tuesday, January 16th, 2018

Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts. Tuesday, January 16th, 2018 NAME: Advanced Analysis Qualifying Examination Department of Mathematics and Statistics University of Massachusetts Tuesday, January 16th, 2018 Instructions 1. This exam consists of eight (8) problems

More information

ABSTRACT INTEGRATION CHAPTER ONE

ABSTRACT INTEGRATION CHAPTER ONE CHAPTER ONE ABSTRACT INTEGRATION Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Suggestions and errors are invited and can be mailed

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

Solutions: Problem Set 4 Math 201B, Winter 2007

Solutions: Problem Set 4 Math 201B, Winter 2007 Solutions: Problem Set 4 Math 2B, Winter 27 Problem. (a Define f : by { x /2 if < x

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

Compendium and Solutions to exercises TMA4225 Foundation of analysis

Compendium and Solutions to exercises TMA4225 Foundation of analysis Compendium and Solutions to exercises TMA4225 Foundation of analysis Ruben Spaans December 6, 2010 1 Introduction This compendium contains a lexicon over definitions and exercises with solutions. Throughout

More information

Chapter 4. Measurable Functions. 4.1 Measurable Functions

Chapter 4. Measurable Functions. 4.1 Measurable Functions Chapter 4 Measurable Functions If X is a set and A P(X) is a σ-field, then (X, A) is called a measurable space. If µ is a countably additive measure defined on A then (X, A, µ) is called a measure space.

More information

18.175: Lecture 3 Integration

18.175: Lecture 3 Integration 18.175: Lecture 3 Scott Sheffield MIT Outline Outline Recall definitions Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F [0, 1] is the probability

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

MAT 571 REAL ANALYSIS II LECTURE NOTES. Contents. 2. Product measures Iterated integrals Complete products Differentiation 17

MAT 571 REAL ANALYSIS II LECTURE NOTES. Contents. 2. Product measures Iterated integrals Complete products Differentiation 17 MAT 57 REAL ANALSIS II LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: SPRING 205 Contents. Convergence in measure 2. Product measures 3 3. Iterated integrals 4 4. Complete products 9 5. Signed measures

More information

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem Chapter 8 General Countably dditive Set Functions In Theorem 5.2.2 the reader saw that if f : X R is integrable on the measure space (X,, µ) then we can define a countably additive set function ν on by

More information

for all x,y [a,b]. The Lipschitz constant of f is the infimum of constants C with this property.

for all x,y [a,b]. The Lipschitz constant of f is the infimum of constants C with this property. viii 3.A. FUNCTIONS 77 Appendix In this appendix, we describe without proof some results from real analysis which help to understand weak and distributional derivatives in the simplest context of functions

More information

(2) E M = E C = X\E M

(2) E M = E C = X\E M 10 RICHARD B. MELROSE 2. Measures and σ-algebras An outer measure such as µ is a rather crude object since, even if the A i are disjoint, there is generally strict inequality in (1.14). It turns out to

More information

3 hours UNIVERSITY OF MANCHESTER. 22nd May and. Electronic calculators may be used, provided that they cannot store text.

3 hours UNIVERSITY OF MANCHESTER. 22nd May and. Electronic calculators may be used, provided that they cannot store text. 3 hours MATH40512 UNIVERSITY OF MANCHESTER DYNAMICAL SYSTEMS AND ERGODIC THEORY 22nd May 2007 9.45 12.45 Answer ALL four questions in SECTION A (40 marks in total) and THREE of the four questions in SECTION

More information

Lebesgue s Differentiation Theorem via Maximal Functions

Lebesgue s Differentiation Theorem via Maximal Functions Lebesgue s Differentiation Theorem via Maximal Functions Parth Soneji LMU München Hütteseminar, December 2013 Parth Soneji Lebesgue s Differentiation Theorem via Maximal Functions 1/12 Philosophy behind

More information

Dual Space of L 1. C = {E P(I) : one of E or I \ E is countable}.

Dual Space of L 1. C = {E P(I) : one of E or I \ E is countable}. Dual Space of L 1 Note. The main theorem of this note is on page 5. The secondary theorem, describing the dual of L (µ) is on page 8. Let (X, M, µ) be a measure space. We consider the subsets of X which

More information

Math 240 (Driver) Qual Exam (9/12/2017)

Math 240 (Driver) Qual Exam (9/12/2017) 1 Name: I.D. #: Math 240 (Driver) Qual Exam (9/12/2017) Instructions: Clearly explain and justify your answers. You may cite theorems from the text, notes, or class as long as they are not what the problem

More information

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES PHILIP GADDY Abstract. Throughout the course of this paper, we will first prove the Stone- Weierstrass Theroem, after providing some initial

More information

Class Notes for Math 921/922: Real Analysis, Instructor Mikil Foss

Class Notes for Math 921/922: Real Analysis, Instructor Mikil Foss University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Math Department: Class Notes and Learning Materials Mathematics, Department of 200 Class Notes for Math 92/922: Real Analysis,

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

Math 720: Homework. Assignment 2: Assigned Wed 09/04. Due Wed 09/11. Assignment 1: Assigned Wed 08/28. Due Wed 09/04

Math 720: Homework. Assignment 2: Assigned Wed 09/04. Due Wed 09/11. Assignment 1: Assigned Wed 08/28. Due Wed 09/04 Math 720: Homework Do, but don t turn in optional problems There is a firm no late homework policy Assignment : Assigned Wed 08/28 Due Wed 09/04 Keep in mind there is a firm no late homework policy Starred

More information

MATH & MATH FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING Scientia Imperii Decus et Tutamen 1

MATH & MATH FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING Scientia Imperii Decus et Tutamen 1 MATH 5310.001 & MATH 5320.001 FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING 2016 Scientia Imperii Decus et Tutamen 1 Robert R. Kallman University of North Texas Department of Mathematics 1155

More information

Chapter 5. Measurable Functions

Chapter 5. Measurable Functions Chapter 5. Measurable Functions 1. Measurable Functions Let X be a nonempty set, and let S be a σ-algebra of subsets of X. Then (X, S) is a measurable space. A subset E of X is said to be measurable if

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

Measures and Measure Spaces

Measures and Measure Spaces Chapter 2 Measures and Measure Spaces In summarizing the flaws of the Riemann integral we can focus on two main points: 1) Many nice functions are not Riemann integrable. 2) The Riemann integral does not

More information

Partial Solutions to Folland s Real Analysis: Part I

Partial Solutions to Folland s Real Analysis: Part I Partial Solutions to Folland s Real Analysis: Part I (Assigned Problems from MAT1000: Real Analysis I) Jonathan Mostovoy - 1002142665 University of Toronto January 20, 2018 Contents 1 Chapter 1 3 1.1 Folland

More information

13. Examples of measure-preserving tranformations: rotations of a torus, the doubling map

13. Examples of measure-preserving tranformations: rotations of a torus, the doubling map 3. Examples of measure-preserving tranformations: rotations of a torus, the doubling map 3. Rotations of a torus, the doubling map In this lecture we give two methods by which one can show that a given

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Having completed our study of Lebesgue measure, we are now ready to consider the Lebesgue integral. Before diving into the details of its construction, though, we would like to give

More information

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus Homework 3 Solutions, Real Analysis I, Fall, 2010. (9) Let f : (, ) [, ] be a function whose restriction to (, 0) (0, ) is continuous. Assume the one-sided limits p = lim x 0 f(x), q = lim x 0 + f(x) exist

More information

MA359 Measure Theory

MA359 Measure Theory A359 easure Theory Thomas Reddington Usman Qureshi April 8, 204 Contents Real Line 3. Cantor set.................................................. 5 2 General easures 2 2. Product spaces...............................................

More information

CHAPTER 6. Differentiation

CHAPTER 6. Differentiation CHPTER 6 Differentiation The generalization from elementary calculus of differentiation in measure theory is less obvious than that of integration, and the methods of treating it are somewhat involved.

More information

Differentiation of Measures and Functions

Differentiation of Measures and Functions Chapter 6 Differentiation of Measures and Functions This chapter is concerned with the differentiation theory of Radon measures. In the first two sections we introduce the Radon measures and discuss two

More information

THEOREMS, ETC., FOR MATH 516

THEOREMS, ETC., FOR MATH 516 THEOREMS, ETC., FOR MATH 516 Results labeled Theorem Ea.b.c (or Proposition Ea.b.c, etc.) refer to Theorem c from section a.b of Evans book (Partial Differential Equations). Proposition 1 (=Proposition

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

Real Analysis, 2nd Edition, G.B.Folland Signed Measures and Differentiation

Real Analysis, 2nd Edition, G.B.Folland Signed Measures and Differentiation Real Analysis, 2nd dition, G.B.Folland Chapter 3 Signed Measures and Differentiation Yung-Hsiang Huang 3. Signed Measures. Proof. The first part is proved by using addivitiy and consider F j = j j, 0 =.

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

Signed Measures. Chapter Basic Properties of Signed Measures. 4.2 Jordan and Hahn Decompositions

Signed Measures. Chapter Basic Properties of Signed Measures. 4.2 Jordan and Hahn Decompositions Chapter 4 Signed Measures Up until now our measures have always assumed values that were greater than or equal to 0. In this chapter we will extend our definition to allow for both positive negative values.

More information

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity A crash course in Lebesgue measure theory, Math 317, Intro to Analysis II These lecture notes are inspired by the third edition of Royden s Real analysis. The Jordan content is an attempt to extend the

More information

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx.

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx. Math 321 Final Examination April 1995 Notation used in this exam: N 1 π (1) S N (f,x) = f(t)e int dt e inx. 2π n= N π (2) C(X, R) is the space of bounded real-valued functions on the metric space X, equipped

More information

REAL ANALYSIS I Spring 2016 Product Measures

REAL ANALYSIS I Spring 2016 Product Measures REAL ANALSIS I Spring 216 Product Measures We assume that (, M, µ), (, N, ν) are σ- finite measure spaces. We want to provide the Cartesian product with a measure space structure in which all sets of the

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

6.2 Fubini s Theorem. (µ ν)(c) = f C (x) dµ(x). (6.2) Proof. Note that (X Y, A B, µ ν) must be σ-finite as well, so that.

6.2 Fubini s Theorem. (µ ν)(c) = f C (x) dµ(x). (6.2) Proof. Note that (X Y, A B, µ ν) must be σ-finite as well, so that. 6.2 Fubini s Theorem Theorem 6.2.1. (Fubini s theorem - first form) Let (, A, µ) and (, B, ν) be complete σ-finite measure spaces. Let C = A B. Then for each µ ν- measurable set C C the section x C is

More information

Probability and Random Processes

Probability and Random Processes Probability and Random Processes Lecture 4 General integration theory Mikael Skoglund, Probability and random processes 1/15 Measurable xtended Real-valued Functions R = the extended real numbers; a subset

More information

Principle of Mathematical Induction

Principle of Mathematical Induction Advanced Calculus I. Math 451, Fall 2016, Prof. Vershynin Principle of Mathematical Induction 1. Prove that 1 + 2 + + n = 1 n(n + 1) for all n N. 2 2. Prove that 1 2 + 2 2 + + n 2 = 1 n(n + 1)(2n + 1)

More information

Part II Probability and Measure

Part II Probability and Measure Part II Probability and Measure Theorems Based on lectures by J. Miller Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

Annalee Gomm Math 714: Assignment #2

Annalee Gomm Math 714: Assignment #2 Annalee Gomm Math 714: Assignment #2 3.32. Verify that if A M, λ(a = 0, and B A, then B M and λ(b = 0. Suppose that A M with λ(a = 0, and let B be any subset of A. By the nonnegativity and monotonicity

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017.

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017. Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 017 Nadia S. Larsen 17 November 017. 1. Construction of the product measure The purpose of these notes is to prove the main

More information

Continuous Functions on Metric Spaces

Continuous Functions on Metric Spaces Continuous Functions on Metric Spaces Math 201A, Fall 2016 1 Continuous functions Definition 1. Let (X, d X ) and (Y, d Y ) be metric spaces. A function f : X Y is continuous at a X if for every ɛ > 0

More information

HOMEWORK ASSIGNMENT 6

HOMEWORK ASSIGNMENT 6 HOMEWORK ASSIGNMENT 6 DUE 15 MARCH, 2016 1) Suppose f, g : A R are uniformly continuous on A. Show that f + g is uniformly continuous on A. Solution First we note: In order to show that f + g is uniformly

More information

Real analysis for graduate students

Real analysis for graduate students Real analysis for graduate students Version 3.1 Richard F. Bass January 6, 2016 ii c Copyright 2016 Richard F. Bass All rights reserved. First edition published 2011. Second edition published 2013. Version

More information

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6 Matthew Straughn Math 402 Homework 6 Homework 6 (p. 452) 14.3.3, 14.3.4, 14.3.5, 14.3.8 (p. 455) 14.4.3* (p. 458) 14.5.3 (p. 460) 14.6.1 (p. 472) 14.7.2* Lemma 1. If (f (n) ) converges uniformly to some

More information

Lebesgue measure and integration

Lebesgue measure and integration Chapter 4 Lebesgue measure and integration If you look back at what you have learned in your earlier mathematics courses, you will definitely recall a lot about area and volume from the simple formulas

More information

Notes on the Lebesgue Integral by Francis J. Narcowich November, 2013

Notes on the Lebesgue Integral by Francis J. Narcowich November, 2013 Notes on the Lebesgue Integral by Francis J. Narcowich November, 203 Introduction In the definition of the Riemann integral of a function f(x), the x-axis is partitioned and the integral is defined in

More information

consists of two disjoint copies of X n, each scaled down by 1,

consists of two disjoint copies of X n, each scaled down by 1, Homework 4 Solutions, Real Analysis I, Fall, 200. (4) Let be a topological space and M be a σ-algebra on which contains all Borel sets. Let m, µ be two positive measures on M. Assume there is a constant

More information

I. ANALYSIS; PROBABILITY

I. ANALYSIS; PROBABILITY ma414l1.tex Lecture 1. 12.1.2012 I. NLYSIS; PROBBILITY 1. Lebesgue Measure and Integral We recall Lebesgue measure (M411 Probability and Measure) λ: defined on intervals (a, b] by λ((a, b]) := b a (so

More information

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Tuesday, April 18, 2006 INSTRUCTIONS

FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355. Analysis 4. Examiner: Professor S. W. Drury Date: Tuesday, April 18, 2006 INSTRUCTIONS FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS MATH 355 Analysis 4 Examiner: Professor S. W. Drury Date: Tuesday, April 18, 26 Associate Examiner: Professor K. N. GowriSankaran Time: 2: pm. 5: pm. INSTRUCTIONS

More information

1 Homework. Recommended Reading:

1 Homework. Recommended Reading: Analysis MT43C Notes/Problems/Homework Recommended Reading: R. G. Bartle, D. R. Sherbert Introduction to real analysis, principal reference M. Spivak Calculus W. Rudin Principles of mathematical analysis

More information

36-752: Lecture 1. We will use measures to say how large sets are. First, we have to decide which sets we will measure.

36-752: Lecture 1. We will use measures to say how large sets are. First, we have to decide which sets we will measure. 0 0 0 -: Lecture How is this course different from your earlier probability courses? There are some problems that simply can t be handled with finite-dimensional sample spaces and random variables that

More information