Algorithmic Challenges in Photodynamics Simulations

Size: px
Start display at page:

Download "Algorithmic Challenges in Photodynamics Simulations"

Transcription

1 Algorithmic Challenges in Photodynamics Simulations Felix Plasser González Research Group Institute for Theoretical Chemistry, University of Vienna, Austria Grundlsee, 24 th February 2016

2 Photodynamics What happens to molecules after light irradiation? Photovoltaics Photobiology Phototherapy Photosynthesis Photo... Ultrafast processes (< 1ps) - experiments difficult Computation needed High computational effort for larger systems Parallelization needed

3 Introduction Three primary steps 1. Electronic Schrödinger equation ĤΨ I = E I Ψ I 2. Nonadiabatic Interactions Computed through wave function overlaps S IJ = Ψ I (R) ΨJ (R ) 3. Atomic Forces f α I = R α E I

4 Electronic Schrödinger equation Electronic Schrödinger equation Pauli principle Non-local interactions Standardized task ĤΨ I = E I Ψ I Ψ I (r 1,r 2,...) = Ψ I (r 2,r 1,...)

5 Electronic Schrödinger equation Electronic Schrödinger equation ĤΨ I = E I Ψ I Present context: Columbus program system Various successful applications on the VSC 100 cores Calculations not possible on workstations Routine work VSC-2 > VSC-1 > VSC-3 1 FP, H. Pasalic et al. Angew. Chem.-Int. Ed. 2013, 52, Z. Cui, H. Lischka et al. ChemPhysChem 2014, 15, S. Horn, FP et al. Theor. Chem. Acc. 2014, 133, A. Das, T. Müller, FP, H. Lischka J. Phys. Chem. 2016, in print.

6 Overlaps Wave function overlaps Many-electron wave functions S IJ = Ψ I (R) ΨJ (R ) Expansion into Slater determinants Expansion into MOs Ψ I = n CI d ki Φ k k=1 Φ k = ϕ 1...ϕ nα ϕ nα ϕ n

7 Overlaps Overlap as double sum over Slater determinant overlaps S IJ = Ψ I Ψ J = n CI n CI k=1 l=1 d ki d lj Φk Φ l Computed as determinant over MO overlaps Φk Φ l = ϕ1 ϕ 1. ϕnα ϕ 1... ϕ1 ϕ n α ϕnα ϕ nα ϕ nα +1 ϕ n α ϕ nα +1 ϕ l(n) ϕ n ϕ nα ϕ n ϕ n Formal scaling: O(n CI n CI n3 el ) Simplifications?

8 Overlaps Two independent factors for α and β spin Φk Φ l = ϕ1 ϕ 1. ϕnα ϕ 1... ϕ1 ϕ nα ϕnα ϕ nα ϕ nα +1 ϕ n α +1. ϕ n ϕ nα ϕ nα +1 ϕ l(n) ϕ n ϕ n = S kl S kl Spin-factors reappear Strategy: Precompute and store these factors

9 Overlaps Double molecule AO overlaps χµ χ ν MO coefficients C pµ,c qν Slater Determinants Φ k, Φ l CI-coefficients d ki,d lj Sort MO overlaps ϕp ϕ q Precompute Unique factors S kl, S kl Contract S IJ

10 Overlaps Additional algorithmic improvements Partial Laplace recursion for determinant computations Optimized contraction step using BLAS calls Parallelization (SMP)

11 Verification Verification for selenoacroleine torsion New code 1 against existing state-of-the-art code 2 Implem. Method T 1 (50 ) T 1 (55 ) T 1 (50 ) T 2 (55 ) t CPU (s) current CASSCF(6,5) Ref. 2 CASSCF(6,5) current MR-CIS(4,3) Ref. 2 MR-CIS(4,3) Quantitative agreement 1000 times faster 1 FP, M. Ruckenbauer, S. Mai, M. Oppel, P. Marquetand, L. González JCTC 2016, in print. 2 J. Pittner et al. Chem. Phys. 2009, 356,

12 Performance 100,000 Time(core seconds) 10,000 1, e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12 n pair Uniform performance Over 7 orders of magnitude in problem size For various wave function models 2-3 orders of magnitude faster than previous code

13 Parallelization Parallelization in shared memory Excellent scaling behavior Somewhat erratic behavior for contraction step S IJ = n CI n CI d Ik k=1 l=1 d Jl S kl S kl Speedup Time (core hours) Sorting I/O Total Determinants Contraction # Cores

14 Overlaps Integration into the SHARC dynamics code 1 Interface to various other electronic structure codes Multireference methods Columbus, Molcas Time-dependent DFT ADF, Dalton, Gaussian Coupled cluster Turbomole Photoelectron spectra / Dyson orbitals 2 Wave function analysis 1 S. Mai, P. Marquetand, L. González IJQC 2015, 115, 1215, 2 M. Ruckenbauer, S. Mai, P. Marquetand, L. González 2016, arxiv: v1.

15 Conclusions Photodynamics simulations 1 Electronic Schrödinger equation Routine work Interesting applications 2 Wave function overlaps New highly efficient implementation 1 3 Atomic forces Evaluate next 1 FP, M. Ruckenbauer, S. Mai, M. Oppel, P. Marquetand, L. González JCTC 2016, in print.

16 Acknowledgments González group M. Ruckenbauer S. Mai M. Oppel P. Marquetand L. González Collaborators H. Lischka J. Pittner This material is based upon work supported by the VSC Research Center funded by the Austrian Federal Ministry of Science, Research and Economy (bmwfw).

Algorithmic Challenges in Photodynamics Simulations on HPC systems

Algorithmic Challenges in Photodynamics Simulations on HPC systems Algorithmic Challenges in Photodynamics Simulations on HPC systems Felix Plasser González Research Group Institute for Theoretical Chemistry, University of Vienna, Austria Bratislava, 21 st March 2016

More information

Efficient and Flexible Computation of Many-Electron Wave Function Overlaps

Efficient and Flexible Computation of Many-Electron Wave Function Overlaps This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source

More information

Understanding Electronic Excitations in Complex Systems

Understanding Electronic Excitations in Complex Systems Understanding Electronic Excitations in Complex Systems Felix Plasser González Research Group Institute for Theoretical Chemistry, University of Vienna, Austria Innsbruck, September 23 rd, 2015 Introduction

More information

Extended Wavefunction Analysis for Multireference Methods

Extended Wavefunction Analysis for Multireference Methods Extended Wavefunction Analysis for Multireference Methods Felix Plasser González Research Group Institute for Theoretical Chemistry, University of Vienna, Austria Vienna, 1 st April 2016 Introduction Analysis

More information

Bridging Scales Through Wavefunction Analysis

Bridging Scales Through Wavefunction Analysis Bridging Scales Through Wavefunction Analysis Felix Plasser Institute for Theoretical Chemistry, University of Vienna Excited States Bridging Scales Marseille, November 7 10, 2016 F. Plasser Wavefunction

More information

Special 5: Wavefunction Analysis and Visualization

Special 5: Wavefunction Analysis and Visualization Special 5: Wavefunction Analysis and Visualization Felix Plasser Institute for Theoretical Chemistry, University of Vienna COLUMBUS in China Tianjin, October 10 14, 2016 F. Plasser Wavefunction Analysis

More information

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Multi-reference Density Functional Theory COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Capt Eric V. Beck Air Force Institute of Technology Department of Engineering Physics 2950 Hobson

More information

Uncertainty in Molecular Photoionization!

Uncertainty in Molecular Photoionization! Uncertainty in Molecular Photoionization! Robert R. Lucchese! Department of Chemistry! Texas A&M University Collaborators:! At Texas A&M: R. Carey, J. Lopez, J. Jose! At ISMO, Orsay, France: D. Dowek and

More information

TDDFT as a tool in biophysics

TDDFT as a tool in biophysics TDDFT as a tool in biophysics The primary event in vision Robert Send Universität Karlsruhe 09.09.08 Robert Send TDDFT as a tool in biophysics 09.09.08 1 / 28 Outline 1 Human vision 2 The methods 3 The

More information

Photochemistry and Photophysics: Overview

Photochemistry and Photophysics: Overview L1 Photochemistry and Photophysics: Overview Mario Barbatti A*Midex Chair Professor mario.barbatti@univ amu.fr Aix Marseille Université, Institut de Chimie Radicalaire LIGHT AND MOLECULES UV Vis Yamada

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory Introduction to Electronic Structure Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2002 Last Revised: June 2003 1 Introduction The purpose of these

More information

Marek Pederzoli J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i.,

Marek Pederzoli J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Supplementary Material: A New Approach to Molecular Dynamics with Non-adiabatic and Spin-orbit Effects with Applications to QM/MM Simulations of Thiophene and Selenophene Marek Pederzoli J. Heyrovský Institute

More information

Univ. Prof. Dr. Leticia González Institute of Theoretical Chemistry University of Vienna

Univ. Prof. Dr. Leticia González Institute of Theoretical Chemistry University of Vienna Univ. Prof. Dr. Leticia González Institute of Theoretical Chemistry University of Vienna leticia.gonzalez@univie.ac.at www.theochem.univie.ac.at PLUS LUCIS 70. FORTBILDUNGSWOCHE Molecules dancing waltz

More information

The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems

The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems Journal of Photochemistry and Photobiology A: Chemistry 190 (2007) 228 240 The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics

More information

Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory

Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory Péter G. Szalay Eötvös Loránd University Institute of Chemistry H-1518 Budapest, P.O.Box 32, Hungary szalay@chem.elte.hu

More information

Supporting Information. Photo-relaxation induced by water-chromophore electron transfer

Supporting Information. Photo-relaxation induced by water-chromophore electron transfer Supporting Information Photo-relaxation induced by water-chromophore electron transfer Mario Barbatti Table of Contents 1 MVIES... 2 2 CMPUTATIAL METDS... 3 3 GRUD-STATE GEMETRIES AD VERTICAL EXCITATIS...

More information

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) Born Oppenheimer Approximation: Ĥ el ( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) For a molecule with N electrons and M nuclei: Ĥ el What is E el (R)? s* potential surface Reaction Barrier Unstable intermediate

More information

1 Supporting information

1 Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 1 Supporting information 1.1 Separation of the chemical potentials of electrons and protons in

More information

Pseudopotential. Meaning and role

Pseudopotential. Meaning and role Pseudopotential. Meaning and role Jean-Pierre Flament jean-pierre.flament@univ-lille.fr Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) Université de Lille-Sciences et technologies MSSC2018

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

Spin-crossover molecules: puzzling systems for electronic structure methods. Andrea Droghetti School of Physics and CRANN, Trinity College Dublin

Spin-crossover molecules: puzzling systems for electronic structure methods. Andrea Droghetti School of Physics and CRANN, Trinity College Dublin Spin-crossover molecules: puzzling systems for electronic structure methods Andrea Droghetti School of Physics and CRANN, Trinity College Dublin Introduction Introduction Can we read a molecule spin? Can

More information

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL INFORMATION Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 SUPPLEMENTAL INFORMATION INTERNAL CONVERSION AND INTERSYSTEM CROSSING PATHWAYS

More information

Bonding in Molecules Prof John McGrady Michaelmas Term 2009

Bonding in Molecules Prof John McGrady Michaelmas Term 2009 Bonding in Molecules Prof John McGrady Michaelmas Term 2009 6 lectures building on material presented in Introduction to Molecular Orbitals (HT Year 1). Provides a basis for analysing the shapes, properties,

More information

On the Uniqueness of Molecular Orbitals and limitations of the MO-model.

On the Uniqueness of Molecular Orbitals and limitations of the MO-model. On the Uniqueness of Molecular Orbitals and limitations of the MO-model. The purpose of these notes is to make clear that molecular orbitals are a particular way to represent many-electron wave functions.

More information

Technical Note Calculations of Orbital Overlap Range Function EDR( r ; d) and Overlap Distance D(r )using Multiwfn

Technical Note Calculations of Orbital Overlap Range Function EDR( r ; d) and Overlap Distance D(r )using Multiwfn Technical Note Calculations of Orbital Overlap Range Function EDR( r ; d) and Overlap Distance D(r )using Multiwfn Abstract The orbital overlap range function EDR( r; d) (J. Chem. Phys. 2014, 141, 144104)

More information

Electron Correlation - Methods beyond Hartree-Fock

Electron Correlation - Methods beyond Hartree-Fock Electron Correlation - Methods beyond Hartree-Fock how to approach chemical accuracy Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mülheim September 4, 2014 MMER Summerschool 2014

More information

Is there a future for quantum chemistry on supercomputers? Jürg Hutter Physical-Chemistry Institute, University of Zurich

Is there a future for quantum chemistry on supercomputers? Jürg Hutter Physical-Chemistry Institute, University of Zurich Is there a future for quantum chemistry on supercomputers? Jürg Hutter Physical-Chemistry Institute, University of Zurich Chemistry Chemistry is the science of atomic matter, especially its chemical reactions,

More information

The COLUMBUS Project - General Purpose Ab Initio Quantum Chemistry. I. Background and Overview

The COLUMBUS Project - General Purpose Ab Initio Quantum Chemistry. I. Background and Overview The COLUMBUS Project - General Purpose Ab Initio Quantum Chemistry I. Background and Overview Ron Shepard Chemistry Division Argonne National Laboratory CScADS Workshop, Snowbird, Utah, July 23, 2007 Quantum

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 27, December 5, 2014

Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 27, December 5, 2014 Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi Lecture 27, December 5, 2014 (Some material in this lecture has been adapted from Cramer, C. J.

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

Selected Publications of Prof. Dr. Wenjian Liu

Selected Publications of Prof. Dr. Wenjian Liu Selected Publications of Prof. Dr. Wenjian Liu College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China 1 Fundamentals of relativistic molecular quantum mechanics 1. Handbook

More information

We also deduced that transformations between Slater determinants are always of the form

We also deduced that transformations between Slater determinants are always of the form .3 Hartree-Fock The Hartree-Fock method assumes that the true N-body ground state wave function can be approximated by a single Slater determinant and minimizes the energy among all possible choices of

More information

A practical view on linear algebra tools

A practical view on linear algebra tools A practical view on linear algebra tools Evgeny Epifanovsky University of Southern California University of California, Berkeley Q-Chem September 25, 2014 What is Q-Chem? Established in 1993, first release

More information

Transition probabilities and photoelectric cross sections

Transition probabilities and photoelectric cross sections Transition probabilities and photoelectric cross sections General geometry for defining the differential cross-section dσ/dω, Showing both polarized and unpolarized incident radiation. The polarization

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

Femtochemistry Theory

Femtochemistry Theory 4.9 Project part P09 Femtochemistry Theory Principal investigators: Werner Jakubetz, Hans Lischka Institut für Theoretische Chemie und Molekulare Strukturbiologie Universität Wien Währinger Straße 17,

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Density-Fitting Approximations to the Electron Repulsion Integrals

Density-Fitting Approximations to the Electron Repulsion Integrals Density-Fitting Approximations to the Electron Repulsion Integrals C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Created on 19 July 2010 Here we will follow some

More information

Linear response time-dependent density functional theory

Linear response time-dependent density functional theory Linear response time-dependent density functional theory Emmanuel Fromager Laboratoire de Chimie Quantique, Université de Strasbourg, France fromagere@unistra.fr Emmanuel Fromager (UdS) Cours RFCT, Strasbourg,

More information

The MCSCF Method *, Molecular Orbitals, Reference Spaces and COLUMBUS Input

The MCSCF Method *, Molecular Orbitals, Reference Spaces and COLUMBUS Input The MCSCF Method *, Molecular Orbitals, Reference Spaces and COLUMBUS Input Hans Lischka University of Vienna *Excerpt of a course presented by R. Shepard, Argonne National Laboratory, at the Workshop

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory CSC/PRACE Spring School in Computational Chemistry 2017 Introduction to Electronic Structure Theory Mikael Johansson http://www.iki.fi/~mpjohans Objective: To get familiarised with the, subjectively chosen,

More information

Hartree, Hartree-Fock and post-hf methods

Hartree, Hartree-Fock and post-hf methods Hartree, Hartree-Fock and post-hf methods MSE697 fall 2015 Nicolas Onofrio School of Materials Engineering DLR 428 Purdue University nonofrio@purdue.edu 1 The curse of dimensionality Let s consider a multi

More information

Diatomic Molecules. 14th May Chemical Bonds in Diatomic Molecules: Overlaps and Delocalization of Electrons

Diatomic Molecules. 14th May Chemical Bonds in Diatomic Molecules: Overlaps and Delocalization of Electrons Diatomic Molecules 14th May 2009 1 Chemical Bonds in Diatomic Molecules: Overlaps and Delocalization of Electrons 1.1 H + 2 Molecule Consider the process where 2 atomic nuclei and associated electron (1

More information

Machine learning enables long time scale molecular photodynamics simulations

Machine learning enables long time scale molecular photodynamics simulations Machine learning enables long time scale molecular photodynamics simulations Julia Westermayr 1, Michael Gastegger 2, Maximilian F. S. J. Menger 1,3, Sebastian Mai 1, Leticia González 1, Philipp Marquetand

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Computational Chemistry. An Introduction to Molecular Dynamic Simulations Computational Chemistry An Introduction to Molecular Dynamic Simulations Computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws

More information

CP2K: Selected Developments

CP2K: Selected Developments CP2K: Selected Developments Jürg Hutter Department of Chemistry University of Zurich Outline Introduction History and Performance Current and Future Developments Post-Hartree-Fock Methods GW Methods RPA

More information

Beyond the Hartree-Fock Approximation: Configuration Interaction

Beyond the Hartree-Fock Approximation: Configuration Interaction Beyond the Hartree-Fock Approximation: Configuration Interaction The Hartree-Fock (HF) method uses a single determinant (single electronic configuration) description of the electronic wavefunction. For

More information

Population Analysis. Mulliken Population Analysis APPENDIX S

Population Analysis. Mulliken Population Analysis APPENDIX S APPENDIX S Population Analysis On p. 665, electronic density ρ is defined. If the wave function is a Slater determinant p. 397) and assuming the double occupancy of orbitals ϕ i, we have see 11.7) ρ r

More information

Investigation of Spectroscopic Properties and Spin-Orbit Splitting in the X 2 Π and A 2 Π Electronic States of the SO + Cation

Investigation of Spectroscopic Properties and Spin-Orbit Splitting in the X 2 Π and A 2 Π Electronic States of the SO + Cation Int. J. Mol. Sci. 2012, 13, 8189-8209; doi:10.3390/ijms13078189 Article OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Investigation of Spectroscopic Properties

More information

1 Rayleigh-Schrödinger Perturbation Theory

1 Rayleigh-Schrödinger Perturbation Theory 1 Rayleigh-Schrödinger Perturbation Theory All perturbative techniques depend upon a few simple assumptions. The first of these is that we have a mathematical expression for a physical quantity for which

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 Photochemistry of N-Methylformamide: Matrix Isolation and Nonadiabatic Dynamics Rachel Crespo-Otero, [a] Artur Mardyukov,

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

Wave function methods for the electronic Schrödinger equation

Wave function methods for the electronic Schrödinger equation Wave function methods for the electronic Schrödinger equation Zürich 2008 DFG Reseach Center Matheon: Mathematics in Key Technologies A7: Numerical Discretization Methods in Quantum Chemistry DFG Priority

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Quantum chemical modelling of molecular properties - parameters of EPR spectra

Quantum chemical modelling of molecular properties - parameters of EPR spectra Quantum chemical modelling of molecular properties - parameters of EPR spectra EPR ( electric paramagnetic resonance) spectra can be obtained only for open-shell systems, since they rely on transitions

More information

Feshbach-Fano-R-matrix (FFR) method

Feshbach-Fano-R-matrix (FFR) method Feshbach-Fano-R-matrix (FFR) method Přemysl Kolorenč Institute of Theoretical Physics Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic Feshbach-Fano-R-matrix (FFR) method

More information

Chemistry 334 Part 2: Computational Quantum Chemistry

Chemistry 334 Part 2: Computational Quantum Chemistry Chemistry 334 Part 2: Computational Quantum Chemistry 1. Definition Louis Scudiero, Ben Shepler and Kirk Peterson Washington State University January 2006 Computational chemistry is an area of theoretical

More information

Wave Function Optimization and VMC

Wave Function Optimization and VMC Wave Function Optimization and VMC Jeremy McMinis The University of Illinois July 26, 2012 Outline Motivation History of Wave Function Optimization Optimization in QMCPACK Multideterminant Example Motivation:

More information

Tensor network factorization and tailored coupled cluster method in quantum chemistry

Tensor network factorization and tailored coupled cluster method in quantum chemistry Tensor network factorization and tailored coupled cluster method in quantum chemistry Örs Legeza Strongly Correlated Systems Lendület Research Group Wigner Research Centre for Physics, Hungarian Academy

More information

Graphics Card Computing for Materials Modelling

Graphics Card Computing for Materials Modelling Graphics Card Computing for Materials Modelling Case study: Analytic Bond Order Potentials B. Seiser, T. Hammerschmidt, R. Drautz, D. Pettifor Funded by EPSRC within the collaborative multi-scale project

More information

Using BLIS for tensor computations in Q-Chem

Using BLIS for tensor computations in Q-Chem Using BLIS for tensor computations in Q-Chem Evgeny Epifanovsky Q-Chem BLIS Retreat, September 19 20, 2016 Q-Chem is an integrated software suite for modeling the properties of molecular systems from first

More information

v(r i r j ) = h(r i )+ 1 N

v(r i r j ) = h(r i )+ 1 N Chapter 1 Hartree-Fock Theory 1.1 Formalism For N electrons in an external potential V ext (r), the many-electron Hamiltonian can be written as follows: N H = [ p i i=1 m +V ext(r i )]+ 1 N N v(r i r j

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

Lecture 10. Transition probabilities and photoelectric cross sections

Lecture 10. Transition probabilities and photoelectric cross sections Lecture 10 Transition probabilities and photoelectric cross sections TRANSITION PROBABILITIES AND PHOTOELECTRIC CROSS SECTIONS Cross section = σ = Transition probability per unit time of exciting a single

More information

Accurate description of potential energy surfaces by ab initio methods : a review and application to ozone

Accurate description of potential energy surfaces by ab initio methods : a review and application to ozone Accurate description of potential energy surfaces by ab initio methods : a review and application to ozone Péter G. Szalay Laboratory of Theoretical Chemistry Institute of Chemistry Eötvös Loránd University,

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

CRYSTAL in parallel: replicated and distributed (MPP) data. Why parallel?

CRYSTAL in parallel: replicated and distributed (MPP) data. Why parallel? CRYSTAL in parallel: replicated and distributed (MPP) data Roberto Orlando Dipartimento di Chimica Università di Torino Via Pietro Giuria 5, 10125 Torino (Italy) roberto.orlando@unito.it 1 Why parallel?

More information

One- and two-center energy components in the atoms in molecules theory

One- and two-center energy components in the atoms in molecules theory JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 3 15 JULY 2001 One- and two-center components in the atoms in molecules theory P. Salvador, a) M. Duran, and I. Mayer b) Department of Chemistry and Institute

More information

Chapter 4 Symmetry and Chemical Bonding

Chapter 4 Symmetry and Chemical Bonding Chapter 4 Symmetry and Chemical Bonding 4.1 Orbital Symmetries and Overlap 4.2 Valence Bond Theory and Hybrid Orbitals 4.3 Localized and Delocalized Molecular Orbitals 4.4 MX n Molecules with Pi-Bonding

More information

Photodynamical simulations of cytosine: characterization of the ultra fast bi-exponential UV deactivation

Photodynamical simulations of cytosine: characterization of the ultra fast bi-exponential UV deactivation Supplementary Information Photodynamical simulations of cytosine: characterization of the ultra fast bi-exponential UV deactivation Mario Barbatti, Adélia J. A. Aquino, Jaroslaw J. Szymczak, Dana Nachtigallová

More information

Introduction to MCTDH

Introduction to MCTDH Introduction to MCTDH Hans-Dieter Meyer Theoretische Chemie Universität Heidelberg 2nd HDQD workshop, Montpellier, February 2008 1 Historical Overview The Beginning 2 MCTDH 3 Potential representations

More information

Methods of Computational Chemistry: challenges and new developments

Methods of Computational Chemistry: challenges and new developments Methods of Computational Chemistry: challenges and new developments (part of the ancillary programme at the 7 th EuCheMS Congress on Chemistry) Programme ACC Liverpool (UK) 29 August 2018, 14:00-17:30

More information

Ultrafast 2D Spectroscopy of Photosynthetic Light-Harvesting Complexes

Ultrafast 2D Spectroscopy of Photosynthetic Light-Harvesting Complexes Ultrafast 2D Spectroscopy of Photosynthetic Light-Harvesting Complexes PETAR LAMBREV PREAMBLE LASERS IN LIFE SCIENCE LASERS IN MEDICINE AND LIFE SCIENCE, SZEGED 2017 2 Preamble LASERS IN MEDICINE AND LIFE

More information

Molecular Simulation I

Molecular Simulation I Molecular Simulation I Quantum Chemistry Classical Mechanics E = Ψ H Ψ ΨΨ U = E bond +E angle +E torsion +E non-bond Jeffry D. Madura Department of Chemistry & Biochemistry Center for Computational Sciences

More information

Strassen-like algorithms for symmetric tensor contractions

Strassen-like algorithms for symmetric tensor contractions Strassen-like algorithms for symmetric tensor contractions Edgar Solomonik Theory Seminar University of Illinois at Urbana-Champaign September 18, 2017 1 / 28 Fast symmetric tensor contractions Outline

More information

Time-dependent linear-response variational Monte Carlo.

Time-dependent linear-response variational Monte Carlo. Time-dependent linear-response variational Monte Carlo. Bastien Mussard bastien.mussard@colorado.edu https://mussard.github.io/ Julien Toulouse julien.toulouse@upmc.fr Sorbonne University, Paris (web)

More information

Lecture 4: Band theory

Lecture 4: Band theory Lecture 4: Band theory Very short introduction to modern computational solid state chemistry Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonding in Reciprocal space

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 4 Molecular orbitals C.-K. Skylaris Learning outcomes Be able to manipulate expressions involving spin orbitals and molecular orbitals Be able to write down

More information

NWChem: Coupled Cluster Method (Tensor Contraction Engine)

NWChem: Coupled Cluster Method (Tensor Contraction Engine) NWChem: Coupled Cluster Method (ensor Contraction Engine) What we want to solve H Ψ = E Ψ Many Particle Systems Molecular/Atomic Physics, Quantum Chemistry (electronic Schrödinger equations) Solid State

More information

Recent Advances in the MRexpT approach

Recent Advances in the MRexpT approach Recent Advances in the MRexpT approach Michael Hanrath University of Cologne Institute for Theoretical Chemistry July 8, 008 Michael Hanrath, Univ. of Cologne, Theor. Chemistry Advances MRexpT July 8,

More information

problem very complex is applied to bonding in a molecule as a whole i.e., includes interaction of all nuclei & e s

problem very complex is applied to bonding in a molecule as a whole i.e., includes interaction of all nuclei & e s CB VII Molecular Orbital (MO) Theory Ref 11: 5 14-1 General further improvement on Lewis, VSEPR & VB theory; resulting in better info on: bond energy bond order magnetic properties of molecules...... 14-2

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Predictive Computing for Solids and Liquids

Predictive Computing for Solids and Liquids Predictive Computing for Solids and Liquids So Hirata Department of Chemistry May 214 Blue Waters Symposium 1 Schrödinger equation for a water molecule 1-particle, 3-dimensional partial differential equation

More information

Density Functional Theory (DFT)

Density Functional Theory (DFT) Density Functional Theory (DFT) An Introduction by A.I. Al-Sharif Irbid, Aug, 2 nd, 2009 Density Functional Theory Revolutionized our approach to the electronic structure of atoms, molecules and solid

More information

Lecture on First-principles Computations (14): The Linear Combination of Atomic Orbitals (LCAO) Method

Lecture on First-principles Computations (14): The Linear Combination of Atomic Orbitals (LCAO) Method Lecture on First-principles Computations (14): The Linear Combination of Atomic Orbitals (LCAO) Method 任新国 (Xinguo Ren) 中国科学技术大学量子信息重点实验室 Key Laboratory of Quantum Information, USTC Hefei, 2016.11.11 Recall:

More information

The No-Core Shell Model

The No-Core Shell Model The No-Core Shell Model New Perspectives on P-shell Nuclei - The Shell Model and Beyond Erich Ormand Petr Navratil Christian Forssen Vesselin Gueorguiev Lawrence Livermore National Laboratory Collaborators:

More information

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait CHEMISTRY 2000 Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system

More information

Orbital functionals derived from variational functionals of the Green function

Orbital functionals derived from variational functionals of the Green function Orbital functionals derived from variational functionals of the Green function Nils Erik Dahlen Robert van Leeuwen Rijksuniversiteit Groningen Ulf von Barth Lund University Outline 1. Deriving orbital

More information

Quantum Chemical and Dynamical Tools for Solving Photochemical Problems

Quantum Chemical and Dynamical Tools for Solving Photochemical Problems 2.165430 3.413060 3.889592 9 H 3.413060 2.165430 1.099610 2.165430 3.413060 10 H 3.889592 3.413060 2.165430 1.099610 2.165430 11 H 3.413060 3.889592 3.413060 2.165430 1.099610 12 H 2.165430 3.413060 3.889592

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Sep 2002

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Sep 2002 arxiv:cond-mat/0209587v1 [cond-mat.str-el] 25 Sep 2002 The 2D Mott-Hubbard transition in presence of a parallel magnetic field A. Avella and F. Mancini Dipartimento di Fisica E.R. Caianiello - Unità INFM

More information

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno Quantum Chemical Simulations and Descriptors Dr. Antonio Chana, Dr. Mosè Casalegno Classical Mechanics: basics It models real-world objects as point particles, objects with negligible size. The motion

More information

Inclusion of Machine Learning Kernel Ridge Regression. Potential Energy Surfaces in On-the-Fly Nonadiabatic

Inclusion of Machine Learning Kernel Ridge Regression. Potential Energy Surfaces in On-the-Fly Nonadiabatic Supporting information for Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics Simulation Deping Hu, Yu Xie, Xusong Li, Lingyue

More information

The Hartree-Fock approximation

The Hartree-Fock approximation Contents The Born-Oppenheimer approximation Literature Quantum mechanics 2 - Lecture 7 November 21, 2012 Contents The Born-Oppenheimer approximation Literature 1 The Born-Oppenheimer approximation 2 3

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

Electronic Structure and Geometry Relaxation at Excited State

Electronic Structure and Geometry Relaxation at Excited State Electronic Structure and Geometry Relaxation at Excited State Speaker: Chun I Wang ( 王俊壹 ) 2016.07.14 Structure-Performance Relationship Processing schemes Solvent quality Thermal annealing Blend composition

More information

Double Pancake Bonds: Pushing the Limits of Strong π π Stacking Interactions

Double Pancake Bonds: Pushing the Limits of Strong π π Stacking Interactions pubs.acs.org/jacs Terms of Use CC-BY Double Pancake Bonds: Pushing the Limits of Strong π π Stacking Interactions Zhong-hua Cui, Hans Lischka,, Habtamu Z. Beneberu,, and Miklos Kertesz*, Department of

More information

Simulation Methods II

Simulation Methods II Simulation Methods II Maria Fyta Institute for Computational Physics Universität Stuttgart Summer Term 2018 SM II - contents First principles methods Hartree-Fock and beyond Density-funtional-theory Ab

More information