FERROMAGNETIC RESONANCE MEASUREMENTS AND SIMULATIONS ON PERIODIC HOLE AND DISC ARRAYS. MISM Conference August, 2011

Size: px
Start display at page:

Download "FERROMAGNETIC RESONANCE MEASUREMENTS AND SIMULATIONS ON PERIODIC HOLE AND DISC ARRAYS. MISM Conference August, 2011"

Transcription

1 FERROMAGNETIC RESONANCE MEASUREMENTS AND SIMULATIONS ON PERIODIC HOLE AND DISC ARRAYS J. Skelenar, S. Chernyashevskyy, J. B. Ketterson; Northwestern University V. Bhat, L. Delong; University of Kentucky K. Rivkin; Seagate Technologies O. Heinonen; Argonne National Laboratory C-C. Tsai; Chang Jung Christian University, Taiwan MISM Conference August, 2011

2 Simulation: the discrete dipole approximation Replace the continuum of some object by an array of dipoles H 0 H 1 microwave field external field each dipole represents a cluster of atomic dipoles

3 Landau-Lifshitz equation Equation of motion for i th dipole: dm i dt Contributing fields: (torque) =!"m i # h i! $" m M i # m i # h i s h i = h i external +hi internal (damping) ( ) h i internal = hi exchange + hi dipole + hi anisotropy h i exchange = J! m i NN h i dipole = ) j!i # 3r ij (m j! r ij ) % 5 $ % r ij " m j r ij 3 & ( '( h i anisotropy = K(m i! Ĥ A ) M s 2 Ĥ A

4 Finding the equilibrium magnetization: Magnetostatics Method 1: i) Start with dipoles either along the external field or arbitrary axes; ii) calculate the total field acting on each dipole; iii) move the orientation of each dipole to align with the local field; iv) continue until the orientations stabilize. Method 2: i) Start with arbitrarily oriented dipoles; ii) integrate the Landau-Lifshitz equation with damping until system relaxes to an equilibrium. Potential problem: metastable states.

5 Example: the static magnetization of a Py disk in a vortex state: z - component Magnetization points out of plane in the vortex center

6 Equilibrium magnetization of Py disks and rings: x-component applied field H 0 700nm

7 Resonant Modes of Magnetic Nanostructures in the Discrete Implementations: Dipole Approximation (DDA) Codes available free at: Direct numerical integration in time of DDA (e.g., the NIST OOMMF code) Advantage: works for nonlinear cases. Disadvantage; very slow. Eignvalue method: fast; non - linear response limited to perturbation theory. Alternative: Finite element methods.

8 The eigenvalue method Consider a system of N spins denoted by i with magnetization m i each obeying the Landau-Lifshitz equation: dm i dt =!" m i # h i! $ " m M i # ( m i # h i ) s We linearize this equation by writing: m i = m i (0) + m i (1) (t) h i = h i (0) + h i (1) (t) + h i (rf ) (t) For the case h i (rf) = 0 this yields a first order homogeneous linear differential equation! "1 dm (1) i dt (1) (0) (0) (1) $ (0) % (1) (0) (0) (1) + m i # hi +mi # hi + m M i # mi # hi + mi #hi s & ' Assume m i (1) (t)! e "i#t ; dm i (1) dt = "i#m i (1) ( ) * = 0 Task: find the N eigenvalues, ω (j), and eigenvectors, V i (j), of this equation.

9 Eigenmodes m i (0) = equilibrium (or initial) orientation m i (1) = dynamic shift in orientation m i (0 z m i (1) (t) m i (t) y m i (1) (t) = Vi ( j) e!i" ( j) t + Vi ( j)* e i" ( j)* t x V i ( j) = j th eigenvector! ( j) = j th eigenfrequency

10 Driven inhomogeneous equation dm i (1) dt +! # (0) (0) (1) (0) (0) (1) m i " hi + mi " hi + mi " hi $% +m i (1) " hi (1) + mi (0) " hi (rf ) + mi (1) " hi (rf ) & '( + (damping) = 0 Various terms: (0) (0) m i! hi (0) (rf ) m i! hi (1) (1) m i! hi (1) (rf ) m i!h i torque due to non-equilibrium initial configuration excitation due to the external r.f. field non-linear term mode mixing, SHG, etc. non-linear term second harmonic generation etc.

11 General solution to linear case m i (1) (t) = (transient)+(steady state) Formally we have a set of coupled 1 st order ODE's for which has the solution (1) ( j) ( m i (t) = Vi e!i"( j) t c j + e!i"( j) t e i"( j) t ( j)% + * ' $ V i# L &g i # (t)dt-; )* i#,- here g i (t) =!. ( (0) (0) (0) (rf ) m i / hi + mi / hi (t) + )*,- and V ( j) i# L = left eigenvector Energy absorbed from a sinusoidal r.f. field follows directly from eigenvalues AND eigenvectors as: * de dt =!" Re,, # i, $ +, % V ( j)& (0) (rf ) il ' mi ( hi i,j! #! $ j ( ) ( ) j + i)! $$ ( ) ( j) V i$ ' h $ i (rf )& - / /. / For details see Phys. Rev. B 75, (2007)

12 Application: absorption spectra for in-plane magnetic field

13 Excited Modes

14 Extension to Periodic Systems Apply Bloch s theorem ( j) ( j) V i! Vkn (i)e ik"r j = j th eigenvector/mode i = individual spin in unit cell k = Bloch wavevector n = band index (total of N) R = n a a + n b b = real - space lattice vectors Complication: requires dipole lattice sums for each k-vector Dynamic magnetic response of infinite arrays of ferromagnetic particles Phys. Rev. B 75,

15 Summary of Simulation Techniques Discussed 1. Mode spectra of arbitrary shaped object (eigenvalue method) 2. Absorption spectra of arbitrary shaped object (eigenvalue method). 3. Generalization to periodic arrays Topics not discussed (use RK-integration of LL equation) High power FMR spectra Suppressing the Suhl instability Dynamic magnetization reversal Spin valves and oscillators

16 Applications 1. FMR. Computes resonant modes and absorption. 2. Spin torque memory. Magnetization reversal is dominated by a few modes. Transforming L-L equation from coordinate to eigenvalue space results in a simple linear equation with N variables and no stiffness, unlike NlogN operations needed in coordinate space. 3. Magnetic reader thermal noise. Thermal excitation of resonant modes results in GHz frequency noise in magnetic readers. Neil Smith (Hitachi), JMMM 321, 6 (2009).

17 Read Head Modeling Free layer in GMR, TMR element changes its magnetization as a linear response to external fields. Ideal application for the method small object, with rich dynamics dominated by a few modes. Static configuration Modes responsible for the noise:

18 Ferro-magnetic resonance measurements on magnetic nanostructures: Dot and anti-dot arrays.

19 Experimental set up Hewlett - Packard!!!!Synthesizer 10MHz - 20GHz Microwave!Detector Lock - in amplifier Magnet Coils & Pole Pieces!!!Field Modulation!!!!Coils!Power Amplifier!!Bipolar Power Supply!!Computer : Field sweeping, data aquisition, trace averaging Meanderline!!!!sample!!!!!!!cell

20 The Sample Holder Rigid Coax Hand wound broadband meanderline is pressed up against the surface of the sample. Microwave generator supplies frequencies from 10 MHz to 20 GHz. Wire Field lines Meanderline Meanderline creates microwave magneac fields in- plane and perpendicular to sample.

21 An e - beam patterned square hole array

22 Broadband FMR in square antidot arrays: a snapshot

23 Resonances observed with magnetic field aligned along the principal axis - Resonances occurring at the same field regardless of sweep direcaon suggest we are in a saturated state. - Split resonance modes observed before by Yu, Pechan, and Mankey.

24 Resonances observed with magnetic field aligned in 45 o position - The two strongest lines have merged together. - There are resonances len in the wake of the high field resonance. One of them doesn t move and is likely the uniform FMR mode.

25 Simulated magneazaaon phase profile for the mode propagaang parallel to the field with B along a principal axis (the high field resonance) SimulaAon: the different colors depict the variaaon of phase of the in- plane. MagneAzaAon. (Calculated via FFT spaaal and temporal integraaon of LL equaaon in DDA)

26 Simulated magnetization phase profile for the mode propagaang perpendicular to the field with the B along a principle axis (the low field resonance)

27 Simulated magnetization phase profile: B at 45 o where the two resonances merge

28 Angular Dependence: RK simulation vs. experiment (9.75 GHz)

29 Interpretation 1. The microwave field is uniform on the scale of the array 2. The array sets up dynamic fields with the periodicity of the lattice 3. These fields excite spin-waves having wave vectors equal to those of the reciprocal lattice. 4. All modes are at k = 0 when folded to the first Brillouin zone. 5. The allowed group symmetries correspond to Γ (singly degenerate; and E (two fold degenerate) represntations. 6. Γ - modes are four fold symmetric; E - modes are two fold symmetric

30 Schematic of zone-folded coupling to spin waves!(k)! d 2! d k

31 Damon Eshbach Modes! H = H 4"M ;!!!!!! = # 4"$M

32 Combining Damon-Eshbach with exchange for Permalloy Films Kreisel et al derive an approximate analytic formula for the dispersion of spin waves in YIG propagating in-plane with for varying propagation angles relative to an inplane field. The model incorporates both magnetostatic and exchange effects. The approximate expression for the dispersion relation works best for propagation angles less than 45 degrees away from applied field.

33 - Based on simulaaons showing phase variaaons of spin waves in (1,0) and (0,1) direcaons with periodicity of the la[ce the two strongest lines were tracked and fit to the analyac model using a wavevector with magnitude corresponding to the la[ce constant. - We are not in exchange limit so exchange constant was set to zero. Angular Dependence for Strongest Resonances to Analytic Model Lattice Constant Saturation Magnetiza -tion Effective Thickness (1,0) Spin Waves (0,1) Spin Waves 1008 nm 948nm 780 emu 780 emu 22 nm 22nm

34 Work in Progress: Overview of all Observed Resonances! - mode E - mode

35 Graduate students who do the work Joe Sklenar Vinayak Bhat

36 Thank you for your attention

37 Micromagnetic simulations show, for the largest absorption lines, periodic variation in the phase of the magnetization suggesting spin waves are excited. The RF field produced by the meander line is essentially uniform over many lattice constants. This uniform r.f. field is diffracted by antidot array causing an effective excitation field with spatial variations having the periodicities of the reciprocal lattice. Theory of spin waves propagating in-plane with varying inplane angle designed for YIG seems to agree. The theory uses a Heisenberg like Hamiltonian that incorporates both exchange and dipolar effects.

38 How Should we Characterize These Absorption Lines? Micromagnetic simulations show, for the largest absorption lines, periodic variation in the phase of the magnetization suggesting spin waves. The RF field produced by the meander line is essentially uniform over many lattice constants. This uniform field is diffracted by antidot array causing an effective excitation field with spatial variations having the different periodicities of the lattice. Theory of spin waves propagating inplane with varying in-plane angle designed for YIG seems to agree. The theory uses a Heisenberg like Hamiltonian that incorporates both exchange and dipolar effects. R. W. Damon, J. R. Esbach (1960); B.A. Kalinikos, A.N. Slavin (1986); A. Kreisel, F. Sauli, L. Bartosch, and P. Kopietz (2009)

39 Outline Brief description of measurement apparatus. Short overview of broadband resonances in a 1 micron permalloy antidot array with 500nm antidots. Experimental results of angular dependence of resonances at 9.75 GHz. Results of simulation leading into a description of spin wave modes being the most dominantly activated mode, with wavelengths related to the underlying antidot lattice. Results of applying a microscopic analytic theory of spin wave modes in YIG to the antidot resonances.

Unidirectional spin-wave heat conveyer

Unidirectional spin-wave heat conveyer Unidirectional spin-wave heat conveyer Figure S1: Calculation of spin-wave modes and their dispersion relations excited in a 0.4 mm-thick and 4 mm-diameter Y 3 Fe 5 O 12 disk. a, Experimentally obtained

More information

Report submitted to Prof. P. Shipman for Math 540, Fall 2009

Report submitted to Prof. P. Shipman for Math 540, Fall 2009 Dynamics at the Horsetooth Volume 1, 009. Three-Wave Interactions of Spin Waves Aaron Hagerstrom Department of Physics Colorado State University aaronhag@rams.colostate.edu Report submitted to Prof. P.

More information

Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films

Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 8 15 APRIL 1998 Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films M. J. Hurben and C. E. Patton

More information

V High frequency magnetic measurements

V High frequency magnetic measurements V High frequency magnetic measurements Rémy Lassalle-Balier What we are doing and why Ferromagnetic resonance CHIMP memory Time-resolved magneto-optic Kerr effect NISE Task 8 New materials Spin dynamics

More information

Non-equilibrium time evolution of bosons from the functional renormalization group

Non-equilibrium time evolution of bosons from the functional renormalization group March 14, 2013, Condensed Matter Journal Club University of Florida at Gainesville Non-equilibrium time evolution of bosons from the functional renormalization group Peter Kopietz, Universität Frankfurt

More information

Ferromagnetic resonance in Yttrium Iron Garnet

Ferromagnetic resonance in Yttrium Iron Garnet Author:. Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Joan Manel Hernàndez Ferràs Abstract: his work presents a study of the ferromagnetic resonance of an

More information

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Benjamin Krüger 17.11.2006 1 Model The Micromagnetic Model Current Induced Magnetisation Dynamics Phenomenological Description Experimental

More information

Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe

Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe 760 PIERS Proceedings, Kuala Lumpur, MALAYSIA, March 27 30, 2012 Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe G. Venkat 1, A. Prabhakar 1,

More information

Nanomagnetism a perspective from the dynamic side

Nanomagnetism a perspective from the dynamic side Nanomagnetism a perspective from the dynamic side Burkard Hillebrands Fachbereich Physik and Research Center OPTIMAS Technische Universität Kaiserslautern Kaiserslautern, Germany TNT 2009 Nanotechnology

More information

9. Spin Torque Majority Gate

9. Spin Torque Majority Gate eyond MOS computing 9. Spin Torque Majority Gate Dmitri Nikonov Thanks to George ourianoff Dmitri.e.nikonov@intel.com 1 Outline Spin majority gate with in-pane magnetization Spin majority gate with perpendicular

More information

Angle dependence of the ferromagnetic resonance linewidth in easy-axis and easy-plane single crystal hexagonal ferrite disks

Angle dependence of the ferromagnetic resonance linewidth in easy-axis and easy-plane single crystal hexagonal ferrite disks Angle dependence of the ferromagnetic resonance linewidth in easy-axis and easy-plane single crystal hexagonal ferrite disks M. J. Hurben, a) D. R. Franklin, b) and C. E. Patton Department of Physics,

More information

Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks.

Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks. Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks. G. de Loubens, V. V. Naletov, and O. Klein arxiv:cond-mat/0606245v3 [cond-mat.mtrl-sci]

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Bloch point formation during skyrmion annihilation. Skyrmion number in layers with different z-coordinate during the annihilation of a skyrmion. As the skyrmion

More information

Micromechanical Instruments for Ferromagnetic Measurements

Micromechanical Instruments for Ferromagnetic Measurements Micromechanical Instruments for Ferromagnetic Measurements John Moreland NIST 325 Broadway, Boulder, CO, 80305 Phone:+1-303-497-3641 FAX: +1-303-497-3725 E-mail: moreland@boulder.nist.gov Presented at

More information

Eigenfrequencies of vortex state excitations in magnetic submicron-size disks

Eigenfrequencies of vortex state excitations in magnetic submicron-size disks Eigenfrequencies of vortex state excitations in magnetic submicron-size disks K. Yu. Guslienko 1, *, B. A. Ivanov, V. Novosad 3, 4, Y. Otani 3, 5, H. Shima 3, and K. Fukamichi 3 1 School of Physics, Korea

More information

Mesoscopic quantized properties of magnetic-dipolar-mode oscillations in disk ferromagnetic particles

Mesoscopic quantized properties of magnetic-dipolar-mode oscillations in disk ferromagnetic particles Mesoscopic uantized properties of magnetic-dipolar-mode oscillations in disk ferromagnetic particles E.O. Kamenetskii, R. Shavit, and M. Sigalov Department of Electrical and Computer Engineering, Ben Gurion

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Ferromagnetic resonance in submicron permalloy stripes

Ferromagnetic resonance in submicron permalloy stripes Ferromagnetic resonance in submicron permalloy stripes E. V. Skorohodov* 1,2, R. V. Gorev 1, R. R. Yakubov 2, E. S. Demidov 2, Yu. V. Khivintsev 3, Yu. A. Filimonov 3, and V. L. Mironov 1,2* 1 Institute

More information

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

Shuichi Murakami Department of Physics, Tokyo Institute of Technology EQPCM, ISSP, U. Tokyo June, 2013 Berry curvature and topological phases for magnons Shuichi Murakami Department of Physics, Tokyo Institute of Technology Collaborators: R. Shindou (Tokyo Tech. Peking Univ.)

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Supporting Information: Topological Magnon Modes. in Patterned Ferrimagnetic Insulator Thin Films

Supporting Information: Topological Magnon Modes. in Patterned Ferrimagnetic Insulator Thin Films Supporting Information: Topological Magnon Modes in Patterned Ferrimagnetic Insulator Thin Films Yun-Mei Li,, Jiang Xiao,, and Kai Chang,,, SKLSM, Institute of Semiconductors, Chinese Academy of Sciences,

More information

Magnetization Dynamics of Confined Ferromagnetic Systems

Magnetization Dynamics of Confined Ferromagnetic Systems Magnetization Dynamics of Confined Ferromagnetic Systems Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät Physik der Universität Regensburg vorgelegt von

More information

Robust magnon-photon coupling in a planar-geometry hybrid of. inverted split-ring resonator and YIG film

Robust magnon-photon coupling in a planar-geometry hybrid of. inverted split-ring resonator and YIG film SUPPLEMENTARY MATERIALS Robust magnon-photon coupling in a planar-geometry hybrid of inverted split-ring resonator and YIG film Bianath Bhoi, Bosung Kim, Junhoe Kim, Young-Jun Cho and Sang-Koog Kim a)

More information

Dynamic response of an artificial square spin ice

Dynamic response of an artificial square spin ice Dynamic response of an artificial square spin ice M. B. Jungfleisch,1, W. Zhang,1 E. Iacocca,2, 3 J. Sklenar,1, 4 J. Ding,1 W. Jiang,1 S. Zhang,1 J. E. Pearson,1 V. Novosad,1 J. B. Ketterson,4 O. Heinonen,1,

More information

Magnetic Force Microscopy practical

Magnetic Force Microscopy practical European School on Magnetism 2015 From basic magnetic concepts to spin currents Magnetic Force Microscopy practical Organized by: Yann Perrin, Michal Staňo and Olivier Fruchart Institut NEEL (CNRS & Univ.

More information

High-frequency measurements of spin-valve films and devices invited

High-frequency measurements of spin-valve films and devices invited JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 003 High-frequency measurements of spin-valve films and devices invited Shehzaad Kaka, John P. Nibarger, and Stephen E. Russek a) National Institute

More information

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems Theory Seminar Uni Marburg 11 November, 2010 Bose-Einstein Condensation and correlations in magnon systems Peter Kopietz, Universität Frankfurt 1.) Bose-Einstein condensation 2.) Interacting magnons in

More information

Spin Vortex Resonance in Non-planar Ferromagnetic Dots

Spin Vortex Resonance in Non-planar Ferromagnetic Dots Spin Vortex Resonance in Non-planar Ferromagnetic Dots Junjia Ding, Pavel Lapa, Shikha Jain, Trupti Khaire, Sergi Lendinez, Wei Zhang, Matthias B. Jungfleisch, Christian M. Posada, Volodymyr G. Yefremenko,

More information

Spin wave assisted current induced magnetic. domain wall motion

Spin wave assisted current induced magnetic. domain wall motion Spin wave assisted current induced magnetic domain wall motion Mahdi Jamali, 1 Hyunsoo Yang, 1,a) and Kyung-Jin Lee 2 1 Department of Electrical and Computer Engineering, National University of Singapore,

More information

Dynamic properties of interacting bosons and magnons

Dynamic properties of interacting bosons and magnons Ultracold Quantum Gases beyond Equilibrium Natal, Brasil, September 27 October 1, 2010 Dynamic properties of interacting bosons and magnons Peter Kopietz, Universität Frankfurt collaboration: A. Kreisel,

More information

R. Ramesh Department of Materials Engineering, University of Maryland at College Park, College Park, Maryland 20742

R. Ramesh Department of Materials Engineering, University of Maryland at College Park, College Park, Maryland 20742 JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 11 1 JUNE 1999 Angle dependence of the ferromagnetic resonance linewidth and two magnon losses in pulsed laser deposited films of yttrium iron garnet, MnZn

More information

Light and Matter. Thursday, 8/31/2006 Physics 158 Peter Beyersdorf. Document info

Light and Matter. Thursday, 8/31/2006 Physics 158 Peter Beyersdorf. Document info Light and Matter Thursday, 8/31/2006 Physics 158 Peter Beyersdorf Document info 3. 1 1 Class Outline Common materials used in optics Index of refraction absorption Classical model of light absorption Light

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

PROTEIN NMR SPECTROSCOPY

PROTEIN NMR SPECTROSCOPY List of Figures List of Tables xvii xxvi 1. NMR SPECTROSCOPY 1 1.1 Introduction to NMR Spectroscopy 2 1.2 One Dimensional NMR Spectroscopy 3 1.2.1 Classical Description of NMR Spectroscopy 3 1.2.2 Nuclear

More information

Microwave Assisted Magnetic Recording

Microwave Assisted Magnetic Recording Microwave Assisted Magnetic Recording, Xiaochun Zhu, and Yuhui Tang Data Storage Systems Center Dept. of Electrical and Computer Engineering Carnegie Mellon University IDEMA Dec. 6, 27 Outline Microwave

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Supplementary Notes of spin-wave propagation in cubic anisotropy materials

Supplementary Notes of spin-wave propagation in cubic anisotropy materials Supplementary Notes of spin-wave propagation in cubic anisotropy materials Koji Sekiguchi, 1, 2, Seo-Won Lee, 3, Hiroaki Sukegawa, 4 Nana Sato, 1 Se-Hyeok Oh, 5 R. D. McMichael, 6 and Kyung-Jin Lee3, 5,

More information

Non-linear dynamics Yannis PAPAPHILIPPOU CERN

Non-linear dynamics Yannis PAPAPHILIPPOU CERN Non-linear dynamics Yannis PAPAPHILIPPOU CERN United States Particle Accelerator School, University of California - Santa-Cruz, Santa Rosa, CA 14 th 18 th January 2008 1 Summary Driven oscillators and

More information

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film Keoki Seu, a Hailong Huang, a Anne Reilly, a Li Gan, b William Egelhoff, Jr. b a College of William and Mary, Williamsburg,

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films

Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii Moriya interaction in metal films Hans T. Nembach, Justin M. Shaw, Mathias Weiler*, Emilie Jué and Thomas J. Silva Electromagnetics

More information

Current-induced Domain Wall Dynamics

Current-induced Domain Wall Dynamics Current-induced Domain Wall Dynamics M. Kläui, Fachbereich Physik & Zukunftskolleg Universität Konstanz Konstanz, Germany Starting Independent Researcher Grant Motivation: Physics & Applications Head-to-head

More information

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Siying Liu, Hongyi Zhang, Hao Yu * Department of Mathematical Sciences, Xi an Jiaotong-Liverpool University,

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Micromagnetic Modeling

Micromagnetic Modeling Micromagnetic Modeling P. B. Visscher Xuebing Feng, D. M. Apalkov, and Arkajyoti Misra Department of Physics and Astronomy Supported by NSF grants # ECS-008534 and DMR-0213985, and DOE grant # DE-FG02-98ER45714

More information

Gianluca Gubbiotti. CNR-Istituto Officina dei Materiali (IOM) -Unità di Perugia. Italian School on Magnetism, Pavia 8 th February 2011

Gianluca Gubbiotti. CNR-Istituto Officina dei Materiali (IOM) -Unità di Perugia. Italian School on Magnetism, Pavia 8 th February 2011 Brillouin Light Scattering Spectroscopy Gianluca Gubbiotti CNR-Istituto Officina dei Materiali (IOM) -Unità di Perugia Italian School on Magnetism, Pavia 8 th February 2011 gubbiotti@fisica.unipg.it http://ghost.fisica.unipg.it

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots Transition from single-domain to vortex state in soft magnetic cylindrical nanodots W. Scholz 1,2, K. Yu. Guslienko 2, V. Novosad 3, D. Suess 1, T. Schrefl 1, R. W. Chantrell 2 and J. Fidler 1 1 Vienna

More information

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance A Hands on Introduction to NMR 22.920 Lecture #1 Nuclear Spin and Magnetic Resonance Introduction - The aim of this short course is to present a physical picture of the basic principles of Nuclear Magnetic

More information

Correlation spectroscopy

Correlation spectroscopy 1 TWO-DIMENSIONAL SPECTROSCOPY Correlation spectroscopy What is two-dimensional spectroscopy? This is a method that will describe the underlying correlations between two spectral features. Our examination

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves

Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves I. N. Krivorotov Department of Physics and Astronomy, University of California, Irvine, California 92697-4575,

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 23 Jan 2002

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 23 Jan 2002 To appear in J. Appl. Phys. (manuscript CE-09) Mechanical detection of FMR spectrum in a normally magnetized YIG disk arxiv:cond-mat/0201409v1 [cond-mat.mtrl-sci] 23 Jan 2002 V. Charbois, 1 V. V. Naletov,

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Chapter 5. Resonator design. 1 Description of the resonator and the detection scheme

Chapter 5. Resonator design. 1 Description of the resonator and the detection scheme 116 Chapter 5 Resonator design 1 Description of the resonator and the detection scheme Figure 5.1 shows a resonator that we propose to use for NMR study of nanoscale samples. The design has a spin sample

More information

ROTATIONAL STABILITY OF A CHARGED DIELEC- TRIC RIGID BODY IN A UNIFORM MAGNETIC FIELD

ROTATIONAL STABILITY OF A CHARGED DIELEC- TRIC RIGID BODY IN A UNIFORM MAGNETIC FIELD Progress In Electromagnetics Research Letters, Vol. 11, 103 11, 009 ROTATIONAL STABILITY OF A CHARGED DIELEC- TRIC RIGID BODY IN A UNIFORM MAGNETIC FIELD G.-Q. Zhou Department of Physics Wuhan University

More information

Preparation, Structural Characterization, and Dynamic Properties Investigation of Permalloy Antidot Arrays

Preparation, Structural Characterization, and Dynamic Properties Investigation of Permalloy Antidot Arrays University of Montana ScholarWorks at University of Montana Chemistry and Biochemistry Faculty Publications Chemistry and Biochemistry 5-12-2005 Preparation, Structural Characterization, and Dynamic Properties

More information

Introduction to Ferromagnetism. Depto. Física de Materiales, Facultad de Química, Universidad del País Vasco, San Sebastián, Spain

Introduction to Ferromagnetism. Depto. Física de Materiales, Facultad de Química, Universidad del País Vasco, San Sebastián, Spain Introduction to Ferromagnetism and Patterned Magnetic Nanostructures Konstantin Yu. Guslienko Depto. Física de Materiales, Facultad de Química, Universidad id d del País Vasco, San Sebastián, Spain Outline

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator Time Dependent Wave Equation Quantum Mechanical Description Hamiltonian Static/Time-dependent Time-dependent Energy operator H 0 + H t Ψ t = ih Ψ t t The Hamiltonian and wavefunction are time-dependent

More information

Properties and dynamics of spin waves in one and two dimensional magnonic crystals

Properties and dynamics of spin waves in one and two dimensional magnonic crystals University of Iowa Iowa Research Online Theses and Dissertations Summer 16 Properties and dynamics of spin waves in one and two dimensional magnonic crystals Glade Robert Sietsema University of Iowa Copyright

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

Principles of Nuclear Magnetic Resonance in One and Two Dimensions Principles of Nuclear Magnetic Resonance in One and Two Dimensions Richard R. Ernst, Geoffrey Bodenhausen, and Alexander Wokaun Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

The Quantum Theory of Magnetism

The Quantum Theory of Magnetism The Quantum Theory of Magnetism Norberto Mains McGill University, Canada I: 0 World Scientific Singapore NewJersey London Hong Kong Contents 1 Paramagnetism 1.1 Introduction 1.2 Quantum mechanics of atoms

More information

Spin waves in an inhomogeneously magnetized stripe

Spin waves in an inhomogeneously magnetized stripe Spin waves in an inhomogeneously magnetized stripe C. Bayer, 1,2 J. P. Park, 1 H. Wang, 1 M. Yan, 1 C. E. Campbell, 1 and P. A. Crowell 1, * 1 School of Physics and Astronomy, University of Minnesota,

More information

Simulation results for magnetized plasmas

Simulation results for magnetized plasmas Chapter 4 Simulation results for magnetized plasmas In this chapter, we consider the dust charge fluctuation mode and lower hybrid wave damping in a magnetized plasma. Also, we consider plasma instabilities

More information

Low Field, Current-Hysteretic Oscillations in Spin Transfer Nanocontacts. M. R. Pufall, W. H. Rippard, M. Schneider, S. E. Russek

Low Field, Current-Hysteretic Oscillations in Spin Transfer Nanocontacts. M. R. Pufall, W. H. Rippard, M. Schneider, S. E. Russek Low Field, Current-Hysteretic Oscillations in Spin Transfer Nanocontacts M. R. Pufall, W. H. Rippard, M. Schneider, S. E. Russek Electromagnetics Division, National Institute of Standards and Technology,

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Atomic spectra of one and two-electron systems

Atomic spectra of one and two-electron systems Atomic spectra of one and two-electron systems Key Words Term symbol, Selection rule, Fine structure, Atomic spectra, Sodium D-line, Hund s rules, Russell-Saunders coupling, j-j coupling, Spin-orbit coupling,

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

University of Antwerp Condensed Matter Theory Group Vortices in superconductors IV. Hybrid systems

University of Antwerp Condensed Matter Theory Group Vortices in superconductors IV. Hybrid systems Vortices in superconductors IV. Hybrid systems François Peeters Magnetic impurities T c decreases with increasing impurity density Origin: exchange interaction between electron and impurity: Γ(r i -r e

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEENTARY INFORATION DOI: 1.138/NAT3459 agnetic nano-oscillator driven by pure spin current Vladislav E. Demidov 1*, Sergei Urazhdin, Henning Ulrichs 1, Vasyl Tiberevich 3, Andrei Slavin 3, Dietmar

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

Overview - Previous lecture 1/2

Overview - Previous lecture 1/2 Overview - Previous lecture 1/2 Derived the wave equation with solutions of the form We found that the polarization of the material affects wave propagation, and found the dispersion relation ω(k) with

More information

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields?

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields? Advance Organizer: Chapter 1: Introduction to single magnetic moments: Magnetic dipoles Spin and orbital angular momenta Spin-orbit coupling Magnetic susceptibility, Magnetic dipoles in a magnetic field:

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

Nonreciprocal properties of GHz frequency surface spin waves in nanopatterned ferromagnetic films

Nonreciprocal properties of GHz frequency surface spin waves in nanopatterned ferromagnetic films Nonreciprocal properties of GHz frequency surface spin waves in nanopatterned ferromagnetic films Paweł Gruszecki, Justyna Rychły, Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85,

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY -LIGO- CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note LIGO-T980005-01- D 10/28/97 Non-Linear Response of Test

More information

First-Principles Calculation of Exchange Interactions

First-Principles Calculation of Exchange Interactions Chapter 2 First-Principles Calculation of Exchange Interactions Before introducing the first-principles methods for the calculation of exchange interactions in magnetic systems we will briefly review two

More information

Magnetisation dynamics in exchange coupled spring systems with perpendicular anisotropy.

Magnetisation dynamics in exchange coupled spring systems with perpendicular anisotropy. arxiv:0911.4137 Magnetisation dynamics in exchange coupled spring systems with perpendicular anisotropy. Pedro M. S. Monteiro, D. S. Schmool Departamento de Física and IFIMUP, Universidade do Porto, Rua

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

k m Figure 1: Long problem L2 2 + L2 3 I 1

k m Figure 1: Long problem L2 2 + L2 3 I 1 LONG PROBLEMS 1: Consider the system shown in Figure 1: Two objects, of mass m 1 and m, can be treated as point-like. Each of them is suspended from the ceiling by a wire of negligible mass, and of length

More information

Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctions

Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctions Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctions Dresden 011 Microwave billiards and quantum billiards Microwave billiards as a scattering system Eigenvalues and eigenfunctions

More information

Observation of indirect parallel pumping of magneto-elastic modes in layered YIG/GGG structures

Observation of indirect parallel pumping of magneto-elastic modes in layered YIG/GGG structures Solid State Communications 141 (2007) 33 37 www.elsevier.com/locate/ssc Observation of indirect parallel pumping of magneto-elastic modes in layered YIG/GGG structures C.L. Ordóñez-Romero a,, O.V. Kolokoltsev

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

NONLINEAR OPTICS. Ch. 1 INTRODUCTION TO NONLINEAR OPTICS

NONLINEAR OPTICS. Ch. 1 INTRODUCTION TO NONLINEAR OPTICS NONLINEAR OPTICS Ch. 1 INTRODUCTION TO NONLINEAR OPTICS Nonlinear regime - Order of magnitude Origin of the nonlinearities - Induced Dipole and Polarization - Description of the classical anharmonic oscillator

More information