On Exact Kerr-Schild Type Vacuum Solutions to Salam's Two-Tensor Theory of Gravity*

Size: px
Start display at page:

Download "On Exact Kerr-Schild Type Vacuum Solutions to Salam's Two-Tensor Theory of Gravity*"

Transcription

1 Commun. math. Phys. 6, (197) by Springer-Verlag 197 On Exact Kerr-Schild Type Vacuum Solutions to Salam's Two-Tensor Theory o Gravity* R. MANSOURI and H. K. URBANTKE Institut ur Theoretische Physik der Universitat, Wien Received January 17, 197 Abstract. A Kerr-Schild type ansatz or the / and g tensor ields leads to a tractable orm o the ield equations o Salam's two-tensor theory o gravity in vacuo. While the general solution contains the Schwarzschild and Kerr metrics in the pure Einstein vacuum case, we can show in the g case that all "non-trivial" (/φ#) solutions are restricted to have the orm o "plane-ronted waves". I. Introduction and Conclusion A two-tensor theory has been set up by Salam etal. [1] to describe the gravitational interactions o leptons and hadrons. Its ield equations in regions ree rom matter are (1.1) where μ g + κ» ) J * V (1.) J 9 gp a π & μ * = K} 1 \det μv \*[jg μq σ g στ Γ* - g μρ ρ *(g κλ λκ - 3)], G μv (), G μv (g) are the Einstein tensors constructed rom the symmetric nonsingular tensor ields / μv,g μv when considered as "metrics". m>0 is the mass o the /-ield which in regions containing matter would interact directly only with hadrons, while g would interact directly only with * Supported by,,fonds zur Ford. d. wiss. Forsch. in OsterrΛ Nr. 155.

2 30 R. Mansouri and H. K. Urbantke: leptons. Thus the gravitational interaction between leptons and hadrons goes via the "mixing terms" on the right hand side o Eqs. (1.1). Several attempts have been reported [, 3] to ind exact nontrivial solutions (i.e. / μv + g μv ) o the vacuum equations (1.1), which are rather complicated. One typical approach is to impose symmetry conditions to simpliy (1.1), but so ar there was not too much success. Another approach consists in imposing algebraic assumptions on,g. As an example o this approach, we consider the case where / and g are o the Kerr-Schild [4, 5] orm, i.e. g = η + %k k where η is the lat Minkowski metric and k is a ield o Minkowski null vectors (η μv k μ = O). The reason or doing so is that on the one hand the class o Kerr-Schild metrics in general relativity contains several interesting metrics such as the plane-ronted waves [6, 7], the Vaidya metric [8,9] and the Kerr amily [10, 5], and can be explicitly determined in the Einstein vacuum case [4, 5]. On the other hand, the drastic simpliication o (1.1, ) when (1.3) is inserted allows a complete treatment in the / g case. The result, however, is rather poor when compared with the corresponding pure Einstein vacuum case. Namely, Eqs. (1.1) permit only Kerr-Schild solutions which are plane-ronted [7] waves, i.e. ields containing a geodesic null congruence with vanishing shear, twist and expansion and with a Weyl tensor o the algebraic type N [11,1]. Two cases are to be distinguished. The irst is characterized by vanishing rotation [7,1] o the congruence, i.e. parallel rays ("pp waves"), and has been described earlier [3]. In the second case the rotation does not vanish. Choosing the coordinates in Kundt's [7] canonical way, the solution can be written where μv dx μ dx v = ds + x^du, ds Q = Idudυ + \dz - υx~ x du\ - 3v x~ du (1.5) is the lat metric in some noninertial coordinates (z = x + iy\ <& = &(u,x,y) and #"(M, X, y) are arbitrary unctions o u whose x, y-dependence is given by (A = d /dx + d /dy ) Δ.F=m (& r -&), Δ & = -(κ g /κ})m (&-<&). Equation (1.6) is ormally the same as in the pp case [3] and can easily be decoupled and solved or suitable boundary conditions.

3 Two-Tensor Theory o Gravity 303 In the rest o the paper we want to prove our statements made above. Several obvious generalizations suggest themselves which will be treated elsewhere; it is, or instance, easy to read o type III / g solutions rom Re. [7]. The interest in all the solutions obtainable in this way lies not so much in the particular solutions that might result, but in the clariication o the general structural properties o the underlying theory [although some solutions which appear as a byproduct might be interesting in themselves; see the Kerr example]. One might, e.g., think that not only our very special kind o ansatz (1.3), but also the particular orm o the mixing terms (1.) (stemming rom "covariantization" oϊ μv η μv ) might be a reason why the class considered here is not too rich. It seems worth while to test this by considering the various generalizations. Finally we want to mention that all what has been said about solutions o (1.1) o the orm (1.3) remains valid in the two-tensor theory o massive gravitation [13], a co variant extension o the theory o Freund et aί [14]. Acknowledgment. We wish to thank Dr. P. Aichelburg or many helpul discussions and or drawing our attention to Re. [5]. II. Determination o the Optical Scalars and the Petroy Type Assume that g μv, μv are o the orm (1.3); then μv -g μv = j4?k μ with j = ^-^. (.1) The ield equations (1.1) now simpliy drastically 1, reducing to G μv () = m JίTk μ, G μv (g)= -\m ^k μ k y. (.) κ Obviously, both $F and ^ must not vanish or nontrivial solutions p φθ). By contraction, both curvature scalars vanish, and (.) is equivalent to R μv () = m ^k μ, R μv (g)=~\nι jek μ. (.3) The contracted Bianchi identities imply rom (.) that k μ is geodesic. For urther analysis, we use the tetrad ormalism o Sec. 5 o Re. [5] (henceorth reerred to as KS\ the unction h appearing there replaced 1 This simpliication is purely algebraic, depending only on a relation like (.1) with k a null vector o g, but not on (1.3). Here is a starting point or generalizations. κ

4 304 R. Mansouri and H. K. Urbantke: by ^ or ^ or g μv, μv. The two tetrads adapted to g, dier only in the vector 3 3 = δ u hd 4 ; note, however, that the eect o both d 3 s on unctions F with d 4 F = 0 is the same (this remark will remove most o the apparent ambiguities that might arise in the ollowing, as we will not distinguish the tetrads and indices or notational convenience). The tetrad orm o (.3) is then R ab {) = 0 = R ab (g) or (α, b) φ (3, 3), R 3 3() = m JP 9 R 33 (g)=-\m ^. κ When we set {KS (5.7)) k μ dx μ = e 3 = du+ Ϋdξ + Ydξ- YΫdυ, (.4) the geodesic condition mentioned aboved reads Y 4 = Γ 44 = 0 (and complex conjugate). With this, k μ given by (.4) is automatically ainely parametrized, i.e. k μ;v = O. The contracted Bianchi identity applied to (.) then leaves = 0. (.5) (Here ^ 4 = k μ d μ &? again there is no ambiguity; all optical scalars o k μ are the same with respect to both metrics!) Now we show that the shear o k μ must vanish or nontrivial solutions. Indeed, the complex shear in this tetrad ormalism is given by F, the ield equations R = 0 imply ^ ^ Z)^] = Y [^4 + (Z-Z)^] = 0 (.6) (c. KS (5.5)). Assuming Y + 0, we would have ^4 = 0 = ^,4 Z = Z, (.7) so that the imaginary part o Z would vanish, but according to (.5) also its real part, the divergence or expansion. Since now Z = Y x = 0, the integrability condition KS(J) applied to 7 [14] gives Y Ϋ Λ = Y \ = 0, a contradiction. Thereore we must have vanishing shear: Y = 0. Now the equations R 44 = R 4 = R = 0 (and c.c.) are satisied. Next we show that the complex expansion Z must vanish also. Our procedure is to assume ZΦ0, which enables us to ollow KS(5) urther: we satisy the equations R 1 = JR 34 = 0 by setting h = \M{Z + Z) with M 4 = 0, i.e. with \{ + ), %( Z) (.8) Z,4 = N 4 = 0. (.9)

5 Two-Tensor Theory o Gravity 305 I now #e = 9? - < and J- are ormed and, together with Z + Z = 4 kμ. μ and Z A = -Z (KS(534% inserted into (.5), we obtain (L-N)ZZ = 0. (.10) Thus, the assumption ZφO leads to trivial solutions, L = N, proving our assertion. It is now seen rom the expressions or the relevant components o the Riemann or Weyl tensor that the ield equations together with Z = 0 imply Petrov type N with k μ as a quadruple Debever-Penrose vector. III. Canonical Form o Solutions Kundt [7] has determined all metrics which contain a geodesic null congruence o vanishing shear, twist and expansion and whose Ricci tensor is o the orm R λv =-μk λ, (3.1) where k μ is tangent to the null congruence. In particular, he has given a geometric deinition o the concept o plane-ronted waves, and has shown that the plane-ronted waves are identical with that subclass o his metrics where the Weyl tensor has type N. Two essentially dierent cases have to be distinguished, or each o which he has given a canonical orm o the metric, whereby the task o solving Einstein's equations is reduced to solving Laplace-Poisson-type equations. Our results o Sec. II show that we are dealing with g μv, μv which have exactly these characteristics o planeronted waves. What remains to be done is to write down our ields in Kundt's canonical orm and to solve those ield equations which are not yet identically satisied. The two essentially dierent cases are distinguished by the vanishing or nonvanishing o an additional optical scalar which appears when both, complex shear and expansion, vanish: the rotation Ω (this name is oten used or the imaginary part o Z also, notably by KS, but we should like to use the word "twist" or the latter; Ω is equal to Y 3 in the KS ormalism). The case o vanishing rotation, i.e. planeronted waves with parallel rays ("pp waves"), appears in the Kerr-Schild orm in Kundt's canonical coordinates; its generalization to / g solutions has been described earlier [3]. In the case o non-vanishing rotation, this quantity can be used as invariant coordinate, and the corresponding canonical orm o the metric is ds = η + Adu, (3.) where η = \dz- υχ- ι du\ + Idυdu - 3v x~ du (3.3)

6 306 R. Mansouri and H. K. Urbantke: Two-Tensor Theory o Gravity is the lat metric in some curvilinear coordinates (z = x + iy), as one easily checks by calculating the Rieman tensor; it is even easy to ind a transormation to Minkowski coordinates and discuss its meaning. The null congruence is given by k μ dx μ o: du. The unction A is independent o v, depends arbitrarily on w, and to satisy (3.1) one must have dx dy - ί A) = μ. (3.4) It is almost obvious now that the corresponding / g solution is given by (1.4, 5, 6). Actually, one has to check that,g can be brought to the canonical orm (3., 3) simultaneously, but this ollows rom the tensor relation (.1). The unction A belonging to g, say, is independent o v in the canonical coordinates. The transormation achieving this leaves open a possible v dependence in the corresponding unction or/, and (3.1) is still satisied. But as or our ield equations (.3) μoc#" { S, this υ dependence must actually be absent. Thereore (1.4, 5, 6) is the general solution. Reerences 1. Isham,C.J., Salam,A., StrathdeeJ.: Phys. Rev. D3, 867 (1971).. Pirani,F.A.E.: Contribution to the Topical Meeting on Gravitation and Field Theory, Trieste Aichelburg,P.C, Mansouri,R., Urbantke,H.K.: Phys. Rev. Letters 7, 1533 (1971). 4. Kerr, R. P., Schild, A.: Proceedings o the Meeting on General Relativity (Anniversary Volume, Fourth Centenary o Galileo's Birth) G.Barbera, Ed. (Firenze 1965). 5. Debney,G.C, Kerr,R.P., Schild,A.: J. Math. Phys. 10, 184 (1969). 6. Jordan,P., Ehlers.J., Kundt,W.: Akad. Wiss. Mainz, Abh. Math.-Nat. Kl. No., (1960). 7. Kundt,W.: Z. Physik 163, 77 (1961). 8. Lindquist,R.W., Schwartz,R.A., Misner,C.W.: Phys. Rev. 137B, 1364 (1965). 9. Misra,M.: Proc. Roy. Irish Acad. 69, A3, 39 (1970). 10. Carter,B.: Phys. Rev. 174, 1559 (1968). 11. Pirani,F. A.E.: Brandeis Lectures 1964, Vol. I; S.Deser, K.W.Ford, Ed. New Jersey: Prentice-Hall, Jordan,P., Ehlers,J., Sachs,R.K.: Akad. Wiss. Mainz, Abh. Math.-Nat. Kl. No. 1, (1961). 13. Aichelburg,P.C, Mansouri, R.: Proceedings o the Topical Meeting on Gravitation and Field Theory, Trieste (1971) (IC/71/144). 14. Freund,P.G.O., Maheshwari,A., Schonberg,E.: Astrophys. J. 157, 857 (1969). H. K. Urbantke Institut ur Theoretische Physik der Universitat A-1090 Wien Boltzmanngasse 5 Austria

Newman-Penrose formalism in higher dimensions

Newman-Penrose formalism in higher dimensions Newman-Penrose formalism in higher dimensions V. Pravda various parts in collaboration with: A. Coley, R. Milson, M. Ortaggio and A. Pravdová Introduction - algebraic classification in four dimensions

More information

Higher dimensional Kerr-Schild spacetimes 1

Higher dimensional Kerr-Schild spacetimes 1 Higher dimensional Kerr-Schild spacetimes 1 Marcello Ortaggio Institute of Mathematics Academy of Sciences of the Czech Republic Bremen August 2008 1 Joint work with V. Pravda and A. Pravdová, arxiv:0808.2165

More information

On a Quadratic First Integral for the Charged Particle Orbits in the Charged Kerr Solution*

On a Quadratic First Integral for the Charged Particle Orbits in the Charged Kerr Solution* Commun. math. Phys. 27, 303-308 (1972) by Springer-Verlag 1972 On a Quadratic First Integral for the Charged Particle Orbits in the Charged Kerr Solution* LANE P. HUGHSTON Department of Physics: Joseph

More information

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution arxiv:gr-qc/0201078v1 23 Jan 2002 Marc Mars Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona,

More information

arxiv:gr-qc/ v1 2 Apr 2002

arxiv:gr-qc/ v1 2 Apr 2002 ENERGY AND MOMENTUM OF A STATIONARY BEAM OF LIGHT Thomas Bringley arxiv:gr-qc/0204006v1 2 Apr 2002 Physics and Mathematics Departments, Duke University Physics Bldg., Science Dr., Box 90305 Durham, NC

More information

arxiv: v2 [gr-qc] 7 Jan 2019

arxiv: v2 [gr-qc] 7 Jan 2019 Classical Double Copy: Kerr-Schild-Kundt metrics from Yang-Mills Theory arxiv:1810.03411v2 [gr-qc] 7 Jan 2019 Metin Gürses 1, and Bayram Tekin 2, 1 Department of Mathematics, Faculty of Sciences Bilkent

More information

SEPARATED AND PROPER MORPHISMS

SEPARATED AND PROPER MORPHISMS SEPARATED AND PROPER MORPHISMS BRIAN OSSERMAN The notions o separatedness and properness are the algebraic geometry analogues o the Hausdor condition and compactness in topology. For varieties over the

More information

Gravitational Waves: Just Plane Symmetry

Gravitational Waves: Just Plane Symmetry Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 2006 Gravitational Waves: Just Plane Symmetry Charles G. Torre Utah State University Follow this and additional works at:

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

arxiv:gr-qc/ v1 16 Apr 2002

arxiv:gr-qc/ v1 16 Apr 2002 Local continuity laws on the phase space of Einstein equations with sources arxiv:gr-qc/0204054v1 16 Apr 2002 R. Cartas-Fuentevilla Instituto de Física, Universidad Autónoma de Puebla, Apartado Postal

More information

SEPARATED AND PROPER MORPHISMS

SEPARATED AND PROPER MORPHISMS SEPARATED AND PROPER MORPHISMS BRIAN OSSERMAN Last quarter, we introduced the closed diagonal condition or a prevariety to be a prevariety, and the universally closed condition or a variety to be complete.

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

BMS current algebra and central extension

BMS current algebra and central extension Recent Developments in General Relativity The Hebrew University of Jerusalem, -3 May 07 BMS current algebra and central extension Glenn Barnich Physique théorique et mathématique Université libre de Bruxelles

More information

2. ETA EVALUATIONS USING WEBER FUNCTIONS. Introduction

2. ETA EVALUATIONS USING WEBER FUNCTIONS. Introduction . ETA EVALUATIONS USING WEBER FUNCTIONS Introduction So ar we have seen some o the methods or providing eta evaluations that appear in the literature and we have seen some o the interesting properties

More information

Lecture Notes on General Relativity

Lecture Notes on General Relativity Lecture Notes on General Relativity Matthias Blau Albert Einstein Center for Fundamental Physics Institut für Theoretische Physik Universität Bern CH-3012 Bern, Switzerland The latest version of these

More information

Angular momentum and Killing potentials

Angular momentum and Killing potentials Angular momentum and Killing potentials E. N. Glass a) Physics Department, University of Michigan, Ann Arbor, Michigan 4809 Received 6 April 995; accepted for publication September 995 When the Penrose

More information

Basic mathematics of economic models. 3. Maximization

Basic mathematics of economic models. 3. Maximization John Riley 1 January 16 Basic mathematics o economic models 3 Maimization 31 Single variable maimization 1 3 Multi variable maimization 6 33 Concave unctions 9 34 Maimization with non-negativity constraints

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

The Conservation of Matter in General Relativity

The Conservation of Matter in General Relativity Commun. math. Phys. 18, 301 306 (1970) by Springer-Verlag 1970 The Conservation of Matter in General Relativity STEPHEN HAWKING Institute of Theoretical Astronomy, Cambridge, England Received June 1, 1970

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and should be emailed to the instructor at james@richland.edu.

More information

Lecture: General Theory of Relativity

Lecture: General Theory of Relativity Chapter 8 Lecture: General Theory of Relativity We shall now employ the central ideas introduced in the previous two chapters: The metric and curvature of spacetime The principle of equivalence The principle

More information

Konstantin E. Osetrin. Tomsk State Pedagogical University

Konstantin E. Osetrin. Tomsk State Pedagogical University Space-time models with dust and cosmological constant, that allow integrating the Hamilton-Jacobi test particle equation by separation of variables method. Konstantin E. Osetrin Tomsk State Pedagogical

More information

EIGEN VALUES OF SIX-DIMENSIONAL SYMMETRIC TENSORS OF CURVATURE AND WEYL TENSORS FOR Z = (z-t)-type PLANE FRONTED WAVES IN PERES SPACE-TIME

EIGEN VALUES OF SIX-DIMENSIONAL SYMMETRIC TENSORS OF CURVATURE AND WEYL TENSORS FOR Z = (z-t)-type PLANE FRONTED WAVES IN PERES SPACE-TIME EIGEN VALUES OF SIX-DIMENSIONAL SYMMETRIC TENSORS OF CURVATURE AND WEYL TENSORS FOR Z = (z-t)-type PLANE FRONTED WAVES IN PERES SPACE-TIME S.R. BHOYAR, A.G. DESHMUKH * Department o Mathematics, College

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Name : Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and can e printed and given to the instructor

More information

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Astr 0 Tues. May, 07 Today s Topics Chapter : Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Field Equations The Primeval Fireball Standard Big Bang Model Chapter

More information

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gauge Theory of Gravitation: Electro-Gravity Mixing Gauge Theory of Gravitation: Electro-Gravity Mixing E. Sánchez-Sastre 1,2, V. Aldaya 1,3 1 Instituto de Astrofisica de Andalucía, Granada, Spain 2 Email: sastre@iaa.es, es-sastre@hotmail.com 3 Email: valdaya@iaa.es

More information

Categories and Natural Transformations

Categories and Natural Transformations Categories and Natural Transormations Ethan Jerzak 17 August 2007 1 Introduction The motivation or studying Category Theory is to ormalise the underlying similarities between a broad range o mathematical

More information

Spin connection resonance in gravitational general relativity

Spin connection resonance in gravitational general relativity Chapter 10 Spin connection resonance in gravitational general relativity Abstract (Paper 64) by Myron W. Evans Alpha Institute for Advanced Study (AIAS). (emyrone@aol.com, www.aias.us, www.atomicprecision.com)

More information

Non-gravitating waves

Non-gravitating waves Non-gravitating waves D C Robinson Mathematics Department King s College London Strand London WC2R 2LS United Kingdom email: david.c.robinson@kcl.ac.uk October 6, 2005 Abstract: It is pointed out that

More information

DUAL METRICS FOR A CLASS OF RADIATIVE SPACE TIMES

DUAL METRICS FOR A CLASS OF RADIATIVE SPACE TIMES Modern Physics Letters A, Vol. 16, No. 3 (2001) 135 142 c World Scientific Publishing Company DUAL METRICS FOR A CLASS OF RADIATIVE SPACE TIMES D. BĂLEANU Department of Mathematics and Computer Sciences,

More information

The Clifford algebra and the Chevalley map - a computational approach (detailed version 1 ) Darij Grinberg Version 0.6 (3 June 2016). Not proofread!

The Clifford algebra and the Chevalley map - a computational approach (detailed version 1 ) Darij Grinberg Version 0.6 (3 June 2016). Not proofread! The Cliord algebra and the Chevalley map - a computational approach detailed version 1 Darij Grinberg Version 0.6 3 June 2016. Not prooread! 1. Introduction: the Cliord algebra The theory o the Cliord

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-riemannian manifolds

Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-riemannian manifolds Eikonal slant helices and eikonal Darboux helices in -dimensional pseudo-riemannian maniolds Mehmet Önder a, Evren Zıplar b a Celal Bayar University, Faculty o Arts and Sciences, Department o Mathematics,

More information

A Summary of the Black Hole Perturbation Theory. Steven Hochman

A Summary of the Black Hole Perturbation Theory. Steven Hochman A Summary of the Black Hole Perturbation Theory Steven Hochman Introduction Many frameworks for doing perturbation theory The two most popular ones Direct examination of the Einstein equations -> Zerilli-Regge-Wheeler

More information

VALUATIVE CRITERIA BRIAN OSSERMAN

VALUATIVE CRITERIA BRIAN OSSERMAN VALUATIVE CRITERIA BRIAN OSSERMAN Intuitively, one can think o separatedness as (a relative version o) uniqueness o limits, and properness as (a relative version o) existence o (unique) limits. It is not

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

YURI LEVIN AND ADI BEN-ISRAEL

YURI LEVIN AND ADI BEN-ISRAEL Pp. 1447-1457 in Progress in Analysis, Vol. Heinrich G W Begehr. Robert P Gilbert and Man Wah Wong, Editors, World Scientiic, Singapore, 003, ISBN 981-38-967-9 AN INVERSE-FREE DIRECTIONAL NEWTON METHOD

More information

Space-Times Admitting Isolated Horizons

Space-Times Admitting Isolated Horizons Space-Times Admitting Isolated Horizons Jerzy Lewandowski Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoża 69, 00-681 Warszawa, Poland, lewand@fuw.edu.pl Abstract We characterize a general

More information

arxiv: v1 [gr-qc] 28 Mar 2012

arxiv: v1 [gr-qc] 28 Mar 2012 Causality violation in plane wave spacetimes arxiv:103.6173v1 [gr-qc] 8 Mar 01 Keywords: vacuum spacetimes, closed null geodesics, plane wave spacetimes D. Sarma 1, M. Patgiri and F. Ahmed 3 Department

More information

Purely magnetic vacuum solutions

Purely magnetic vacuum solutions Purely magnetic vacuum solutions Norbert Van den Bergh Faculty of Applied Sciences TW16, Gent University, Galglaan, 9000 Gent, Belgium 1. Introduction Using a +1 formalism based on a timelike congruence

More information

arxiv: v1 [gr-qc] 12 Sep 2018

arxiv: v1 [gr-qc] 12 Sep 2018 The gravity of light-waves arxiv:1809.04309v1 [gr-qc] 1 Sep 018 J.W. van Holten Nikhef, Amsterdam and Leiden University Netherlands Abstract Light waves carry along their own gravitational field; for simple

More information

arxiv: v3 [hep-th] 5 Nov 2014

arxiv: v3 [hep-th] 5 Nov 2014 AdS-plane wave and pp-wave solutions of generic gravity theories arxiv:1407.5301v3 [hep-th] 5 Nov 014 Metin Gürses, 1, Tahsin Çağrı Şişman,, 3, and Bayram Tekin 4, 1 Department of Mathematics, Faculty

More information

The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes

The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes DigitalCommons@USU Presentations and Publications 3-20-2015 The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes Follow this and additional works at: http://digitalcommons.usu.edu/dg_pres

More information

Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 2016.

Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 2016. Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 216 Ravi N Banavar banavar@iitbacin September 24, 216 These notes are based on my readings o the two books Nonlinear Control

More information

Week 9: Einstein s field equations

Week 9: Einstein s field equations Week 9: Einstein s field equations Riemann tensor and curvature We are looking for an invariant characterisation of an manifold curved by gravity. As the discussion of normal coordinates showed, the first

More information

Operational significance of the deviation equation in relativistic geodesy arxiv: v1 [gr-qc] 17 Jan 2019

Operational significance of the deviation equation in relativistic geodesy arxiv: v1 [gr-qc] 17 Jan 2019 Operational significance of the deviation equation in relativistic geodesy arxiv:9.6258v [gr-qc] 7 Jan 9 Definitions Dirk Puetzfeld ZARM University of Bremen Am Fallturm, 28359 Bremen, Germany Yuri N.

More information

Physics Department. Northeastern University ABSTRACT. An electric monopole solution to the equations of Maxwell and Einstein's

Physics Department. Northeastern University ABSTRACT. An electric monopole solution to the equations of Maxwell and Einstein's NUB 302 October 994 Another Look at the Einstein-Maxwell Equations M. H. Friedman Physics Department Northeastern University Boston, MA 025, USA ABSTRACT HEP-PH-95030 An electric monopole solution to the

More information

General Relativity (225A) Fall 2013 Assignment 8 Solutions

General Relativity (225A) Fall 2013 Assignment 8 Solutions University of California at San Diego Department of Physics Prof. John McGreevy General Relativity (5A) Fall 013 Assignment 8 Solutions Posted November 13, 013 Due Monday, December, 013 In the first two

More information

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function UL1: Review o Prerequisite Skills or Unit # (Derivatives) Working with the properties o exponents Simpliying radical expressions Finding the slopes o parallel and perpendicular lines Simpliying rational

More information

Two Constants of Motion in the Generalized Damped Oscillator

Two Constants of Motion in the Generalized Damped Oscillator Advanced Studies in Theoretical Physics Vol. 10, 2016, no. 2, 57-65 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2016.511107 Two Constants o Motion in the Generalized Damped Oscillator

More information

Newman-Penrose s formalism

Newman-Penrose s formalism Available online at www.worldscientificnews.com WSN 96 (2018) 1-12 EISSN 2392-2192 Newman-Penrose s formalism P. Lam-Estrada 1, J. López-Bonilla 2, *, R. López-Vázquez 2, S. Vidal-Beltrán 2 1 ESFM, Instituto

More information

Chapter 12. The cross ratio Klein s Erlanger program The projective line. Math 4520, Fall 2017

Chapter 12. The cross ratio Klein s Erlanger program The projective line. Math 4520, Fall 2017 Chapter 12 The cross ratio Math 4520, Fall 2017 We have studied the collineations of a projective plane, the automorphisms of the underlying field, the linear functions of Affine geometry, etc. We have

More information

Theoretical Aspects of Black Hole Physics

Theoretical Aspects of Black Hole Physics Les Chercheurs Luxembourgeois à l Etranger, Luxembourg-Ville, October 24, 2011 Hawking & Ellis Theoretical Aspects of Black Hole Physics Glenn Barnich Physique théorique et mathématique Université Libre

More information

Giinter Ludyk. Einstein in Matrix. Form. Exact Derivation of the Theory of Special. without Tensors. and General Relativity.

Giinter Ludyk. Einstein in Matrix. Form. Exact Derivation of the Theory of Special. without Tensors. and General Relativity. Giinter Ludyk Einstein in Matrix Form Exact Derivation of the Theory of Special and General Relativity without Tensors ^ Springer Contents 1 Special Relativity 1 1.1 Galilei Transformation 1 1.1.1 Relativity

More information

Higgs-Field and a New Scalar-Tensor Theory of Gravity

Higgs-Field and a New Scalar-Tensor Theory of Gravity Higgs-Field and a New Scalar-Tensor Theory of Gravity H. Dehnen, H. Frommert, and F. Ghaboussi Universität Konstanz Postfach 55 60 7750 Konstanz West Germany Abstract The combination of Brans and Dicke

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 10. Joint Moments and Joint Characteristic Functions Following section 6, in this section we shall introduce various parameters to compactly represent the inormation contained in the joint p.d. o two r.vs.

More information

On Isotropic Coordinates and Einstein s Gravitational Field

On Isotropic Coordinates and Einstein s Gravitational Field July 006 PROGRESS IN PHYSICS Volume 3 On Isotropic Coordinates and Einstein s Gravitational Field Stephen J. Crothers Queensland Australia E-mail: thenarmis@yahoo.com It is proved herein that the metric

More information

VALUATIVE CRITERIA FOR SEPARATED AND PROPER MORPHISMS

VALUATIVE CRITERIA FOR SEPARATED AND PROPER MORPHISMS VALUATIVE CRITERIA FOR SEPARATED AND PROPER MORPHISMS BRIAN OSSERMAN Recall that or prevarieties, we had criteria or being a variety or or being complete in terms o existence and uniqueness o limits, where

More information

General-relativistic quantum theory of the electron

General-relativistic quantum theory of the electron Allgemein-relativistische Quantentheorie des Elektrons, Zeit. f. Phys. 50 (98), 336-36. General-relativistic quantum theory of the electron By H. Tetrode in Amsterdam (Received on 9 June 98) Translated

More information

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into PHY 396 T: SUSY Solutions or problem set #8. Problem (a): To keep the net quark mass term L QCD L mass = ψ α c m ψ c α + hermitian conjugate (S.) unchanged under the ield redeinition (), the complex mass

More information

THE NATURAL GAUGE OF THE WORLD: WEYL S SCALE FACTOR c William O. Straub Astoria, California March 13, 2007

THE NATURAL GAUGE OF THE WORLD: WEYL S SCALE FACTOR c William O. Straub Astoria, California March 13, 2007 THE NATURAL GAUGE OF THE WORLD: WEYL S SCALE FACTOR c William O. Straub Astoria, California March 13, 2007 We now aim at a nal synthesis. To be able to characterize the physical state of the world at a

More information

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21 (2005), ISSN

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21 (2005), ISSN Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21 (2005), 79 7 www.emis.de/journals ISSN 176-0091 WARPED PRODUCT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS ADELA MIHAI Abstract. B.Y. Chen

More information

NONLINEAR CONTROL OF POWER NETWORK MODELS USING FEEDBACK LINEARIZATION

NONLINEAR CONTROL OF POWER NETWORK MODELS USING FEEDBACK LINEARIZATION NONLINEAR CONTROL OF POWER NETWORK MODELS USING FEEDBACK LINEARIZATION Steven Ball Science Applications International Corporation Columbia, MD email: sball@nmtedu Steve Schaer Department o Mathematics

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

The Kruskal-Szekeres Extension : Counter-Examples

The Kruskal-Szekeres Extension : Counter-Examples January, 010 PROGRESS IN PHYSICS Volume 1 The Kruskal-Szekeres Extension : Counter-Examples Stephen J. Crothers Queensland, Australia thenarmis@gmail.com The Kruskal-Szekeres coordinates are said to extend

More information

arxiv:gr-qc/ v1 22 Jul 1994

arxiv:gr-qc/ v1 22 Jul 1994 A COMPARISON OF TWO QUANTIZATION PROCEDURES FOR LINEAL GRAVITY Eric Benedict arxiv:gr-qc/9407035v1 22 Jul 1994 Department of Physics Boston University 590 Commonwealth Avenue Boston, Massachusets 02215

More information

Supplement to Lesson 9: The Petrov classification and the Weyl tensor

Supplement to Lesson 9: The Petrov classification and the Weyl tensor Supplement to Lesson 9: The Petrov classification and the Weyl tensor Mario Diaz November 1, 2015 As we have pointed out one of unsolved problems of General Relativity (and one that might be impossible

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction...

More information

A Modified Gravity Theory: Null Aether

A Modified Gravity Theory: Null Aether Commun. Theor. Phys. 71 019) 31 36 Vol. 71, No. 3, March 1, 019 A Modified Gravity Theory: Null Aether Metin Gürses 1,, and Çetin Şentürk,3, 1 Department of Mathematics, Faculty of Sciences, Bilkent University,

More information

Solar system tests for linear massive conformal gravity arxiv: v1 [gr-qc] 8 Apr 2016

Solar system tests for linear massive conformal gravity arxiv: v1 [gr-qc] 8 Apr 2016 Solar system tests for linear massive conformal gravity arxiv:1604.02210v1 [gr-qc] 8 Apr 2016 F. F. Faria Centro de Ciências da Natureza, Universidade Estadual do Piauí, 64002-150 Teresina, PI, Brazil

More information

NEW EXAMPLES OF SANDWICH GRAVITATIONAL WAVES AND THEIR IMPULSIVE LIMIT

NEW EXAMPLES OF SANDWICH GRAVITATIONAL WAVES AND THEIR IMPULSIVE LIMIT NEW EXAMPLES OF SANDWICH GRAVITATIONAL WAVES AND THEIR IMPULSIVE LIMIT J. Podolský, K. Veselý Department of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách,

More information

Black Strings and Classical Hair

Black Strings and Classical Hair UCSBTH-97-1 hep-th/97177 Black Strings and Classical Hair arxiv:hep-th/97177v1 17 Jan 1997 Gary T. Horowitz and Haisong Yang Department of Physics, University of California, Santa Barbara, CA 9316, USA

More information

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016 The Divergence Myth in Gauss-Bonnet Gravity William O. Straub Pasadena, California 91104 November 11, 2016 Abstract In Riemannian geometry there is a unique combination of the Riemann-Christoffel curvature

More information

Global and local problems with. Kerr s solution.

Global and local problems with. Kerr s solution. Global and local problems with Kerr s solution. Brandon Carter, Obs. Paris-Meudon, France, Presentation at Christchurch, N.Z., August, 2004. 1 Contents 1. Conclusions of Roy Kerr s PRL 11, 237 63. 2. Transformation

More information

Bondi-Sachs Formulation of General Relativity (GR) and the Vertices of the Null Cones

Bondi-Sachs Formulation of General Relativity (GR) and the Vertices of the Null Cones Bondi-Sachs Formulation of General Relativity (GR) and the Vertices of the Null Cones Thomas Mädler Observatoire de Paris/Meudon, Max Planck Institut for Astrophysics Sept 10, 2012 - IAP seminar Astrophysical

More information

Notes on General Relativity Linearized Gravity and Gravitational waves

Notes on General Relativity Linearized Gravity and Gravitational waves Notes on General Relativity Linearized Gravity and Gravitational waves August Geelmuyden Universitetet i Oslo I. Perturbation theory Solving the Einstein equation for the spacetime metric is tremendously

More information

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Comparison of the Bondi{Sachs and Penrose Approaches to Asymptotic Flatness J. Tafel S.

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

Solutions of Penrose s equation

Solutions of Penrose s equation JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 1 JANUARY 1999 Solutions of Penrose s equation E. N. Glass a) Physics Department, University of Michigan, Ann Arbor, Michigan 48109 Jonathan Kress School

More information

Gravitational Waves versus Cosmological Perturbations: Commentary to Mukhanov s talk

Gravitational Waves versus Cosmological Perturbations: Commentary to Mukhanov s talk Gravitational Waves versus Cosmological Perturbations: Commentary to Mukhanov s talk Lukasz Andrzej Glinka International Institute for Applicable Mathematics and Information Sciences Hyderabad (India)

More information

Light Like Boost of the Kerr Gravitational Field

Light Like Boost of the Kerr Gravitational Field Light Like Boost of the Kerr Gravitational Field arxiv:gr-qc/0303055v1 13 Mar 2003 C. Barrabès Laboratoire de Mathématiques et Physique Théorique, CNRS/UMR 6083, Université F. Rabelais, 37200 TOURS, France

More information

Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract)

Finite Dimensional Hilbert Spaces are Complete for Dagger Compact Closed Categories (Extended Abstract) Electronic Notes in Theoretical Computer Science 270 (1) (2011) 113 119 www.elsevier.com/locate/entcs Finite Dimensional Hilbert Spaces are Complete or Dagger Compact Closed Categories (Extended bstract)

More information

A solution in Weyl gravity with planar symmetry

A solution in Weyl gravity with planar symmetry Utah State University From the SelectedWorks of James Thomas Wheeler Spring May 23, 205 A solution in Weyl gravity with planar symmetry James Thomas Wheeler, Utah State University Available at: https://works.bepress.com/james_wheeler/7/

More information

A873: Cosmology Course Notes. II. General Relativity

A873: Cosmology Course Notes. II. General Relativity II. General Relativity Suggested Readings on this Section (All Optional) For a quick mathematical introduction to GR, try Chapter 1 of Peacock. For a brilliant historical treatment of relativity (special

More information

Oscillating Fubini instantons in curved space

Oscillating Fubini instantons in curved space Oscillating Fubini instantons in curved space Daeho Ro Department of Physics, Sogang University, 121-742, Seoul November 29, 214 Daeho Ro (Sogang University) Inje University November 29, 214 1 / 2 Motivation

More information

Geometry of the Universe: Cosmological Principle

Geometry of the Universe: Cosmological Principle Geometry of the Universe: Cosmological Principle God is an infinite sphere whose centre is everywhere and its circumference nowhere Empedocles, 5 th cent BC Homogeneous Cosmological Principle: Describes

More information

Method for calculating the imaginary part of the Hadamard elementary function G 1 in static, spherically symmetric spacetimes

Method for calculating the imaginary part of the Hadamard elementary function G 1 in static, spherically symmetric spacetimes Method or calculating the imaginary part o the Hadamard elementary unction G in static, spherically symmetric spacetimes Rhett Herman* Department o Chemistry and Physics, Radord University, Radord, Virginia

More information

arxiv:gr-qc/ v1 20 Sep 2002

arxiv:gr-qc/ v1 20 Sep 2002 Impulsive waves in electrovac direct product spacetimes with Λ Marcello Ortaggio Dipartimento di Fisica, Università degli Studi di Trento, and INFN, Gruppo Collegato di Trento, 38050 Povo (Trento), Italy.

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Feedback Linearization

Feedback Linearization Feedback Linearization Peter Al Hokayem and Eduardo Gallestey May 14, 2015 1 Introduction Consider a class o single-input-single-output (SISO) nonlinear systems o the orm ẋ = (x) + g(x)u (1) y = h(x) (2)

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

exceptional value turns out to be, "RAC" CURVATURE calling attention especially to the fundamental Theorem III, and to emphasize

exceptional value turns out to be, RAC CURVATURE calling attention especially to the fundamental Theorem III, and to emphasize VOL. 18, 1932 V,MA THEMA TICS: E. KASNER 267 COMPLEX GEOMETRY AND RELATIVITY: "RAC" CURVATURE BY EDWARD KASNER DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY Communicated February 3, 1932 THEORY OF THE

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

Charge, geometry, and effective mass

Charge, geometry, and effective mass Gerald E. Marsh Argonne National Laboratory (Ret) 5433 East View Park Chicago, IL 60615 E-mail: geraldemarsh63@yahoo.com Abstract. Charge, like mass in Newtonian mechanics, is an irreducible element of

More information

Chapters of Advanced General Relativity

Chapters of Advanced General Relativity Chapters of Advanced General Relativity Notes for the Amsterdam-Brussels-Geneva-Paris doctoral school 2014 & 2016 In preparation Glenn Barnich Physique Théorique et Mathématique Université Libre de Bruxelles

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

/95 $ $.25 per page

/95 $ $.25 per page Fields Institute Communications Volume 00, 0000 McGill/95-40 gr-qc/950063 Two-Dimensional Dilaton Black Holes Guy Michaud and Robert C. Myers Department of Physics, McGill University Montreal, Quebec,

More information

Large D Black Hole Membrane Dynamics

Large D Black Hole Membrane Dynamics Large D Black Hole Membrane Dynamics Parthajit Biswas NISER Bhubaneswar February 11, 2018 Parthajit Biswas Large D Black Hole Membrane Dynamics 1 / 26 References The talk is mainly based on S. Bhattacharyya,

More information