Tensor Calculus. Tommaso Astarita

Size: px
Start display at page:

Download "Tensor Calculus. Tommaso Astarita"

Transcription

1 Tnsor Cuus Toso strt Mn rfrns rs, Vtors, tnsors, nd th s qutons of fud hns, 989. orsno nd Trpov, Vtor nd Tnsor nyss wth pptons, 979. Fsh, Studnt Gud to Vtors nd Tnsors, 0. Tnsor uus T strt

2 Introduton - Pn Hstory. gr of Crtsn vtors nd tnsors. Cuus of Crtsn vtors nd tnsors. Gnr trtnt of tnsor gr nd uus. Conusons. Tnsor uus T strt Hstory ( Th onpts of tr tnsor nyss ros fro th wor of Cr Frdrh Guss n dffrnt gotry, nd th foruton ws uh nfund y th thory of gr fors nd nvrnts dvopd durng th dd of th nntnth ntury. Th word "tnsor" tsf ws ntrodud n 846 y W Rown Hton to dsr sothng dffrnt fro wht s now nt y tnsor. Th ontporry usg ws ntrodud y Wodr Vogt n 898. Tnsor uus ws dvopd round 890 y Grgoro R- Curstro undr th tt sout dffrnt uus, nd orgny prsntd y R n 89. It ws d ss to ny thtns y th puton of R nd Tuo Lv-Cvts 900 ss txt Méthods d u dfférnt sou t urs pptons (Mthods of sout dffrnt uus nd thr pptons). Tnsor uus T strt 4

3 Grgoro R-Curstro Grgoro R-Curstro ws n Itn thtn orn n Lugo d Rogn. H s ost fous s th nvntor of tnsor uus, ut so pushd portnt wors n othr fds. orn: Jnury, 85, Lugo, Ity Dd: ugust 6, 95, oogn, Ity Mthtsh nnn 900, Vou 54, Issu -, pp 5-0 Méthods d u dfférnt sou t urs pptons M. M. G. R, T. Lv-Cvt Tnsor uus T strt 5 Tuo Lv-Cvt Tuo Lv-Cvt, ws n Itn thtn, ost fous for hs wor on sout dffrnt uus nd ts pptons to th thory of rtvty, ut who so d sgnfnt ontrutons n othr rs. orn: Mrh 9, 87, Pdu, Ity Dd: Dr 9, 94, Ro, Ity Mthtsh nnn 900, Vou 54, Issu -, pp 5-0 Méthods d u dfférnt sou t urs pptons M. M. G. R, T. Lv-Cvt Tnsor uus T strt 6

4 Hstory ( In th 0th ntury, th sut to nown s tnsor nyss, nd hvd rodr ptn wth th ntroduton of Enstns thory of gnr rtvty, round 95. Gnr rtvty s forutd opty n th ngug of tnsors. Enstn hd rnd out th, wth grt dffuty, fro th gotr Mr Grossnn. Lv-Cvt thn nttd orrspondn wth Enstn to orrt sts Enstn hd d n hs us of tnsor nyss. Th orrspondn std 95 7, nd ws hrtrzd y utu rspt: I dr th gn of your thod of oputton; t ust n to rd through ths fds upon th hors of tru thts wh th of us hv to our wy orousy on foot. rt Enstn, Th Itn Mthtns of Rtvty [8] Tnsor uus T strt 7 Hstory ( Tnsors wr so found to usfu n othr fds suh s ontnuu hns. So w-nown xps of tnsors n dffrnt gotry r qudrt fors suh s tr tnsors, nd th Rnn urvtur tnsor. Th xtror gr of Hrnn Grssnn, fro th dd of th nntnth ntury, s tsf tnsor thory, nd hghy gotr, ut t ws so t for t ws sn, wth th thory of dffrnt fors, s ntury unfd wth tnsor uus. Tnsor uus T strt 8

5 Introduton - Srs Mny phys quntts r orrty dsrd y ony nur (postv, ngtv or zro) nd r d srs. y fxng syst of unt th gntud of sr s ndpndnt of th rfrn syst ut n hng y hngng th pont n sp. No sns of drton s ssotd to srs. Srs n oprd ony f thy hv th s phys dnsons. Two srs surd n th s syst of unts, r qu f thy hv th s gntud nd sgn. s n xp, th Tprtur T s sr nd, n fxd pont n sp, ts vu dos not hng. Cry y hngng th syst of unts ts vu hngs.g. 0 C= F. Tnsor uus T strt 9 Introduton - Vtors Othr phys quntts, tht r orrty dsrd, n h pont n sp, y gntud nd drton, r d vtors. y fxng syst of unt th gntud nd drton of vtor r ndpndnt of th rfrn syst ut n hng y hngng th pont n sp. Vtors n oprd ony f thy hv th s phys dnsons. Two vtors surd n th s syst of unts, r qu f thy hv th s gntud nd drton. Th oponnts of vtor (to ttr dfnd n th foowng) dpnds on oth th fr of rfrn nd syst of unts. s n xp, th for f s vtor nd, n fxd pont n sp, ts gntud nd drton dos not hng. Cry y hngng th syst of unts th gntud dos hng. In or strt wy vtors r th nts of vtor sp. Tnsor uus T strt 0

6 Introduton - Vtors vtor sp s st of nts d vtors stsfyng th foowng xos. To vry pr, x nd y of vtors n thr orrsponds vtor x + y, d th su of x nd y, suh tht: ) x + y =y + x (ddton s outtv); ) (x + y) + z = x + (y + z) (ddton s ssotv); ) thr xsts n unqu vtor zro 0, suh tht 0 + x = x, x ; 4) x n thr orrsponds unqu vtor x suh tht x + ( x) = 0. pr nd x, whr s sr r nur nd x s vtor n, thr orrsponds vtor, d th produt of nd x, suh tht: ) ( ) = ( ) x (utpton y srs s ssotv), ) x = x, ) (x + y) = + (utpton y srs s dstrutv wth rspt to vtor ddton), 4) ( + ) x = + (utpton y srs s dstrutv wth rspt to sr ddton),,, x, y. Tnsor uus T strt Introduton - Tnsors Th su nd produts (t st thr of th r xtry rvnt) of two vtors n dfnd ut (rs): "though th quotnt of two vtors nnot dfnd stsftory, tnsors rs physy n stutons tht th oo rthr ths. For xp, strss s for pr unt r. W hv sn tht for s vtor nd so s n nt of r f w rr tht w hv to spfy oth ts sz nd orntton, tht s th drton of s nor. If f dnots th vtor of for nd th vtor of gntud qu to th r n th drton of ts nor, th strss T ght thought s f/. Howvr us dvson y vtor s undfnd, t dos not rs qut n ths wy. Rthr w fnd tht th strss syst s suh tht gvn w n fnd f y utpyng y nw ntty T whh s f/ ony n th sns tht f= T." Th strss syst s tnsor nd t pprs tht (t st) two drton r ssotd to t. Tnsor uus T strt

7 Crtsn vtors nd tnsors Rné Dsrts: Rné Dsrts ws Frnh phosophr, thtn nd wrtr who spnt ost of hs f n th Duth Rpu. orn: Mrh, 596, Dsrts, Indr-t-Lor, Frn Dd: Frury, 650, Stoho, Swdn Tnsor uus T strt 4

8 Crtsn oordnts In n Eudn D th poston of pont n spfd y th thr Crtsn oordnts. fr of rfrn hs to fxd, s shown n th fgur, w t gnr pont O s th orgn nd drw thr utuy prpndur strght ns O, O nd O (wth postv sns shown n fgur). Tnsor uus T strt 5 Crtsn oordnts Th fr of rfrn s nory tn rght hndd. Tnsor uus T strt 6

9 Crtsn oordnts In n Eudn D th poston of pont n spfd y th thr Crtsn oordnts. fr of rfrn hs to fxd, s shown n th fgur, w t gnr pont O s th orgn nd drw thr utuy prpndur strght ns O, O nd O (wth postv sns shown n fgur). Th oordnts of P r th ngths of th protons of OP on th thr xs O, O nd O. Ths ngths r ndtd wth x, x nd x. Tnsor uus T strt 7 Crtsn oordnts If th rfrn syst s rgdy rottd th oordnts of P hng. Th rotton n spfd y gvng th drton osns twn O nd. Th nw oordnts r rtd to th od y: x x x x Convrsy: x x x x y ntrodung th Enstn notton ( rptd or duy suffx py su ovr th thr vus, nd ; th othr suffx, d fr, n t ny vu): x x x x Tnsor uus T strt 8

10 rt Enstn Thort Physst rt Enstn ws Grn-orn thort physst nd phosophr of sn. H dvopd th gnr thory of rtvty, on of th two prs of odrn physs. orn: Mrh 4, 879, U, Grny Dd: pr 8, 955, Prnton, Nw Jrsy, Untd Stts Tnsor uus T strt 9 Vtors Th poston vtor s n xp of vtor nd ts oponnts r th oordnts of P. W n thrfor th foowng dfnton: Crtsn vtor,, n thr dnsons s quntty wth thr oponnts, nd, n th fr of rfrn O, whh, undr rotton of th oordnt fr to o: W w dntty vtors y n undrnd syo, ut oftn od ttr s usd. Tnsor uus T strt 0

11 Vtors If th poston vtor s funton of t: x x t x x t Whr: x x Sn th drton osn r ndpndnt of t w hv: n n d x d x n n dt dt Thrfor th drvtvs, n prtur th frst nd sond on.. voty nd rton, of th poston vtor r vtors. Tnsor uus T strt Vtors Th poston vtor s n xp of vtor nd ts oponnts r th oordnts of P. W n thrfor ntrodu ts ngth or gntud: If = s unt vtor nd ts oponnts y thought s th drton osn. Thus Is unt vtor nd rprsnt th drton of. Cry ony two oponnts r ndpndnt. Tnsor uus T strt

12 Sr utpton If s sr th produt of ths sr nd th vtor s vtor wth oponnts. Cry th drton of s th s s tht of nd: Tnsor uus T strt ddton of vtors If nd r two vtors wth oponnts nd thr su s th vtor wth oponnts +. gn w hv: Thrfor th su of two vtors s vtor. W hv: Sutrton y dfnd y onng wth sr utpton: Tnsor uus T strt 4

13 Copnr vtors ny vtor whh s n th s pn s nd (wth dffrnt drton.. ) n rprsntd s: In oponnt for: y oong for souton of ths syst of quton ( nd r th unnown) w s tht th foowng ondton shoud hod: 0 Tnsor uus T strt 5 Kronr Dt Th Kronr Dt s dfnd s:, 0, Whn pprs n foru wth rptd suffx t rp th duy suffx wth th othr suffx of th Kronr Dt: Tnsor uus T strt 6

14 Lopod Kronr Lopod Kronr ws Grn thtn who word on nur thory nd gr. orn: Dr 7, 8, Lgn, Pond Dd: Dr 9, 89, rn, Grny Tnsor uus T strt 7 Unt vtors Th thr unt vtors tht hv ony on non-vnshng oponnt r th ntur ss of th fr of rfrn O nd r utuy orthogon:, 0, 0 Or: 0,, 0 0, 0, Cry w hv: Tnsor uus T strt 8

15 Unt vtors y onsdrng rotton gvn y n orthogon trx th s vtors r trnsford: Thrfor: y oprng th sond nd thrd nt w hv: Tht s th w of trnsforton of vtor oponnts. Tnsor uus T strt 9 ss of non-opnr vtors Th ntur ss s not th ony ss. y onsdrng thr nonopnr vtors, nd (gn thy shoud not hv th s drton) ny vtor d n xprssd s: d Whr th onstnts n dtrnd y sovng th foowng nr syst of qutons: d d d Sn th vtors r non-opnr th dtrnnt dos not vnsh. Tnsor uus T strt 0

16 ss of non-opnr vtors If M s non-sngur trx th vtors: M M M r non-opnr for: M Dos not vnsh f M 0 ry th "rrd" vtors for nw ss. ut suh gnr trnsforton ts outsd of th Crtsn vtors whh r onrnd wth ss of utuy orthogon vtors. Tnsor uus T strt Sr produt: Th sr (or dot) produt of two vtors s dfnd s (whr s th ng twn th two vtors nd ): os nd rd " dot ". y rng tht th ntur ss unt vtors r utuy orthogon w hv: Thus: Th sr produt s nvrnt undr rotton of xs s n drty vrfd: Whr sn s n orthogon trx Tnsor uus T strt

17 Sr produt: If nd r th unt vtors n th drton of nd : os os nd os Is th proton of th vtor on th drton of th vtor. If th vtors r orthogon thn os = 0 nd th sr produt: 0 Th sr produt s ry outtv ut so dstrutv wth rspt to ddton: Tnsor uus T strt Vtor produt Th vtor (or ross) produt (rd " ross ") of two vtors s dfnd s th vtor nor to th pn of nd of gntud sn drtd n wy tht, nd ( ) for rght-hndd syst. Cry th vtor produt s not outtv: Th gntud of ( ) s th r of th progr two of whos sds r th vtors nd. Tnsor uus T strt 4

18 Vtor produt Th vtor produt of th ss unt vtors r unt vtors nd: 0 Thrfor: Or Tnsor uus T strt 5 Lv-Cvt syo In thts, prtury n nr gr, tnsor nyss, nd dffrnt gotry, th Lv-Cvt syo rprsnts oton of nurs; dfnd fro th sgn of prutton of th. orn: Mrh 9, 87, Pdu, Ity Dd: Dr 9, 94, Ro, Ity Tnsor uus T strt 6

19 Vtor produt vry vu notton n ntrodud wth Lv-Cvt (or prutton) syo. 0,, -, f f f ny two of,, r th s s n vn prutton of, nd s n odd prutton of, nd Thrfor: It s sy to s tht th Lv Cvt syo n usd to ut th dtrnnt of trx: Tnsor uus T strt 7 Trp sr produt Th trp sr produt s dfnd s: Th vnshng of th trp produt s th ondton for o-pnrty of th thr vtors. Th trp sr produt n physy ntrprtd s th vou of th prppd wth sds, nd. Tnsor uus T strt 8

20 Trp vtor produt Th produt ( ) s d trp vtor produt nd, sn s vtor nor to th pn of oth nd nd ( ) s vtor nor to ( ), ust n th pn ford y nd. It n vutd strtng fro th dntty: For = th frst r s dffrnt fro zro ony f, nd,,,. Thrfor: Hn: prutton Tnsor uus T strt 9 Vtor dntts p p d d d d d d 0 d nus Jos dntty Pythgorn thor Tnsor uus T strt 40

21 Voty du to rgd ody rotton Suppos tht rgd ody rotts out n xs through th orgn wth drton gvn y. If s th ngur voty th rotton n dntfd y th vtor. Lt P pont n th ody t poston x. Thn drton of PR of gntud x sn. In short ntrv t th pont P ovs to R nd th vtor PR= x s: x x t In th t t 0, on fnds: t 0 x t v x x s vtor n th Whnvr th voty of pont n rprsntd s vtor produt of onstnt vtor wth th poston vtor thn th oton s du to pur rotton. Tnsor uus T strt 4 Sond ordr tnsors: vtor ws dfnd s: Crtsn vtor,, n thr dnsons s quntty wth thr oponnts, nd, n th fr of rfrn O, whh, undr rotton of th oordnt fr to o: Sry w dfn tnsor s n ntty hvng 9 oponnts n th fr of rfrn O, whh, undr rotton of th oordnt fr to o: pq p q W w dntfy tnsors wth dou undrnd syo, ut oftn od pt ttr s usd. Tnsor uus T strt 4

22 Sond ordr tnsors: Th oponnts of sond ordr tnsor n wrttn n trx for: Th prvous quton () n tnsor for os: Whr s th trnspos of (.. ). tnsor s d sytr f. Cry sytr tnsor hs ony 6 dstnt oponnts. tnsor s d ntsytr f. Cry n ntsytr tnsor hs ony dstnt oponnts. Tnsor uus T strt 4 Sond ordr tnsors: Cr shoud tn n dng wth non-sytr tnsors ry th prvous quton () y sdng nd shoud orrty ntrprtd. pq p q or roust syoogy (oftn d dyd notton) s otnd f w do not drop th unt vtors fro th qutons: p pq In ths s t s r tht p s th trnspos of. q p p q q Tnsor uus T strt 44

23 Exps of sond ordr tnsors Th Kronr dt s sytr tnsor: pq p q pq pq Whr th st quty s onsqun of th orthogonty of. Th oponnts of r th s n oordnt systs thrfor s n sotrop tnsor. If nd r two vtors thr tnsor produt s sond ordr tnsor: pq pq p q p q p q s nory d dyd. Othr portnt tnsors r th nrt, strss nd rt of strn tnsors. Tnsor uus T strt 45 Sr utpton nd ddton If s sr thn th utpton nd ddton of tnsors r dfnd s: y dfnng th sytr nd n ntsytr prt of : s It s vdnt tht ny tnsor n rprsntd s th su of sytr nd n ntsytr prt: s Tnsor uus T strt 46

24 Tnsor ontrton nd utpton Th oprton of sung th oponnts of tnsor ovr two of ts nds s d ontrton: For sond ordr tnsor th ontrton s sr nd s d th tr of th tnsor. Oftn th notton tr() s usd to ndt th tr of th tnsor. If nd r sond ordr tnsor thr tnsor produt s fourth ordr tnsor wth oponnts n th rrd oordnt syst: pq rs p q Tht s th nogu of pq p q nd, thrfor w usd n th dfnton of hghr ordr tnsors. Th ontrtons of fourth ordr tnsor r sond ordr tnsors,.g. Tnsor uus T strt r s p q r s 47 Tnsor sr produt Nory th sr produt s usd nstd of th ontrton: nd for th othr thr: Ps not tht.g.: us Tnsor uus T strt 48

25 Tnsor dou sr produt In gnr w hv: Th dou dot produt (or dou ontrton) s dfnd s th sr: : : ross produt owrs th su of th ordr of th tnsor oprnds y ftor on wh sng dot of two nd dou dot y ftor 4. In nothr wy: n rrow ( ) s on (undr)n nd h dot ( ) two ns. Tnsor uus T strt 49 Th vtor of n ntsytr tnsor: n ntsytr sond ordr tnsor oponnts so y ntrodung vtor 0 Sn: hs ony thr ndpndnt on n wrt: Whr us oth nd shoud dffrnt fro nd. sds oth vn nd odd pruttons ontrut to th su. Th vtor of n ntsytr sond ordr tnsor dfnd s: On hs: v 0 : p q qp 0 : p q qp s thrfor Tnsor uus T strt 50

26 Th vtor of n ntsytr tnsor: Ry: Whr th ondton of sytry hs n usd: Tnsor uus T strt 5 Cnon for of sytr tnsor For prtur vtor nd tnsor t y our tht thr sr produt hs th s drton of. In ths s w hv: Or, n oponnt notton: 0 Tht s hoognous syst of thr nr qutons for th thr unnown. souton of ths systs xsts ony f th dtrnnt of th offnt vnshs. Thrfor, th foowng hrtrst quton hods: I I I 0 Whr th quntts I r d th nvrnts of th tnsor. I tr ( I I ) Tnsor uus T strt Q 5

27 Cnon for of sytr tnsor W so hv: I tr tr tr Cry r th hrtrsts vus or gnvus nd th orrspondng th hrtrsts drtons or gnvtors. It n shown tht whn tr()=0: I Q s tr tr s s Tnsor uus T strt 5 Cnon for of sytr tnsor If th gnvus r dstnt thn t n provd tht th gnvtor r utuy orthogon. y norsng th nd hngng th syo to w hv: p p p p q pq Thus p s n orthogon trx. y hngng th rfrn syst ordngy w hv: p q p p q p pq Th tnsor n ths nw oordnt syst hs dgon for: Th hrtrst drtons r nown s th tnsor prnp xs. Tnsor uus T strt 54

28 Vtor nd tnsor dntts : : : Tnsor uus T strt 55 Hghr ordr tnsors In gnr w dfn tnsor of ordr n (.. n ts undrnd) s n ntty hvng n oponnts n provdd tht undr rotton to nw oordnt fr thy trnsfor ordngy to: pq...t p q... nt...n If th ntrhng of two nds dos not hng th oponnts th tnsor t s sd to sytr wth rspt to ths nds. sr dfnton for ntsytry hods. Th gr of hghr ordr tnsor rns prty unhngd: C C Tnsor uus T strt 56

29 Th quotnt ru Th quotnt ru s usd to prov tht nn quntts r th oponnts of tnsor. If nd r vtors nd thn r th oponnts of tnsor. Th usfunss of ths s tht = y rs n ny phys stuton n whh s nown tht oth nd r vtors thrfor y th quotnt ru w n sy tht th quton hods n ny rfrn syst. W shoud prov tht: pqq p pq p q y dfnng th frst rton s stsfd nd sn oth pq p q nd r vtors: q q qq p p pqq p p p p qq pq p q q 0 Tht sn nd r ndpndnt provs th thss. Th s proof y sy xtndd,.g C Tnsor uus T strt 57 Isotrop tnsors pq p q n sotrop tnsor s on whos oponnts rn unhngd y ny rotton of th fr of rfrn. Cry sr r sotrop. Thr r no sotrop vtors nd th ony sotrop sond ordr tnsor s th Kronr dt. 0 0 Frst w t prutton of th xs: W hv: ut for th sotropy w hv: nd sr rton for th othr oponnts. y onsdrng prutton nd rfton of xs: Th off xs oponnts shoud zro Thrfor: 0 0 Tnsor uus T strt 58

30 Isotrop tnsors n sotrop sond ordr tnsor s ry onntd to sphr. Ry sn x x s th quton of qudr surf tht s nvrnt of th xs rottons. Th ony sotrop thrd ordr tnsor s. S th rs oo for dts. Th produt of sotrop tnsors s n sotrop tnsor ut t s qut ntrt to fnd th gnr sotrop fourth ordr tnsor gn s th rs oo for dts. onvnnt rprsntton of th gnr for s: T pq pq p q q p Th sond tr s sytr wth rspt to th frst nd sond or thrd nd fourth nds nd th thrd tr s ntsytr wth rspt to th. p q q p Tnsor uus T strt 59 x vtors Th ony trnsforton tht w hv onsdrd s rotton of rght hndd Crtsn syst. sght xtnson woud ow so rftons.. rght hndd oordnt fr s trnsford n ft hndd on. Th trx s st orthogon ut wth ngtv dtrnnt. Cry, th vtor produt, tht strty dpnd on th ho of rght hndd rfrn syst, s not nvrnt wth rspt to sng rfton ut hngs th sgn. vtor whh hs ths hvour s nory d n x vtor or psudo vtor. It n shown tht th Lv Cvt syo s psudo tnsor. Tnsor uus T strt 60

1.9 Cartesian Tensors

1.9 Cartesian Tensors Scton.9.9 Crtsn nsors s th th ctor, hghr ordr) tnsor s mthmtc obct hch rprsnts mny physc phnomn nd hch xsts ndpndnty of ny coordnt systm. In ht foos, Crtsn coordnt systm s sd to dscrb tnsors..9. Crtsn

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

Applications of trees

Applications of trees Trs Apptons o trs Orgnzton rts Attk trs to syst Anyss o tr ntworks Prsng xprssons Trs (rtrv o norton) Don-n strutur Mutstng Dstnton-s orwrng Trnsprnt swts Forwrng ts o prxs t routrs Struturs or nt pntton

More information

First looking at the scalar potential term, suppose that the displacement is given by u = φ. If one can find a scalar φ such that u = φ. u x.

First looking at the scalar potential term, suppose that the displacement is given by u = φ. If one can find a scalar φ such that u = φ. u x. 7.4 Eastodynams 7.4. Propagaton of Wavs n East Sods Whn a strss wav travs throgh a matra, t ass matra parts to dspa by. It an b shown that any vtor an b wrttn n th form φ + ra (7.4. whr φ s a saar potnta

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

Bayesian belief networks: Inference

Bayesian belief networks: Inference C 740 Knowd rprntton ctur 0 n f ntwork: nfrnc o ukrcht o@c.ptt.du 539 nnott qur C 750 chn rnn n f ntwork. 1. Drctd ccc rph Nod rndo vr nk n nk ncod ndpndnc. urr rthquk r ohnc rc C 750 chn rnn n f ntwork.

More information

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 orthstar expressly reserves its common law copyright and other property rights for all ideas, provisions and plans represented or indicated by these drawings,

More information

DOI: /jam.v14i2.7401

DOI: /jam.v14i2.7401 Nutrosoph Soft oduls Kml Vlyv Sd Byrmov Dprtmnt of Algbr nd Gomtry of Bku Stt Unvrsty ZKhllov str AZ48 Bku Azrbjn Abstrt kml607@mlru bysd@gmlom olodtsov nttd th onpt of soft sts n [7] j t l dfnd som oprtons

More information

Definition of vector and tensor. 1. Vector Calculus and Index Notation. Vector. Special symbols: Kronecker delta. Symbolic and Index notation

Definition of vector and tensor. 1. Vector Calculus and Index Notation. Vector. Special symbols: Kronecker delta. Symbolic and Index notation Dfnton of vctor nd tnsor. Vctor Clculus nd Indx Notton Crtsn nsor only Pnton s Chp. Vctor nd ordr tnsor v = c v, v = c v = c c, = c c k l kl kl k l m physcl vrbl, sm symbolc form! Cn b gnrlzd to hghr ordr

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab Fndmntls of Contnm Mchncs Sol Ntonl Unvrsty Grphcs & Md Lb Th Rodmp of Contnm Mchncs Strss Trnsformton Strn Trnsformton Strss Tnsor Strn T + T ++ T Strss-Strn Rltonshp Strn Enrgy FEM Formlton Lt s Stdy

More information

On the vierbein formalism of general relativity

On the vierbein formalism of general relativity On th vrn formlsm of nrl rltvty T. M Dprtmnt of Journl Cntrl Chn Norml Unvrsty Wuhn Hu PRO Popl s Rpul of Chn E-Ml: mto@ml.nu.du.n mtowh@pul.wh.h.n Astrt: Both th Enstn-Hlrt ton nd th Enstn qutons r dsussd

More information

Computer Graphics. Viewing & Projections

Computer Graphics. Viewing & Projections Vw & Ovrvw rr : rss r t -vw trsrt: st st, rr w.r.t. r rqurs r rr (rt syst) rt: 2 trsrt st, rt trsrt t 2D rqurs t r y rt rts ss Rr P usuy st try trsrt t wr rts t rs t surs trsrt t r rts u rt w.r.t. vw vu

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

Graphs Breadth First Search

Graphs Breadth First Search Grp Brdt Frt Sr SFO ORD LAX DFW - 1 - Outo Ø By undrtndn t tur, you oud to: q L rp ordn to t ordr n w vrt r dovrd n rdt-rt r. q Idnty t urrnt tt o rdt-rt r n tr o vrt tt r prvouy dovrd, ut dovrd or undovrd.

More information

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1)

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1) Conrgnc Thors for Two Itrt Mthods A sttonry trt thod for solng th lnr syst: Ax = b (.) ploys n trton trx B nd constnt ctor c so tht for gn strtng stt x of x for = 2... x Bx c + = +. (.2) For such n trton

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch.

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch. Wnn f gn ht Wnn Song A g t ht Tn ong to A k g wnd A ong d no. no Sh Wnn Wnn th Wth. y t d to A ong k t Bg gn y H go wth Wnn Whn h f. wnd ootk H Wu Wu th t. Ptu Dtony oo hopt oon okt hng gd ho y ktod nh

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

4.8 Huffman Codes. Wordle. Encoding Text. Encoding Text. Prefix Codes. Encoding Text

4.8 Huffman Codes. Wordle. Encoding Text. Encoding Text. Prefix Codes. Encoding Text 2/26/2 Word A word a word coag. A word contrctd ot of on of th ntrctor ar: 4.8 Hffan Cod word contrctd ng th java at at word.nt word a randozd grdy agorth to ov th ackng rob Encodng Txt Q. Gvn a txt that

More information

A Probabilistic Characterization of Simulation Model Uncertainties

A Probabilistic Characterization of Simulation Model Uncertainties A Proalstc Charactrzaton of Sulaton Modl Uncrtants Vctor Ontvros Mohaad Modarrs Cntr for Rsk and Rlalty Unvrsty of Maryland 1 Introducton Thr s uncrtanty n odl prdctons as wll as uncrtanty n xprnts Th

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

² Ý ² ª ² Þ ² Þ Ң Þ ² Þ. ² à INTROIT. huc. per. xi, sti. su- sur. sum, cum. ia : ia, ia : am, num. VR Mi. est. lis. sci. ia, cta. ia.

² Ý ² ª ² Þ ² Þ Ң Þ ² Þ. ² à INTROIT. huc. per. xi, sti. su- sur. sum, cum. ia : ia, ia : am, num. VR Mi. est. lis. sci. ia, cta. ia. str Dy Ps. 138 R 7 r r x, t huc t m m, l : p - í pr m m num m, l l : VR M rá s f ct st sc n -, l l -. Rpt nphn s fr s VR ftr ch vrs Ps. 1. D n, pr bá m, t c g ví m : c g ví ss s nm m m, t r r r c nm m

More information

5. 5. Detection of of Signals in in Noise

5. 5. Detection of of Signals in in Noise 5. 5. Dtton of of Sgnl n n o Dtton probl: Gvn th obrvton vtor, w, thn, prfor ppng dodng fro to n ttd ˆ of th trnttd ybol, n wy tht would nz th probblty of rror n th don kng pro. W wll how tht, n th tht

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy. LTNY OF TH SNTS Cntrs Gnt flwng ( = c. 100) /G Ddd9/F ll Kybrd / hv Ddd9 hv hv Txt 1973, CL. ll rghts rsrvd. Usd wth prmssn. Musc: D. Bckr, b. 1953, 1987, D. Bckr. Publshd by OCP. ll rghts rsrvd. SMPL

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem Avll t http:pvu.u Appl. Appl. Mth. ISSN: 9-9466 Vol. 0 Issu Dr 05 pp. 007-08 Appltos Appl Mthts: A Itrtol Jourl AAM Etso oruls of Lurll s utos Appltos of Do s Suto Thor Ah Al Atsh Dprtt of Mthts A Uvrst

More information

Inner Product Spaces INNER PRODUCTS

Inner Product Spaces INNER PRODUCTS MA4Hcdoc Ir Product Spcs INNER PRODCS Dto A r product o vctor spc V s ucto tht ssgs ubr spc V such wy tht th ollowg xos holds: P : w s rl ubr P : P : P 4 : P 5 : v, w = w, v v + w, u = u + w, u rv, w =

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

On the Existence and uniqueness for solution of system Fractional Differential Equations

On the Existence and uniqueness for solution of system Fractional Differential Equations OSR Jourl o Mhms OSR-JM SSN: 78-578. Volum 4 ssu 3 Nov. - D. PP -5 www.osrjourls.org O h Es d uquss or soluo o ssm rol Drl Equos Mh Ad Al-Wh Dprm o Appld S Uvrs o holog Bghdd- rq Asr: hs ppr w d horm o

More information

D t r l f r th n t d t t pr p r d b th t ff f th l t tt n N tr t n nd H n N d, n t d t t n t. n t d t t. h n t n :.. vt. Pr nt. ff.,. http://hdl.handle.net/2027/uiug.30112023368936 P bl D n, l d t z d

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

FINITE ELEMENT ANALYSIS OF

FINITE ELEMENT ANALYSIS OF FINIT LMNT NLYSIS OF D MODL PROBLM WITH SINGL VRIBL Fnt lmnt modl dvlopmnt of lnr D modl dffrntl qton nvolvng sngl dpndnt nknown govrnng qtons F modl dvlopmnt wk form. JN Rddy Modlqn D - GOVRNING TION

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

What do you know? Listen and find. Listen and circle. Listen and chant. Listen and say. Lesson 1. sheep. horse

What do you know? Listen and find. Listen and circle. Listen and chant. Listen and say. Lesson 1. sheep. horse Animls shp T h i nk Wht o you know? 2 2:29 Listn n fin. hors Wht s this? Wht s this? It s got ig nos. It s ig n gry. It s hors! YES! 2 Wht r ths? Wht r ths? Thy v got two lgs. Thy r smll n rown. Thy r

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t 2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

Humanistic, and Particularly Classical, Studies as a Preparation for the Law

Humanistic, and Particularly Classical, Studies as a Preparation for the Law University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1907 Humanistic, and Particularly Classical, Studies as a Preparation for the Law

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË CHELOURANYAN CALENDAR FOR YEAR YEAR OF SAI RHAVË I tou woust n unon wt our Motr, now tt tou st nvr t Hr. I tou woust sp t v o mttr, now tt tr s no mttr n no v. ~Cry Mry KEY TO CALENDAR T Dys o t W In t

More information

An action with positive kinetic energy term for general relativity. T. Mei

An action with positive kinetic energy term for general relativity. T. Mei An ton wt post nt ny t fo n tty T (Dptnt of Jon Cnt Cn o Unsty Wn H PRO Pop s Rp of Cn E-: to@nn tow@pwn ) Astt: At fst w stt so sts n X: 7769 n tn sn post nt ny oont onton n y X: 7769 w psnt n ton wt

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

Vexilla regis prodeunt

Vexilla regis prodeunt Vl prt Vnnus Frn (530609) Cn Pir l Ru (c. 1452 151) pr t d,,, r, : mn m p V Qu Im Ar B spn gn sn dm D r p pl br Qu cr ns cn lc s c gt cr n l d r mm t l, cr v n fc 4 R p st d br qu r nt c t qu r r pn prd

More information

T H E S C I E N C E B E H I N D T H E A R T

T H E S C I E N C E B E H I N D T H E A R T A t t R u r s - L x C t I. xtr turs t Lx Ct Rurs. Rr qurtr s s r t surt strutur. Ts Att Rurs rv ut us, s srt t tr t rtt rt yur t w yu ru. T uqu Lx st ut rv ss ts ss t t y rt t tys t r ts w wr rtts. Atrx

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

Advanced Queueing Theory. M/G/1 Queueing Systems

Advanced Queueing Theory. M/G/1 Queueing Systems Advand Quung Thory Ths slds ar rad by Dr. Yh Huang of Gorg Mason Unvrsy. Sudns rgsrd n Dr. Huang's ourss a GMU an ma a sngl mahn-radabl opy and prn a sngl opy of ah sld for hr own rfrn, so long as ah sld

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

fiff w 4h WEDNESDAY JULY 23 1SS3 COMKCTIOXKHVI 4 4Ty X 41x1441 as x n rcnsut4 Hotti su KEEPS ALWAYS ON HAND A4 HMlwll l4 Vlt I W

fiff w 4h WEDNESDAY JULY 23 1SS3 COMKCTIOXKHVI 4 4Ty X 41x1441 as x n rcnsut4 Hotti su KEEPS ALWAYS ON HAND A4 HMlwll l4 Vlt I W z RR GR NN N 5 P R d P N N F N Q d R F d d Z D d Q d 5 d g R P 9 g F d g N 9 Q R R F F d z z 5 P 9 d RNY N DRD F R G R 5 R 5 R 5 D N N d N RN N Z R P P P 8 D 5 5 z Z g 5 YY d R F G R R N 5 d D D F P Y

More information

Binomials and Pascal s Triangle

Binomials and Pascal s Triangle Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Math 656 March 10, 2011 Midterm Examination Solutions

Math 656 March 10, 2011 Midterm Examination Solutions Math 656 March 0, 0 Mdtrm Eamnaton Soltons (4pts Dr th prsson for snh (arcsnh sng th dfnton of snh w n trms of ponntals, and s t to fnd all als of snh (. Plot ths als as ponts n th compl plan. Mak sr or

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

n

n p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

More information

Th pr nt n f r n th f ft nth nt r b R b rt Pr t r. Pr t r, R b rt, b. 868. xf rd : Pr nt d f r th B bl r ph l t t th xf rd n v r t Pr, 00. http://hdl.handle.net/2027/nyp.33433006349173 P bl D n n th n

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

No-bend Orthogonal Drawings of Series-Parallel Graphs

No-bend Orthogonal Drawings of Series-Parallel Graphs No-nd Orthoonl Drwns of Srs-Prlll Grphs (Etndd Astrt) Md. Sdur Rhmn, Nortsuu E, nd Tko Nshzk Dprtmnt of Computr Sn nd Ennrn, Bnldsh Unrsty of Ennrn nd Thnoloy (BUET), Dhk 000, Bnldsh sdurrhmn@s.ut..d Grdut

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

TABLE OF CONTENTS cont. TABLE OF CONTENTS. Picture & Matching Cards cont. Biomes Flow Charts. freshwater marine wetland desert forest grassland

TABLE OF CONTENTS cont. TABLE OF CONTENTS. Picture & Matching Cards cont. Biomes Flow Charts. freshwater marine wetland desert forest grassland TABLE OF CONTENT Bios Fow Chrts frshwtr rin wtnd dsrt forst grssnd tundr Pictur & Mtching Crds trrstri qutic frshwtr rin (ocn) wtnd dsrt forst grssnd tundr rivrs & strs ks & onds cost/stury/intr-tid ocn

More information

TRASH ENCLOSURE WITH SOLID GATE 4 STORY BUSINESS / RESIDENTIAL BUILDING CONTAINING 2 BUSINESS SPACES AND 6 DWELLING UNITS 6' - 0"

TRASH ENCLOSURE WITH SOLID GATE 4 STORY BUSINESS / RESIDENTIAL BUILDING CONTAINING 2 BUSINESS SPACES AND 6 DWELLING UNITS 6' - 0 NSN N. PUN WY R. P 0. SG S 4 SRY USNSS / RSN UNG NNNG USNSS SPS N 6 WNG UNS RS NSUR W S G.. RSRV PRKNG $50 N SGN RV S (7) UR PRKNG SPS ' - PRPRY N M N, YP PU Y SG RNGS S GNR NS 6" G UR rchitecture nteriors

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Gilbert the Green Tree Frog

Gilbert the Green Tree Frog Gbrt th Gr Tr Frog A org Kpr Kd book Wrtt by Stph Jk Iutrtd by T Eor ONCE UPON A TIME thr w frog md Gbrt. Gbrt w Gr Tr Frog. H fmy w gr. H hom w gr. Ad omtm v h food w gr. Gbrt w ck d trd of bg o gr th

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information