CHAPTER 1 FUNDAMENTAL CONCEPTS: VECTORS

Size: px
Start display at page:

Download "CHAPTER 1 FUNDAMENTAL CONCEPTS: VECTORS"

Transcription

1 CHAPTER FUNDAMENTAL CONCEPTS: VECTORS. ( A + B ( iˆ+ ˆj + ( ˆj+ kˆ iˆ+ ˆj+ kˆ A+ B ( (b A B ( iˆ+ ˆj ( ˆj+ kˆ iˆ+ ˆj k ˆ (c AB (( + (( + (( (d iˆ ˆj kˆ A B iˆ( + ˆj( + kˆ( iˆ ˆj+ kˆ A B ( (( + ((4 + (( 6. ( A ( B C ( iˆ ˆj ( iˆ ˆj kˆ A+ B C iˆ+ ˆj+ k 4 ˆj (( + ((4 + (( 4 (b A ( B C ( ˆ 8 4 A B C A B C 8 A B C A C B A B C 4 iˆ+ k 4ˆj 4iˆ 8ˆj+ 4 kˆ (c ( ˆ A B C C A B C B A C A B ( iˆ+ ˆj 4( iˆ+ kˆ 4iˆ+ 4kˆ ( ( ( (

2 . AB ( ( + ( ( + (( 5 csθ AB θ cs ( A iˆ+ ˆj+ kˆ : bdy dignl A A A iˆ iˆ+ ˆj ˆj+ kˆ kˆ (b B iˆ+ ˆj : fce dignl B B B (d (c A B csθ AB C A B θ 9 iˆ ˆj kˆ.5 B B B A C ACsinθ Cy Csinθ A u A C ACcsθ u Cx Ccsθ A A B A u B A B C Cx + Cy A+ A B A A AB A u A B A A + A da ˆ d ˆ d d i αt + j βt + k γt iˆα + ˆ j βt+ kˆγt dt dt dt dt.6 ˆ ˆ j β + kˆ 6γ t dt d A

3 A B q q + q + q q+.7 ( q ( q, q A B A B A B A B A B A + B A + B + AB Since A B ABcsθ AB, A + B A + B A B ABcsθ A B csθ A B B csθ B A B C A C B A B C.9 Shw ( ( ( iˆ ˆj kˆ B B AC + A C + AC B A B + A B + A B C A B ( x y z x x y y z z x x y y z z Cx Cy Cz ( AxBC x x + ABC y x y + ABC z x z ABC x x x ABC y y x ABC z z xˆ i ( A ˆ xbc y x ABC y y y ABC z y z ABC x x y ABC y y y ABC z z y j ( A ˆ xbc z x ABC y z y ABC z z z ABC x x z ABC y y z ABC z z z k ( ABC ˆ y x y + ABC z x z ABC y y x ABC z z x i ( x y x z y z x x y z z y ( x z x y z y x x z y y z + ABC + ABC ABC ABC ˆj + ABC + ABC ABC ABC kˆ

4 iˆ ˆj kˆ A A A x y z B C B C B C B C B C B C y z z y z x x z x y y x ( y x y y y x z z x + z x z ˆj ( ABC z y z ABC z z y ABC x x y ABC x y x kˆ ( Ax BzCx AxBxCz AyByCz AyBzCy iˆ A B C A B C A B C A B C y Asinθ Α xy + y ( B x xy + yb xy AB sinθ Α A B. iˆ ˆj kˆ Ax Ay Az Bx By Bz A B C A B B B B B B A A A B A C x y z x y z x y z ( C C C C C C x y z x y z C C C x y z. x z u A C B y Let A (Ax,Ay,Az, B (,By, nd C (,Cy,Cz C z is the pependicul distnce between the plne A, B nd its ppsite. u B xc is diected lng the x-xis since the ects B, C e in the y,z plne. ux B xc ByC z is the e f the pllelg fed by the ects B, C. Multiply tht e ties the height f plne A, B A x t get the lue f the pllpiped V Au A B C A BxC x x x y z 4

5 . F ttin but the z xis: iˆ iˆ cs φ ˆj ˆj, kˆ k ˆ iˆ ˆj sinφ ˆji ˆ sinφ F ttin but the y xis: iˆ iˆ cs θ kˆ kˆ, ˆj ˆj iˆ kˆ sinθ kˆ iˆ sinθ csθ sinθ csφ sinφ csθ csφ csθ sinφ sinθ t T sinφ csφ sinφ csφ sinθ csθ sinθ csφ sinθ sinφ csθ.4 ˆ ˆ i i cs ˆ ˆ i j sin ˆ ˆ j i sin ˆ ˆ j j cs kˆ iˆ kˆ ˆj iˆ kˆ ˆj kˆ + Ax A y A z A.iˆ ˆj kˆ kˆ kˆ 5

6 .5. Rtte thu φ but z-xis φ 45. Rtte thu θ but x -xis θ 45. Rtte thu ψ but z -xis ψ 45 R φ R θ R ψ R θ R φ R ψ + α R( ψθφ,, RψRθRφ + R ( ψ, θ, φ β γ α Cnditin is: x Rx whee x nd x β γ Since x x we he: ψ + β + α Afte lt f lgeb:.6 ˆ τ ctˆ τ c t & ˆ τ + nˆ cˆ τ + nˆ ρ b α, 4 β +, γ 4 6

7 b t t, ˆ τ bc nd cˆ τ + cnˆ c c bc csθ bc c θ 45.7 ( t ib ˆ ω sin ( ωt + ˆj bωcs( ω t b t+ b t b + t t ib ˆ ω csωt ˆj bω sinω t ( ω sin ω 4 ω cs ω ω( cs ω ( bω + t sin ω t t, bω ; t t ib cs t jb sin t+ kct t ib ˆ ω sinωt ˆjbω csωt+ kc.8 ( ˆ ω ω ˆ ω ω ˆ ( ˆ π t, bω ω b t+ b t+ c b + c ( ω sin ω ω cs ω 4 ( ω 4 kt kt.9 e & ˆ ˆ ˆ + & θeθ bke e + bce êθ kt kt && & θ eˆ + && θ + & & θ eˆ b k c e eˆ + bcke ê θ kt ( + kt bk k c e bcke csφ be k + c be k c + 4c k kt kt k( k + c k ( k + c ( k + c ( k + c csφ. ( & φ ˆR ( & φ && φ R&& R e + R& + R eˆφ + &&ˆ ze bω eˆ + ceˆ R b + c 4 ω 4 z z, cnstnt θ 7

8 t i e + ˆje ( ˆ kt ˆ kt t ike + jke ˆ kt t ik e + ˆjk e. ˆ kt ( ( kt kt. eˆ & + eˆ φ sinθ + eˆ & θ φ θ π π eˆφbω sin + cs 4ωt eθb ωsin 4 t 4 π π eˆ b cs cs( 4 t eˆ φ ω ω θbω sin ( 4 t 8 ω ˆ ( ω π π bω cs cs 4ωt+ sin 4ω t 8 4 Pth is sinusidl scilltin but the equt.. d d + & dt dt & & 8

9 d d d dt dt dt d d ( + + dt dt + + ( & d ( ( & dt.4 ( ( + (.5 τˆ nd ττˆ+ ˆ nn τ, s τ n τ +, s n τ.6 F.4,.7 τ τ 4 ( b ω + 4c t b ω csωt sinωt+ b ω sinωt csωt+ 4c t ct b c n ω + 4 F.5, τ ( b ω cs ωt+ b ω sin ωt+ 4c t 4 6ct b ω + 4c t kt ( + kt be ( k + c bk k c e bcke kt kt bke ( k + c kt kt kt n b e k + c b k e k + c bce k + c ˆn ˆ τ dθ dˆ τ n ˆ dθ ρ 9

10 The figue be shws the unit ects ˆn nd ˆ τ which e nl nd tngent t the cue. The ects e shwn t diffeent pints lng the tjecty. Since the pticle is ing tngentilly t the cue nd in diectin pependicul t ρ, the lcl dius f cutue, we he ˆ τ & ˆ τ + ˆ& τ θ& nˆ n ˆ (since & nd f the be figue ρ ˆ τ nˆ ρ ρ ρ.8 ˆ sin ˆ P ib θ + jbcsθ ˆ cs ˆ el ib & θ θ jb & θ sin θ ˆ ( cs sin ˆ ( sin el ib && θ θ & θ θ jb && θ θ + & θ csθ t the pint θ π, el S, bθ & Nw, P el & θ && b θ & b b el ˆ ˆ ˆ el & elτ + n τ + ρ b + el + el 4 b + nd P el ˆ cs sin ˆ P i + b θ θ jb sinθ + cs θ b b b b ˆn 4 P + csθ + sinθ b b is xiu t θ, i.e., t the tp f the wheel. P

11 sinθ csθ b θ tn b Cents : Nte tht pint n the btt f the wheel is instntneusly t est, i.e., thee is n eltie tin between the gund nd the btt f the wheel ssuing n slipping. x -x x x x.9 %RR x x x x x Theefe, x The tnsftin epesents ttin f 45 but the z-xis (see Exple.8. θ b φ. ( iˆcsθ + ˆj sinθ b iˆcsϕ + ˆj sinϕ ( θ ϕ ( ˆ θ ˆ θ ( ˆ ϕ ˆ b cs ics + jsin ics + jsinϕ cs θ ϕ csθ csϕ+ sinθsinϕ (b b k ˆ sin ( θ ϕ ( i ˆ csθ + ˆ jsinθ ( i ˆ csϕ+ ˆ jsinϕ sin θ ϕ sinθcsϕ csθsinϕ

12 CHAPTER NEWTONIAN MECHANICS: RECTILINEAR MOTION OF A PARTICLE t F c x& F + ct dt t+ t t F c F c x t t dt t + + t 6. ( && x ( F + ct (b (c F && x sin ct t F F t F x& sin ct dt cs ct cs ct c c t F F x ( csct dt sinct c c c F ct && x e F ct t F ct x & e ( e c c F ct F ct x e t e c c c c ct. ( (b dx& dx& dx dx& && x x& dt dx dt dx dx& x& ( F + cx dx xdx & & ( F + cx dx cx x& Fx + x x& ( F + cx dx& && x x& F e dx cx

13 cx xdx & & F e dx F cx F x& e e c c cx F cx x& ( e c dx& && x x& F cs cx dx F xdx & & cs cx dx F x& sin cx c (c x. ( V ( x F x& sin cx c cx F + cx dx Fx + C x V x x cx F cx Fe dx e + C x c V x x F F cxdx x c cx+ C (b (c cs sin.4 ( F( x dv x kx dx x V ( x kx dx kx (b T T x + V x T x (c E T ka (d tuning T x T V( x k( A x x ± A kx A.5 ( F( x kx+ s (b T( x (c E T T V x T kx + x kx kx V x kx dx kx A 4 A kx 4 A 4 4

14 (d V ( x hs xiu t F( x kx kx x ± A A 4 ka V ( x ka ka 4 A 4 E < V x tuning pints exist. If ( Tuning T x ku E ku+ 4 A sling f u, we btin 4E u A ± ka 4E x ± A ka let u x.6 x& ( x.7 F x α x α x && x α α && x x& x x F Mgsinθ.8 dx& F x && x& dx x& bx dx& 4 bx dx 4 F ( bx ( bx F b x 7

15 V gx.45kg ft.48 54J s ft.9 ( (b g g T t c. D (.45kg 9.8 s T 87J kg ( (. ( (.66 t Fdx c dx c dt c t tnh dt (c τ tnh t t t ct τ + tnh d τ τ τ tnh t t ct τ + ln csh τ τ t Nw tnh f t >> τ τ t t Menwhile x dt t tnh dt τ t ln csh τ τ t x ln csh τ τ x ( 5 ft.48 8 ft t (.45kg 9.8 g s t 4.7 c kg (.(.7 s (.45kg τ.54s cg kg (.( s.8 Fdx (.(.7 ( 4.7 ( J ( 4.7(.54 V T 54J 87J 454J. Ging up: F gsin μgcs x 4

16 ( sin.cs && x g + s +t t the highest pint s tup.74 s xup t up + tup Ging dwn: x.87, xdwn t tdwn.7 s t t + t.8 s ttl up dwn, 9.8( dwn. d d dx d c dt dx dt dx c d dx xx c d dx c xx x x c. Ging up: Fx g c d c g k, k dx d dx g k x (Letting x stting f gund ln ( g k x k g+ k kx e g+ k g kx g + e k k 5

17 Ging dwn: F g+ c x d g dx +k d x dx g+ k ln ( g+ k x x k k kx kx e e g g g kx kx e e k k. At the tp s kxx e g + k Cing dwn x xx nd t the btt x g g g k ( k k g g + + k k t t +, g t k g c g k.4 d k x dx x kdx d b x k x b dx k k b x dt x b b x t x b x b b x dt dx d k b x k x b b b 6

18 Since x b, sy.5 Using x sin θ b ( d b sinθ sinθ csθ θ b t k cs b t π 8k d g c c s t, t dt π π θ k dt d g c c 4 dx cx + b b c ln, c + bx+ cx b 4c cx+ b+ b 4 t c c c + 4gc ln c gc c c c gc ( c gc sin θ dθ ( c + c+ c + 4gc( c c + 4gc ( ( t + 4 ln c c c gc c c gc t c+ c c + 4gc c c g t + + c c c Altentiely, when t, d g c t c t dt t c c c c c g c kg.6 5 c.. kg s s 7

19 t + + t.79 s Using Equtin.4. d dt d f g d dx.7 f ( x g( x dx dx dt F xt, f x g t : By integtin, get ( x If d x d dx dt dt dt 7 ( ( 9.8 g t. 5 c. s f ( x g( t This cnnt, in genel, be sled by integtin. F t, f g t : If d f g dt d g( t dt f Integtin gies ( t dx ( t dt dx t dt ( t A secnd integtin gies x x( t.8 d F kx dt d d kx dt dx kxdx d x k +C At x, t C 8

20 x dx k + dt dx dx dt kx + A + B x tn B t x AB A Sling whee A B k x tn k α x&.9 F x Ae Let u e α Integting du t α &&x αe α d k d A F Ae & dt e α du du d α αe du α A dt αu u A t u u α nd substituting e α A ( ln e α + αt α (b t A α α ln + e αt α A α α e + e αt T e α A d A α d A (c e α dx dx e du gin, let u e α du αud d αu du ln u α αu A dx Integting nd sling u α x ( + α α A e u ln u α. d F + g dt 9

21 but 4 ρ π ρπ s ( πρ+ πρ π πρg ρ Nw ρ s, secnd te is negligible-sll hence g nd gt speed t but ρ ρ & ρ 4π & ρ π & Hence gt nd te f 4 ρ 4 ρ gwth t The exct diffeentil equtin f ( be is: 4 4ρ 4ρ & 4 πρ && + πρ πρ g ρ ρ & ρ which educes t: && + g 4ρ Using Mthcd, sle the be nn-line d.e. letting ρ nd R. (sll indp. Gphs ρ shw tht & t nd t

22 . x.sin π ( 5 s t [ ] CHAPTER OSCILLATIONS x& x (.( π ( s s 4 && xx. π 5.7 s s. x.sinω t [] x&. ω cs ω t s When t, x nd x&.5.ω s π ω 5s T.6 s ω x&. x( t x csω t+ sinω t nd ω π f ω ( π ( π [ ] x.5cs t +.59sin t.4 cs α β csαcs β + sinαsin β x Acs ω t φ Acsφcsω t+ Asinφsin t ω x Α csωt+βsinω t, Α Acsφ, Β Asinφ.5 x& + kx x& + kx k x x x& x& ( ( & k x& x ω x x ka x& + kx xx& xx& A x& + x + k x& x& & xx& x& x& xx A x

23 .6 l T π π s.5 s g F spings tied in pllel: F x k x k x k + k x ω s k + k F spings tied in seies: The upwd fce is keq x. Theefe, the dwnwd fce n sping k is keq x. The upwd fce n the sping k is kx whee x is the displceent f P, the pint t which the spings e tied. Since the sping is in equilibiu, kx k x. k eq Menwhile, The upwd fce t P is kx. k x x. The dwnwd fce t P is Theefe, kx k ( x x And eq kx x k + k kx k x k k+ k ω k eq kk ( k+ k.8 F the syste ( M +, kx ( M + X&& The psitin nd cceletin f e the se s f ( M k && x x M + k k x Acs t+ δ dcs t M + M + The ttl fce n, F x && g F + :

24 F g + k x kd g + cs k t M + M + M + F the blck t just begin t lee the btt f the bx t the tp f the eticl scilltins, F t x d : kd g M + g( M + d k γ t.9 x e Acs( ω t φ d dx γt γt e Aω d sin ( ωdt φ γe Acs( ωdt φ dt dx xi t ωd sin( ωdt φ + γ cs( ωdt φ dt γ tn ( ωdt φ ω d thus the cnditin f eltie xiu ccus eey tie tht t inceses by π ω : d π ti+ ti + ω d γ t F the i th xiu: x e i Acs( ω t φ i d i t γ γ i + ω cs( d i+ ωd i+ φ i x e A t e x xi x i+ π γ ω d γ Td e e π. ( (b (c c γ s ω ω γ 6 s d ω 7 s F 48 Ax. Cω 6.4 d γω γω ω tnφ γ γ ( ω ω k ω 5s ω ω γ 7 d s 7 φ 4.4

25 . ( 7 x && + βx& + β x 7 γ β nd ω β ω ω γ 4β ω β (b A F x γω d A 5β ω ω γ β 4 5 d 5 ωd β. ( S, e γ T d γ ln fd ln T d ω ( ω γ d ω ( ω + γ d γ ln f fd + fd + π π f.6hz (b ω ω γ d γ ln f fd fd π π 99.4Hz f d. Since the plitude diinishes by e γ T γt n d ( e e e γ Tn d ωd γ Tn π n Nw ω ω γ d S ( d d ω ω + γ ω + 4 π n d in ech cplete peid, 4

26 π Td ωd ω T π + ωd 4π n ω T F lge n, d + 8 T π n.4 ( (b (c ω.77ω ω ω γ ω ω ω ( ω γ d 4 Q.866 γ γ ω ω ( ω γω tnφ ω ω ω 4ω φ tn 46. ω ω ω ω + ω ω F F A ω.77 D ω ω (d D.5 A( ω f x Axγ ( ω ω + γ γ A ω A, ( ω ω + γ ω ω + γ 4γ ω ω ± γ ω ω ± γ 5

27 .6 (b (c ω ω γ d Q γ γ ω LC, γ R R L LC 4L L Q R RC 4 L L ω C R Q γ R R i t.7 Fext F sinωt I Fe ω nd x( t is the iginy pt f the slutin t: i t x && + cx& + kx F e ω i( ωt φ i.e. xt ( I Ae Asin ( ωt φ whee, s deied in the text, F A ( k ω + c ω nd γω tnφ ω ω t.8 Using the hint, Fext Re( Fe β, whee β α + iω, nd x(t is the el pt f the slutin t: x && + cx& + kx F e βt. t i Assuing slutin f the f: x Ae β φ ( F c k x xe i φ β + β + A F α i αω ω c α + ic ω + k ( cs isin A φ + φ F ( α ω cα + k csφ A ω ( F α+ c s A inφ 6

28 φ tn ω ( c α Using sin φ + cs φ, F A α ω cα +k ( α ω cα + k + ω ( c α A F { ( α ω cα k + + ω ( c α } αt nd x( t Ae cs( ωt φ +the tnsient te..9 ( (b (c l A T π g 8 f A π l, T π.4 4 g 4π l g.84 T l 4π l Using T π gies g, ppxitely 8% t sll. g T λ A B ω ω nd λ 6 B A A 9 f A π B,. 4 A in t. f ( t c e ω n, ±, ±,... n n n n,,,, n n f ( t c cs nω t+ c isin nω t T in t ω nd cn T f ( t e dt T, n, ±, ±,... T T i T cs ω T T n ± ±... cn f t n t dt f t n t T ( ( sin ( ω dt The fist te n cn is the se f n nd n ; the secnd te chnges sign f n s. n. The se hlds tue f the tignetic tes in f t. Theefe, when tes tht cncel in the sutins e discded: 7

29 T f ( t c + T f ( t cs( nω t dtcs nωt n T T + T f ( t sin ( nω t dtsin nωt n T, T T T n ±, ±,..., nd c f ( t dt Nw, due t the equlity f tes in ± n : T f ( t c + T f ( t cs( nω t dtcs nω t n T T + T f ( t sin ( nω t dtsin nωt n T n,,,... Equtins.9.9 nd.9. fllw diectly., in t. f ( t c e ω, c ( n n n T inω t T f t e T π ω ω inω t π f t e π ω π T s cn ( ω dt dt, nd n, ±, ±, π ω inωt ω inωt π ( e dt e dt π + ω π ω in t ω ω inωt e e π inω π inω ω + inπ inπ e e + π in inπ inπ F n een, e e nd the te in bckets is ze. inπ inπ F n dd, e e 4 c n πin, n ±, ±,... 4 inω t f ( t e, n ±, ±,... n π in 4 inωt inωt ( e e, n,, 5,... π n i n 4 sin ( nω t, n,, 5,... n π n f 4 ( t sinω t sin ω sin 5 t ω π 5 t K 8

30 in t n. In stedy stte, xt ( Ae ω φ n n Fn An ( ω n ω + 4γ n ω 4F Nw Fn, n,, 5,... nd ω ω nπ ω Q 9ω s γ γ 4, 4F A π 9ω ω ( 9ω ω F A πω 4F A π 9ω ( 9ω 9ω + 4 4F A 7πω 4F A5 5π ω ( 9ω 5ω + 4 ( 5ω F A5 πω i.e., A : : A : 9.6 :. A 5. ( && x+ ω x y x& Thus y& ω x x& y diide these tw equtins: y& dy ω x x& dx y (b Sling ydy xdx ω + nd Integting Let C A y x + ω A A n ellipse y x ω + C 9

31 .4 The equtin f tin is F ( x x x x &&. F siplicity, let. Then ` ( (b (c && x x x. This is equilent t the tw fist de equtins x& y nd y& x x The equilibiu pints e defined by x x x x + x Thus, the pints e: (-,, (, nd (+,. We cn tell whethe nt the pints epesent stble unstble pints f equilibiu by exining the phse spce plts in the neighbhd f the equilibiu pints. We ll d this in pt (c. dy y& x x The enegy cn be fund by integting dx x& y ydy x x dx+ C 4 y x x + C 4 4 y x x In the wds E T V + + C 4. The ttl enegy C is cnstnt. The phse spce tjecties e gien by slutins t the be equtin 4 x y ± x + C. The uppe ight qudnt f the tjecties is shwn in the figue belw. The tjecties e syeticlly dispsed but the x nd y xes. They f clsed pths f enegies C< but the tw pints (-, nd (+,. Thus, these e pints f stble equilibiu f sll excusins wy f these pints. The tjecty psses thu the pint (, f C nd is sddle pint. Tjecties nee pss thu the pint (, f psitie enegies C>. Thus, (, is pint f unstble equilibiu

32 .5 && θ + sinθ Integting: T 4 & θ & θ d θ csθ dt csθ θ θ dθ csθ csθ θ & θ ( csθ csθ T Tie f pendulu t swing f θ t θ θ is 4 Nw substitute θ sin sinφ θ sin s π φ t θ θ θ dθ nd use the identity csθ sin T 4 θ θ 4 sin sin dφ dθ nd fte se lgeb θ θ θ sin 4 sin sin ( π dφ θ T 4 whee α sin α sin φ 4 αsin φ + αsin φ + α sin φ + K 8 (b π 4 T 4 dφ + αsin φ + α sin φ + K 8 (c θ θ θ θ sin 48 4 α + K... T θ α 9 π α θ T π + + K K

33 CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS Nte t instucts thee is typ in equtin The nge f the pjectile is sin α R x NOT... sin α g g ( ˆ V ˆ V ˆ V F V i j k x y z F c( iyz ˆ + ˆjxz + kxy ˆ (b F V iˆα x ˆjβy kˆ γz ( αx+ βy+ γz (c F V ce ( iˆα + ˆjβ + kˆ γ V V V (d F V eˆ ˆ ˆ eθ eφ θ sinθ φ n F eˆ cn 4. ( (b (c (d iˆ ˆj kˆ F x y z x y z iˆ ˆj kˆ F x y z kˆ ( y x z iˆ ˆj kˆ F kˆ ( x y z y x z cnsetie ScnsetieS cnsetie

34 eˆ ˆ ˆ eθ eφsinθ F sinθ θ φ k n cnsetie 4. ( (b iˆ ˆj kˆ F k cx x x y z xy cx z cx x c ( iˆ ˆj kˆ F x y z z cxz x y y y ˆ x cx ˆ ˆ cz z i j k y y y y y y x cx y y c ls cz z + y y iplies tht c s it ust V x, y, z + t the igin E ( E cnstnt t (,, E α + β + γ +

35 (b α + β + γ α β γ + + α + β + γ α β γ + + (c V x && Fx x x && α V y && βy y V z && γ z z 4.5 ( F ix ˆ + ˆjy n the pth x y : d idx ˆ + ˆjdy (, F d (, F xdx + F ydy xdx + ydy n the pth lng the x-xis: d idx ˆ nd n the line x : d ˆjdy (, F d F dx+ F dy, x y F is cnsetie. (b F iy ˆ ˆjx n the pth x y : (, F d (, F xdx + F ydy ydx xdy (, nd, with x y F d xdx ydy n the x-xis: nd, with y n the x-xis n the line x :, (,,, x (, F d F dx ydx F d F d F dy xdy, y,

36 nd, with x n this pth (, (, F is nt cnsetie. (, F d dy (, F d F Exple.., e V z g z ( + F Appendix D, e z V( z ge + e + x x+ x +K z z V ( z ge + + K e e gz V ( z ge + gz +K With ge n dditie cnstnt, z V ( z gz e F V kˆ V( z z ˆ z kg + z e e ˆ z F kg e x && F x, y && F y dz& z z& g dz e h z zdz & g dz z e h g h z e e z h h e + g e z z && g e 4

37 h g e e z h g e e z e ( hz F Appendix D, ( x h + g + 4g + e, e x x + + +K 8 4 e e z z K z z h + g ge F Exple.., h And with ( x + x, e g g e h + g g e 4.7 F pint n the i esued f the cente f the wheel: ib ˆ csθ ˆjbsin θ t θ ωt, s & i ˆ sinθ ˆ jcsθ b i ˆ sinθ ˆj csθ Reltie t the gund, F pticle f ud leing the i: y bsinθ nd y csθ S y y gt csθ gt nd y bsinθ t csθ gt At xiu height, y : csθ t g csθ csθ h bsinθ csθ g g g h bsinθ + Mxiu h ccus f cs θ g dh b csθ dθ csθ sin g θ 5

38 gb sinθ 4 g b cs θ sin θ 4 4 gb g b gb hx + + g g Mesued f the gund, gb h x b+ + g gb The ud lees the wheel t θ sin 4.8 x Rcsφ R csφ s t csα nd ( csα y Rsinφ x t t x y t gt t gt nd ( sinα y Rcsφ Rcsφ Rsinφ ( sinα g φ csα csα gr cs φ sinφ tnαcsφ cs α cs cs R α α ( tnα csφ sinφ ( sinαcsφ csαsinφ gcs φ gcs φ sin θ + φ sinθ csφ + csθ sinφ csα R sin ( α φ g cs φ dr sinα sin α φ csαcs α φ dα gcs φ + csαcs α φ sinαsin α φ cs θ + φ csθ csφ sinθ sinφ cs α φ F Appendix B, R is xiu f Iplies tht F ppendix B, s R π π φ α φ α + 4 π φ π φ cs + sin g cs φ 4 4 x α 6

39 4.9 π φ π π φ π φ Nw sin cs cs π φ Rx cs + g cs φ 4 Agin using Appendix B, cs θ cs θ sin θ cs θ π Rx cs φ π + + g cs φ cs + φ + g cs φ Using cs π + θ sin θ, Rx sinφ g sin φ R x g ( + sinφ ( Hee we nte tht the pjectile is lunched dwnhill twds the tget, which is lcted distnce h belw the cnnn lng line t n ngle φ belw the hizn. α is the ngle f pjectin tht yields xiu nge, RBxB. We cn use the α esults f pble 4.8 f this pble. We siply he t eplce the ngle φ in the be φ esult with the ngle -φ, t ccunt f the dwnhill h slpe. Thus, we get f the dwnhill nge RBxB csα sin ( α + ϕ R g cs ϕ The xiu nge nd the ngle is α e btined f the pble be gin by ( + sinϕ π eplcing φ with the ngle -φ Rx nd α ϕ. g cs ϕ h ( + sinϕ We cn nw clculte α Rx sinϕ g cs ϕ g sinϕ gh gh Sling f sinϕ sinϕ + π But, f the be sinϕ sin α cs α sin α gh gh Thus sin α + 7

40 Finlly gh gh α + gh + sin csc α csc α + gh (b h h h Sling f RBxB Rx sinϕ sin α csc α Substituting f R csc α nd sling gh x + g 4. We cn gin use the esults f pble 4.8. The xiu slpe nge f pble 4.8 is gien by h Rx g ( + sinϕ sinϕ Sling f sinϕ gh gh sinϕ Thus csϕ xx Rx csϕ h sinϕ We cn clculte csϕ f the be eltin f sinϕ gh gh csϕ ( sin ϕ Inseting the esults f sinϕ nd csϕ int the be x csϕ gh x h sinϕ g 4. We cn siplify this pbles sewht by nting tht the tjecty is syetic but eticl line tht psses thugh the highest pint f the tjecty. Thus we he the fllwing pictue 8

41 xbb hbb (8 ssuing xbb ( hbb, is BB (.8 z zbxb α δ x We he eesed the tjecty s tht hbb 9.8 ft, nd xbb the height nd nge within which Mickey cn ctch the bll epesent the stting pint f the tjecty. hbb ft is the height f the bll when Mickey stikes it t he plte. δ is the distnce behind he plte whee the bll wuld be hyptheticlly lunched t se ngle α t chiee the ttl nge R. xbb ft is the distnce the bll ctully wuld tel f he plte if nt cught by Mickey. (Nte, becuse f the syety, BB the speed f the bll when it stikes the gund ls t the se ngle α t which ws lunched. We will clculte the lue f xbb tie-eesed tjecty! sin α sinαcsα ( The nge f the bll R g g ( The xiu height R x tn g R z α cs α g ( The height t xbb h xtnα x cs α g tnα F ( nd inseting this int ( gies cs α R R R R zx tnα tnα tnα 4 4 4zx Thus, R nd inseting this expessin nd the fist peiusly deied int ( tnα x tnα (4 h xtnα 4zx Let u x tnα nd we btin the fllwing qudtic u 4z u+ 4z h nd sling f u x x u z x ± h zx nd letting h ε z R x, we get 9

42 using u z ε h x ( ε u z z.475.9z. This esult is the cect ne x x x.9zx Thus, tnα.8 α 9.4 x Nw sle f xbb eltin identicl t (4 h x tnα ( x tnα 4z x Agin we btin qudtic expessin f u x tnα which we sle s befe. This tie, thugh, the fist esult f u is the cect ne t use u z ε h nd we btin x x h tnα.9 ft 4. The x nd z psitins f the bll s. tie e x t cs θ z t cs θsinθ gt Since x cs θ The hizntl nge is R g dr The xiu nge dθ cs θ sin θ dr cs θcsθ cs θsin θsinθ dθ g Thus, cs θ cs θ cs θ sin θ sin θ Using the identities: cs θ + cs θ nd sin θ sinθcsθ We get: + csθ cs θ sinθ sinθ csθ cs θ csθ ( + csθ ( cs θ csθ Thus csθ, csθ ( ± 6 Only the psitie t pplies f the θ -nge: θ csθ θ Thus (b f 5s Rx θ 9 5 π

43 dz ( The xiu height ccus t dt cs θ sinθ cs θsinθ gt t T g H cs θsin θ g xiu t fixed θ dh The xiu UpssibleU height dα dh cs θsinθcsθ cs θsin θsin θ dα g Using the be tignetic identities, we get ( + csθ sin cs sin sin sin ( cs θ θ θ θ θ θ sinθ( + csθ( csθ Thee e -ts: sinθ, csθ, csθ The fist tw ts gie iniu heights; the lst gies the xiu Thus, Hx θ cs 7 4. The tjecty f the shell is gien by Eq. 4.. with eplcing x z& g z whee & csθ z& sinθ & & g Thus, z tnθ sec θ θ + Since sec tn θ We he: g g tn θ tn θ + z+ (,z e tget cdintes. The be equtin yields tw pssible ts: 4 tnθ gz g ± g The ts e nly el if 4 gz g The UciticlU sufce is theefe: 4 gz g 4.4 If the elcity ect, f gnitude s&, kes n ngle θ with the z-xis, nd its

44 pjectin n the xy-plne ke n ngle φ with the x-xis: x& s& sinθ csφ, nd F F sinθ csφ x && y& s& sinθ sinφ, nd F F sinθ sinφ y && z& s& csθ, nd F g + F csθ z && Since F cs c( x + y + z x y z & & & &, the diffeentil equtins f tin e nt sepble. x && cs& sinθ csφ csx && dx& dx& ds dx& s& csx && dt ds dt ds dx & c c ds γ ds, whee γ x& ln x ln x ln x & & & γ s x& Siilly x& xe & γ s y& ye & γ s z θ s & φ x y z& g γxx g x 4.5 F eqn 4..6, ln γx + + γ γ x& γ x& u u F Appendix D: ln ( u u K f u < γx x γxx γ xx γ xx 4 ln + tes in γ x& x& x& x& z& xx gxx gxx gxx g xx x + γ γx γx x x + tes in γ & & & & & x x z x + & x xx γ & & gγ x x& 9x& x& z& x ± + 4γ 6γ gγ x & x & 6γ xx z & ± + 4γ 4γ g Since x x >, the + sign is used. F Appendix D: 6γz& 8γz& 6γz& tes in g g 8 g x x x z 8x z x & γ x 4γ + & 4γ + & & g & & g + tes in γ γ

45 F xz 8xz x & & x g & & g γ + K z& sinα nd xz & & sinα : sin α 4 sin αsinα x γ + K x g g 4.6 y x Acs( ωt+ α, x& Aω sin ( ωt+ α f x &, α f x A, x Acsωt x y Bcs( ωt+ β, y& ωbsin ( ωt+ β kb ky + y& with k y 4A, y& ω A nd ω : B 6A + ( 9ω A 5A ω B 5A Then 4A 5Acsβ nd ω A 5ωAsinβ 4 β cs sin y 5Acs( ωt 6.9 Since xiu x nd y displceents e ± A nd ± 5A, espectiely, the tin tkes plce entiely within ectngle f diensin A nd A. Δ β α AB csδ F eqn 4.4.5, tn ψ A B 4 ( A( 5A cs ( tn ψ A 5A 4 ψ tn V && x k x Acs t Acs( t α & + π + α x Fx kx π x

46 V y && 4π x y y Bcs( π t+ β V z && 9π z z z Ccs( π t+ γ π Since x y z t t, α β γ π x Acs πt Asinπt x& Aπ csπt Since x& + y& + z& nd x& y& z&, x& Aπ A π x sinπt π y Bsin π t, y& Bπ csπ t y& π B B π y sin π t π z Csin π t, z& Cπ csπ t z& Cπ C π z sin π t π Since ωx π, ω y π, nd ω z π the bll des etce its pth. π n π n π n tin ω ω ω x y z The iniu tie ccus t n, n, n. 4

47 t in π π AB csδ 4.8 Equtin is tn ψ A B Tnsfing the cdinte xes xyz t the new xes x yz by ttin but the z-xis thugh n ngleψ gien, f Sectin.8: x xcsψ + ysinψ, y xsinψ + ycsψ, x x csψ y sinψ, nd y x sinψ + y csψ x csδ y F eqn. 4.4.: xy + sin Δ A AB B Substituting: ( x cs ψ xy csψsinψ + y sin ψ A csδ x csψ sinψ + xy ( cs ψ sin ψ y csψsinψ AB + ( x sin ψ + xy csψsinψ + y cs ψ sin Δ B F x t be j in xis f the ellipse, the cefficient f x y ust nish. cs ψ sin ψ cs Δ cs sin ( cs ψ sin ψ + ψ ψ A AB B F Appendix B, csψ sinψ sinψ nd cs ψ sin ψ cs ψ sin ψ cs Δ cs ψ sin ψ + A AB B csδ tn ψ B A AB AB csδ tn ψ A B 4.9 Shwn belw is fce-centeed cubic lttice. Ech t in the lttice is centeed within cube n whse 6 fces lies nthe djcent t. Thus ech t is suunded by 6 neest neighbs t distnce d. We neglect the influence f ts tht lie t futhe distnces. Thus, the ptentil enegy f the centl t cn be ppxited s 6 V c α i i d 5

48 d x + y + z α α α x x y z α + + ( d dx x y z d d d n F Appendix D, ( + x + nx+ n( n x +K 4. α α α x x + y + z α α d + + d d x x x + y + z x + y + z + + tes in d d d d α α αx α α α 4x d + x + y + z d d 4 tes in d α α αx α α α d + ( x + y + z + x + d d d ( d x y z d dx x y z α α α x x + y + z d + + d d α α αx α α α d ( x + y + z + x + d d d α α α α α + d ( x + y + z + ( α + x d d Siilly: α α α α α + 4 d x + y + z + y α + d d α α α α α d ( x + y + z + ( α + z d d α α α α V cd 6 ( x + y + z + ( x y z d d d α α 6cd + cd α α x + y + z V A+ B x + y + z x d x d 6

49 î x qb y && Fy qe qxb & qe qb x& + y & qe qbx& qb ee ebx eb && y y + y ee eb && y+ ω y + ωx&, ω ee y x Acs ( t ω + + ω ω + θ y& Aω sin ( ωt+ θ y &, s θ ee y, s A x ω ω + & ee y ( csωt, x ω ω + & qb x& x& + y x& ω y x& ω csωt x& ( x& ω + ωcsωt x ( x& ω t+ sinωt x sinωt+ bt, b x& ω z && F z z z& t+ z z ˆkB ĵe y F q( E+ B B ( ix ˆ& + ˆjy & + kz ˆ& kb ˆ iyb ˆ& ˆjxB & F iqyb ˆ & + ˆjq( E xb & x && Fx qyb & qb x& x& y 4. y b h x b + qh g g b h F gcsθ + R b 7

50 h csθ b h g g R g h b h h b b b b b the pticle lees the side f the sphee when R b b h, i.e., be the centl plne 4. gh + t the btt f the lp, h b b h s gb, gb F g+ R b R g + g + g g b 4. F the equtin f the enegy s functin f s in Exple 4.6., g E s& + s, 4A s is undeging hnic tin with: " k" g g ω 4A A Since s 4Asinφ, φ inceses by π dins duing the tie intel: π T π A ω g F cyclidl tin, x nd z e functins f φ s they undeg cplete cycle eey tie φ chnges by π. Theefe, the peid f the cyclidl tin is ne-hlf the peid f s. A T T π g

51 CHAPTER 5 NONINERTIAL REFERENCE SYSTEMS 5. ( The nn-inetil bsee beliees tht he is in equilibiu nd tht the net fce cting n hi is ze. The scle exets n upwd fce, N, whse lue is equl t the scle eding --- the weight, W, f the bsee in the cceleted fe. Thus N ( A (b N+ g A g 5 N g A N g N g W N g W 4 4 W 5 lb. g W 9 lb. (b The cceletin is dwnwd, in the se diectin s g g N g W + W W W ( Fcent ω ( ω F ω, F eˆ (b F cent cent ω ω 5 s π s ( π 5eˆ 5π dynes utwd Fcent F g 6 ( π ω g g + T A (See Figue 5.. ˆ ˆ ˆ g g j+ Tcsθ j+ Tsinθi i ˆ g Tcsθ g, nd T sinθ tnθ, θ 5.7 g T.5g csθ 5.4 The nn-inetil bsee thinks tht g pints dwnwd in the diectin f the hnging plub bb Thus 4

52 ˆ g g g A g j ˆ i F sll scilltins f siple pendulu: T π g g g g +.5g T π.995π.5g g 5.5 ( f μg is the fictinl fce cting n the A f (b ( bx, s f A ( is the cceletin f the bx eltie t the tuck. See Equtin 5..4b. Nw, f the nly el fce cting hizntlly, s the ccetin eltie t the d is f μ g μg g (F + in the diectin f the ing tuck, the indictes tht fictin ppses the fwd sliding f the bx. g A (The tuck is deceleting. f be, A s g g g A + 6 i x R t ˆ + Ω + jrsin Ωt & iˆωrsin Ω t+ ˆjΩRcsΩ t & & Ω R Ω R cicul tin f dius R 5.6 ( ˆ( cs (b & & ω whee ix ˆ + ˆjy iˆωrsin Ω t+ ˆjΩRcs Ωt ωkˆ ix ˆ + jy ( ˆ

53 iˆωrsin Ω t+ ˆjΩRcsΩt ˆjω x + iˆω y x& ω y ΩRsin Ωt y& ωx +ΩRcsΩt (c Let u x + iy hee i! u& x& + iy& ω y ΩRsin Ωt iω x + iωrcs Ωt iω u ω y + iω x sin cs Re i Ω u& + iωu ΩR Ω t+ iωr Ω t iω t Ty slutin f the f i t i t u Ae ω Ω + Be ω u& i Ae + iωbe ω iωu iωae + iωbe i t i t ω Ω i t iωt i t ( ω u& + iωu i +Ω Be ω s ΩR B ω + Ω Als t t the cdinte systes cincide s u A+ B x + iy x + R Ω A x + R B x + R s, ω + Ω ωr iωt ΩR iωt Thus, u x + e + e ω +Ω ω+ω R ωr A x + ω + Ω 5.7 The x, y fe f efeence is ttched t the Eth, but the x-xis lwys pints wy f the Sun. Thus, it ttes nce eey ye eltie t the fixed sts. The X,Y fe f efeence is fixed inetil fe ttched t the Sun. ( In the x, y tting fe f efeence x( t Rcs( Ω ω t R ε (b x& ( t ( Ω ω Rsin ( Ω ω t t t ( ( Ω ω cs( Ω ω ( Ω sin ( Ω ω y t R t whee R is the dius f the steid s bit nd R E is the dius f the Eth s bit. Ω is the ngul fequency f the Eth s elutin but the Sun nd ω is the ngul fequency f the steid s bit. y& t R t ω R t t (c A A Ω & Ω & Ω Ω ε

54 Whee is the cceletin f the steid in the x, y fe f efeence, A, A ε e the cceletins f the steid nd the Eth in the fixed, inetil fe f efeence. st : exine: A Aε Ω Ω ω ω R Ω Ω Rε Ω Ω R R ω ω Ω Ω R ω Ω R ( ε Thus: Ω ω R Ω nte: ω ω ˆk, Ω Ω ˆk Theefe: ( ix ˆ&& + ˆjy && ( Ω ω Ω Ω ir ˆ cs( ω t ˆjR sin ( ω t ˆ ˆ jω x& + iωy& Thus: && x Ω ω Rcs Ω ω t+ Ω&y ( ω ( ω && y Ω Rsin Ω t Ωx & Let && x ( Ω ω y& nd && y ( Ω ω Then, we he Ω y& ( Ω ω Rcs( Ω ω t+ Ω y & which educes t ( ω cs( ω y& Ω R Ω t Integting ( ω ( ω y Rsin Ω t t t Als, x& Ω ω Ω ω Rsin Ω ω t Ωx& Ω+ sin Ω + Ω&x x& ( ω R ( ω t x& ( Ω ω Rsin ( Ω ω t Integting cs( ω x R Ω t+cnst x Rcs( Ω ω t R R R t t ε ε 5.8 Reltie t efeence fe fixed t the tuntble the cckch tels t cnstnt speed in cicle. Thus y ω eˆ. b Since the cente f the tuntble is fixed. b x A x& 4

55 The ngul elcity, ω, f the tuntble is cnstnt, s ω ω ˆk, with & ω be ˆ, s ω ( ω bω e ˆ e ˆ θ, s ω ω e ˆ F eqn 5..4, + ω + ω ( ω nd putting in tes f be ω bω b F n slipping F μsg, s μsg + ω + bω μsg b + ωb + b ω bμ g s ± + ωb ω b b ω bμsg Since ws defined psitie, the +sque t is used. ωb+ bμ g s (b e ˆ θ ω + ω e ˆ + ω bω b ω + bω μsg b ωb+ bμ g s 5.9 As in Exple 5.., V ω ˆ j nd A ρ F the pint t the fnt f the wheel: V && ˆ j b nd Vk ˆ & ω V ˆ ( ˆ Vb ω k bj i ˆ ρ ρ V ˆ V ˆ Vb ˆ V b ω ω k i ˆj ρ ρ ρ V ω kˆ ( Vkˆ ρ i ρ V ˆ V V b && + ω ω + A i + + ˆ j ρ b ρ 5

56 5. (See Exple 5.. ω x x && ω x t Ae + Be t ωt ( ωt ωt ω ω x& t Ae Be Bundy Cnditins: l x A+ B x& ω A B l l A B 4 4 l l ( x ( t cshωt x& ( t ω sinhωt l l l (b x ( T + cshωt when the bed eches the end f the d.7 cshωt T csh ω ω l (c x& ( T ω sinhωt l l ω sinh csh ω (.7.866ωl l ωl ω csh ωt.866ωl 5. 4 ˆj ph ˆj ft s ( cs 4 ˆ ω j + sin 4 kˆ s ( 5 ω 7.7 ( ( sin 4 i ˆ F ω c F g F F g c g 5 ( sin 4.7 The Cilis fce is in the 5. (See Figue 5.4. ω ω ˆj + ω kˆ y z ft s ω diectin, i.e., + î est. 6

57 ˆ ˆ x i + y j ω ω ˆ ˆ z y i + ωz x j ωy x kˆ ω ω i + ω j ˆ ˆ hiz z y z x ( ω ( ω hiz z y + ωz x ωz ( x + y ω z Fc ω F ω ω, independent f the diectin f. ( c hiz 5. F Exple h x h ω cs λ g hiz z nd y h ft x h ( 7.7 s cs 4 ft s x.44 ft t the est. h 5.4 F Exple 5.4.: ωh Δ sin λ is the deflectin f the bsebll twds the suth since it ws stuck due Est t Ynkee Stdiu t ltitude λ 4 N (pble 5.. is the initil speed f the bsebll whse nge is H. F eqn 4..8b, withut i esistnce in n inetil efeence fe, the hizntl nge is sin α H g Sling f gh sin α ft s ft f sin ( s ( ft t s Δ sin 4.69 ft. in ft s A deflectin f. inches shuld nt cuse the utfielde ny difficulty. 5.5 Equtin 5.. gies the eltinship between the tie deitie f ny ect in fixed nd tting fe f efeence. Thus &&& d d + ω dt dt fixed t 7

58 && + & ω + ω & + ω ( ω d &&& + && ω + & ω & + & ω & + ω && dt t + & ω ( ω + ω ( & ω + ω ( ω & ω ω && + ω ( & ω + ω ( ω & + ω ω ( ω Nw ( ω is t ω nd. Let this define diectin ˆn : ω ω nˆ Since ω ˆn, ω ( ω is in the plne defined by ω nd nd ω ( ω ω nˆ ω ω ω. Since ω ω ( ω ω ω ( ω ω ω And ω ω ( ω is in the diectin ˆn Thus ω ω ( ω ω ( ω ω ω && + ω ( & ω + ω ( ω & ω ( ω &&& &&& + && ω + & ω & + ω && + & ω ( ω + ω & ω + ω ω & ω ω 5.6 With x y z x& y&, nd z& x ( t ωgt cs λ ωt cs λ y t ( z ( t gt + t, s When the bullet hits the gund z ( t t g Equtins c bece: 8 4 x g cs cs ω g λ ω g λ 4ω x cs λ g x is negtie nd theefe is the distnce the bullet lnds t the west. 5.7 With x y z nd x& csα y & z& sinα we cn sle equtin 5.4.5c t find the tie it tkes the pjectile 8

59 t stike the gund z ( t gt + tsinα + ωt csαcsλ sinα sinα t g ω csαcsλ g We he igned the secnd te in the denint since wuld he t be ipssibly lge f the lue f tht te t ppch the gnitude g F exple, f λ 4 nd α 45 g ω csαcsλ g ω g k 44! ω s Substituting t int equtin 5.4.5b t find the ltel deflectin gies 4ω y& ( t [ ω csαsin λ] t sin λsin αcsα g 5.8 Let cceletin f bject eltie t Eth ω ω ˆk its ngul speed y x A cceletin f stellite R ω ω ˆk its ngul speed R + ω + ω ( ω + A (Equtin 5..4 A ω ω ω As in pble 5.7 Elute the te Δ A ω ω ω ω R ω ω R ω ω R R Δ ω ω R ( gien the cnditin tht R Δ ω R R R R R+ R+ R + + Rcsθ but Letting x csθ ω R ω R x f sll R R R Rx R x nd R R + R R x + R R x R ˆ ω R Δ + ω x ω xi f sll R R R 9

60 Hence: Δ ˆ ˆ ( ˆ ω ω xi ωk ix& + ĵy& S ˆ ˆ ix && + jy && ω xiˆ+ ωyi & ˆ ωxĵ & && x ωy& ω x && y+ ω x& 5.9 && qe + q ( B Equtin 5..4 && && + & ω + ω + ω ( ω Equtin ω q ω B s & ω q && q ( B B ( ω qe + q ( + ω B q && + q ( B + ( ω B qe + q ( B + q ( ω B q && qe + ( ω B q q qb ( ω B ( ( sinθ( B B Neglecting tes in B, && qe 5. F x xcsω t+ ysinω t y xsinω t+ ycsω t x& x& csω t xω sinω t+ y& sinω t+ yω csω t y& x& sinω t xω csω t+ y& csω t yω sinω t x& x& csω t+ y& sinω t+ ω y y& x& sinω t+ y& csω t ω x && x && xcsω t x& ω sinω t+ && ysinω t+ y& ω csω t+ ω y& && y && xsinω t x& ω csω t+ && ycsω t y& ω sinω t ω x& && && && & x xcsω t+ ysinω t+ ω y + ω x && y && xsinω t+ && ycsω t ω x& + ω y Substituting int Eqns 5.6.: && x csω t+ && ysinω t+ ω y& + ω x g g x csω t ysinω t+ ω y& l l && xsinω t+ && ycsω t ω x& + ω y

61 g g + xsinω t ycsω t ω x& l l Cllecting tes nd neglecting tes in ω : g g x+ xcsω t+ y+ ysinω t && l && l g g x + xsinω t y+ ycsω t && l && l 5. 4 T sin λ hus 4 T 7.7 hus sin9 5. Chse cdinte syste with the igin t the cente f the wheel, the x nd y xes pinting twd fixed pints n the i f the wheel, nd the z xis pinting twd the cente f cutue f the tck. Tke the initil psitin f the x xis t be hizntl in the V diectin, s the initil psitin f the y xis is eticl. The bicycle wheel is tting with ngul elcity V but its xis, s b ˆ V ω l k b A unit ect in the eticl diectin is: ˆ Vt ˆ sin ˆ Vt n i + j cs b b At the instnt pint n the i f the wheel eches its highest pint: ˆ ˆ Vt sin ˆ Vt bn b i + j cs b b Since the cdinte syste is ing with the wheel, eey pint n the i is fixed in tht cdinte syste. & nd && The x yz cdinte syste ls ttes s the bicycle wheel cpletes cicle und the tck: ˆ ˆ ˆ n V V i sin Vt j cs Vt ω + ρ ρ b b The ttl ttin f the cdinte xes is epesented by: ω ω V ˆ ˆ ˆ ω i sin Vt j cs Vt k V ρ b b b & ω V iˆcs Vt ˆj sin V t ρ b b b

62 & V ˆ ˆ ω k cs Vt k sin Vt V + ˆk ρ b b ρ ω & Vb ˆ sin Vt cs Vt ˆ sin Vt cs Vt ω k k V ˆj sin Vt iˆcs Vt + ρ b b b b b b V ˆ sin Vt ˆ cs Vt V ω ω k k iˆ sin Vt ˆj cs Vt + + ρ b b b b b ˆ V V ω ω k nˆ ρ b Since the igin f the cdinte syste is teling in cicle f dius ρ : A kˆ V ρ && && + & ω + ω & ++ ω ( ω + A V V V V && kˆ kˆ nˆ kˆ + + ρ ρ b ρ && V kˆ V ρ b n ˆ With pppite chnge in cdinte nttin, this is the se esult s btined in Exple

63 CHAPTER 6 GRAVITATIONAL AND CENTRAL FORCES 6. 4 ρv ρ π s s 4πρ ( G G πρ G πρ 4 4 F 4 4 s F F G 4πρ W g 4g 4 6 π ( kg F 6.67 N kg 4.5 g c kg c W s g F W ( The deitin f the fce is identicl t tht in Sectin 6. except hee < R. This ens tht in the lst integl equtin, (6..7, the liits n u e R t R +. GM R+ R Q F ds 4R + R s R s GM R R R+ ( R + θ ψ 4R R+ R P GM F + R ( R+ 4R (b Agin the deitin f the gittinl ptentil enegy is identicl t tht in Exple 6.7., R R+. except tht the liits f integtin n s e πρr R+ φ G d R s R πρr G R+ ( R R 4πR ρ M φ G G R R F < R, φ is independent f. It is cnstnt inside the spheicl shell. GM F e 6. ˆ

64 The gittinl fce n the pticle is due nly t the ss f the eth tht is inside the pticle s instntneus displceent f the cente f the eth,. The net effect f the ss f the eth utside is ze (See Pble 6.. F 4 M π ρ 4 F Gπρeˆ ˆ ke The fce is line esting fce nd induces siple hnic tin. T π π π ω k 4Gπρ The peid depends n the eth s density but is independent f its size. At the sufce f the eth, GM G 4 g π R e ρ Re Re 4Gπρ g R e 6 Re 6.8 h T π π.4h g 9.8 s 6 s GM 6.4 F ˆ g e, whee M 4 π ρ The cpnent f the gittinl fce pependicul t the tube is blnced by the nl fce ising f the side f the tube. The cpnent f fce lng the tube is Fx Fg csθ The net fce n the pticle is ˆ 4 F i Gπρcsθ csθ x ˆ 4 F i Gπρx ik ˆ x As in pble 6., the tin is siple hnic with peid f.4 hus.

65 6.5 GM GM s f cicul bit, is cnstnt. π T 4π 4π T GM π 6.6 ( T F Exple 6.5., the speed f stellite in cicul bit is gr e π T g R e T gr e 4π T g 4 h 6 s h 9.8 s 6 Re 4π Re 4π R e (b π ( R e e e g Re π π 6 6 R T π g g R 9.8 s 6 s h 4 h dy T 7.7 dy 7 dy 6.7 F Exple 6.5., the speed f stellite in cicul bit just be the eth s sufce is gr e π Re T π Re g

66 This is the se expessin s deied in Pble 6. f pticle dpped int hle dilled thugh the eth. T.4 hus. 6.8 The Eth s bit but the Sun is cunte-clckwise s seen f, sy, the nth xy, ε, α. st. It s cdintes n ppch t the ltus ectu e The esiest wy t sle this pble is t nte tht ε is sll. The 6 bit is lst cicul! GM S nd GM S with α b when ε GM S 4 α s Me exctly l αcs β l, but α (equtin k l Since k GMS l α cs β αgms GM GM O S α cs β The ngle β cn be clculted s fllws: s hee nd α, hence S y x + (see ppendix C b dy b x xy, ε, α dx y nd t dy b b dx ε ε ε α b since ε ( ε dy tn β ε β ε (sll ε dx GM S GM S α csε α 6.9 F Fs + Fd s befe. GM Fs GM d Fd The net effect f the dust utside the plnet s dius is ze (Pble 6.. The ss f the dust inside the plnet s dius is: 4

67 4 π ρ GM 4 F πρg M d k 6. u e du k e k dθ du k k e θ k dθ F equtin 6.5. du + u k u + u f u du l u f u l k + u θ θ u l ( k + f The fce ies s the inese cube f. F equtin 6.5.4, & θ l dθ l k e θ dt kθ l e dθ dt k lt e θ + C k klt θ ln C + k θ ies lgithiclly with t. k 6. f ku F equtin 6.5. du ku u ku dθ + l u l du k + u + dθ l 5

68 k If + <, l k If +, l du C dθ u c θ + c c θ + c k If + >, l u Acs( cθ + δ du cu dθ du dθ, c >, f which du cu dθ +, c > u b e θ is slutin. k Acs l θ δ u csθ du sinθ dθ cs θ du sin θ cs θ + + dθ csθ cs θ csθ cs θ cs θ cs θ du u ( u u u dθ Substituting int equtin 6.5. u u+ u f ( u l u 5 f u l u f l 5 6. F Chpte, the tnsese cpnent f the cceletin is θ && θ + & & θ If this te is nnze, then thee ust be tnsese fce gien by f ( θ ( && θ + & & θ F θ, nd θ bt f θ b Since f ( θ, the fce is nt centl field. 6

69 F θ, nd the fce t be centl, ty θ bt n n f θ b n t + b n( n t F centl field f ( θ ( n n+ n θ bt n 6.4 ( Clculting the ptentil enegy d 4 f k + 5 d Thus, The ttl enegy is 9k 9k E T + V k Its ngul entu is 9k 4 l cnstnt & θ Its KE is d d l T ( & + & θ + & θ + dθ dθ The enegy equtin f the bit is d l T + V + k dθ 4 d 9 k dθ 4 4 d ( dθ 9 Letting csφ then d dφ sinφ dθ d θ S dφ φ θ dθ 9 4 7

70 Thus (b t Since cs θ θ π θ the igin f the fce. T find hw lng it tkes & l θ cs θ cs θ dt cs θ dθ π π π T cs θ dθ cs φdφ 4 T 9k π π 4 9k 4 k (c Since the pticle flls int the cente f the fce (since l cnst 6.5 F Exple c + Letting V we he V c + dv S: + d V dv Thus V d

71 dv V ( d dv (b ( 6 % %! d V The ppxitin f diffeentil hs bken dwn cect esult cn be btined by clculting finite diffeences, but the iplictin is cle % e in bst cuses cket t iss the n by huge fct ---! F sectin 6.5, ε.967 nd 55 i. + ε F equtins 6.5.&b, ε 6 55 i AU ( + 6 ε i 7.9 AU F equtin 6.6.5, τ c τ y AU 7.9 AU τ 75.9 y F equtin 6.5. nd α l ε k ε nd k GM k GM ( ε + F Exple 6.5. we cn tnslte the fct GM int the e cnenient GM with e the dius f cicul bit nd e the bitl speed e e 6 e e 9 i ( ε 6 ( i + e.84 e Since l is cnstnt ε e.6 + ε.967 e 6 π e π 9 i 66, 75 ph τ y 65dy y 4 h dy 5. ph nd 6.7 F Exple ph e 9

72 ε + q ( qdsinφ d whee q nd d e e e diensinless tis f the cet s speed nd distnce f the Sun in tes f the Eth s bitl speed nd dius, espectiely (q nd d e the se s the fcts V nd R in Exple 6... φ is the ngle between the cet s bitl elcity nd diectin ect twds the Sun (see Figue 6... The bit is hypeblic, pblic, elliptic s ε is >,, < i.e., s q q is >,, <. R is >,, < s qd is >,, <. R 6.8 Since l is cnstnt, ccus t nd ccus t, i.e. nd x in in nd f the cnstncy f l inx k ε + (See Exple F equtin k π GM τ ( ε + x π inx τ + ε F equtin 6.5.&b. With + : ε ( ε + ( + ( ε + ε ( ε ( ε + ε + in x π τ 6.9 As esult f the ipulse, the speed f the plnet instntneusly chnges; its bitl dius des nt, s thee is n chnge in its ptentil enegy V. The instntneus chnge in its ttl bitl enegy E is due t the chnge in its kinetic enegy, T, nly, s δ δ δe δt δ δ T δ E δ T But the ttl bitl enegy is

73 k k E S δ E δ Since plnety bits e nely cicul V ~ k k nd T ~ δ δ E δ Thus, δ E T nd T δ δ We btin 6. ( V τ V τ dt k V F equtin 6.5.4, l & θ dθ l dθ dt dt l τ π k Vdt dθ l F equtin ( ε + ε csθ ( τ k ε π dθ Vdt l + ε csθ π F equtin τ ε l k ε π dθ V π + εcsθ π d θ π k, ε < V + εcsθ ε (b This pble is n exple f the iil thee which, f bunded, peidic syste, eltes the tie ege f the quntity deie it f plnety tin s fllws: τ τ τ p dt dt F dt τ & τ && τ Integte LHS by pts τ p& i t its kinetic enegy T. We will i

74 τ τ τ & & dt F dt τ τ τ The fist te is ze since the quntity hs the se lue t nd τ. Thus T F whee dente tie ege f the quntity within bckets. but hence T dv k F V V d V V V but E T + V + V k hence V E but E cnstnt τ k k nd E Edt E τ s E Thus: V k s befe nd theefe T k V 6. The enegy f the initil bit is k k E k ( + ε t pgee, the speed, t pgee is Since ( ε ( ε k k ( ε + + T plce stellite in cicul bit, we need t bst its speed t k c k since the dius f the bit is k k c + ε Thus, the bst in speed Δ c c such tht k ( Δ ( ε ( + ε Nw we sle f the sei-j xis nd the eccenticity ε f the fist bit. F ( be, t lunch t R, s k RE E

75 nd sling f RE nting tht RE k k GME ( gre RE RE RE RE 4.49 k.46 gre The eccenticity ε cn be fund f the ngul entu pe unit ss, l, equtin 6.5.9, nd the dt n ellipses defined in figue 6.5. kα k & θ ( E sinθ ε l R whee, θ e the lunch elcity, ngle Sling f ε (using ( be ε sin θ.795 gre gre ε.89 Inseting these lues f, ε int ( nd using ( gies E ( ( ε R Δ gre 4.6 k s ε + h + ε R.9 k {ltitude be the Eth t peigee} (b 6. E b b b be e e f k k b+ f ( b + f F equtin 6.4., ψ π f + ( f ( π b+ π ψ b 6. F Pble 6.9, GM 4 f πρg GM 4 f πρg

76 4 4πρ f ( M f ( 4 GM πρg 4πρ + M GM πρg + f F equtin 6.4., ψ π + f ( ( 4πρ 4πρ M M ψ π π + 4πρ 4πρ + + M M + c ψ π + 4c, 4πρ c M 6.4 We diffeentite equtin 6..b t btin F cicul bit t, && s du d F sll displceents x f, x+ nd && && x F Appendix D x f ( x+ f ( + xf ( + f ( +K Tking f ( t be du d, du f d Ne du du d U + x +K d d d du x && x d && du d This epesents esting fce, i.e., stble tin, s lng s du d > t. k 4ε f f f F equtin 6..7, the cnditin f stbility is + < 4

77 k ε k 4ε < k ε + < 4 ε k < ε > k f e k 6.6 ( b b b b e f ke k b + f f F equtin 6..7, the cnditin f stbility is + < b b e e k + k b + < b b e be k + k < b < < b k f k f 4 k k f ( + f ( + 4 f + f is nt less thn ze, the bit is nt stble. (b Since ( ε 6.7 (See Figue 6.. F equtin ε csθ nd the dt n ellipses in Figue 6.5. p ( ε s ( + ε p + ε csθ 5

78 F pblic bit, ε The cet intesects eth s bit t. p + csθ csθ + p 6.8 (See Figue 6.. T d t lng the cet s tjecty inside eth s bit F equtin 6.5.4, & θ dθ θ l s dt dt l dθ T l ( ε F equtin ε csθ nd the dt n ellipses in Figue 6.5. p ( ε s ( + ε p + ε csθ F equtin 6.5.8b, with ε f pblic bit: p + csθ π p At θ the distnce t the cet is α p π + cs l l F equtin 6.5.9, α, whee k GM, s p k GM As shwn in Exple 6.5., GM e π F cicul bit, e y whee d e ( ( ( l GMp p p π y d 4 p T θ l + θ + θ ( π θ θ p d y θ θ cs + T p π p ( + csθ + θ dθ θ F tble f integls, ( + csθ f Pble 6.7 y ( + csx dx x x tn + tn 6 6

79 p θ θ T tn + tn y π x csx tn + cs x p θ p tn p p p p p T + y π p p p p p + y π p p p p T + π T is xiu when ( d dp y p+ p is xiu. ( p+ ( p ( p+ ( p + ( p+ ( T is xiu when p. ( p ( 6p + T y 77.5 dy π π When p.6 T ( y 76. dy π k kε V dv k kε k f ( + ε d k kε k f 5 5 ( + 6ε f ( + 6ε f ( + ε 6.9 7

80 f F equtin 6.4., ψ π + f ( ( + 6ε + ε ψ π π + ε ε F ε 5 RΔ R, R 4i, Δ R i 4 ε ( 4 (.8 i 5 7 F R,.6 i ψ.9π k k Vel E + c dv k k k f + E + d c k k + E+ c f k k k k f E + + c c k k f E + + c k + E + f ( c f ( k E + + c k k + E+ E+ f ( c c + f ( k + E + c E + c k + E + c 8

81 f ( c E + + f ( k c + E+ f ψ π + f ( ( k ψ π + c + E ( ε 6. F equtin (Hee θ is the pl ngle f cnic + ε csθ sectin tjecties s illustted by the cdintes in Figue 6.5. nd the dt n ellipses in Figue 6.5. ( ε s + ε c + ε csθ F equtin 6.5.8b α + ε csθ nd t θ α + ε l l And f equtin α s k k( + ε k GM GM F Exple 6.5., GM nd l φ c c sin φ ( + ε ( + ε ( + εcsθ c e e RV sin φ + ε csθ csθ ( RV sin φ ε e e c c sin sinθ cs θ sin φ ε ( RV sinθ ε ( RV sin φ + ( RV sin φ ε Agin f Exple 6.5. ε + V si R ( RV n φ 9

82 ( RV sin ε + φ RV sin φ sinθ sin sin ε sinθ RV sinφ csφ ε csθ RV sin φ sinθ RV sinφcsφ ctθ tnφ RV sin φ θ ct tnφ csc φ RV F V.5, R 4, φ : ( RV φ ( RV φ θ ct tn csc ct ct θ 6. The pictue t left shws the bitl tnsfe nd the psitin f the tw stellites t the ent the tnsfe is initited. Stellite B is hed f stellite A by the ngle θ + is the sei-j xis f the ellipticl tnsfe bit. F Keple s d lw (Equtin pplied t bjects in θ bit but Eth 4π τ GM E The tie t intecept is τ π GM E Tt π since g GM E RE g RE Letting RE + h nd RE + h whee h nd h e the heights f the stellites be the gund. Inseting these int the be gies π h+ h π h+ h Tt RE + + R R E g E R R Eg E

83 F Exple 6.6., R E 67 k, h i 4 k nd h - R E 4,4 k - 6,9 k. Putting in the nubes T t 4.79 h T (b Thus, 8 t θ 8 6. θ S θ θ θ b The ptentil f the inese-cube fce lw k is V Letting u, we he (Equtin 6.9. du l + u + V ( u E dθ ( du E V u dθ l l dθ du ( E V ( E V l u u l du Nw, integting f θ ux ( ( u up t ( u u l E V l u du But E, l b, s ux b θ ku b u θ ux b ku b u Befe eluting this integl, we need t find u x ( in distnce f clsest ppch t the sctteing cente. k E T( in + V( in + in But, the ngul entu pe unit ss l is l b nd substituting f int the be gies in in du du x, in the wds, the

84 l Sling f k + s in in u x ux k b + Nw we elute the integl f θ θ Sling f b b u l k in + x u u x x b b u b du sin k k ux k b u b b + + π + k θ ( θ π 4θ But θ ( π θ S. Thus, we he k π θs b( θs θ π θ S S We cn nw cpute the diffeentil css sectin b db kπ ( π θs σ ( θs sinθs dθs θs ( π θs sinθs Since dω π sinθ s dθ s we get kπ ( π θ S σ ( θs dω π bdb d θ S E ( π θs θs

85 CHAPTER 7 DYNAMICS OF SYSTEMS AND PARTICLES 7. F eqn. 7.., c i i i ( ( ˆ ˆ ˆ ˆ ˆ c + + i + j+ j+ k+ k ( ˆ ˆ ˆ c i + j+ k d ˆ ˆ ˆ ˆ ˆ c c + + i + j+ i + j+ k dt ( ˆ ˆ ˆ c i + j+ k F eqn 7.., p i i + + p iˆ+ ˆj+ k ˆ i z y x 7. ( F eqn. 7..5, T i i i 4 T ˆ ˆ ˆ c i + j+ k c ( (c F eqn.7..8, L i i (b F Pb. 7., i L i + j i + j+ k j + k i + j+ k L k + i + j i i + j ( ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ ( ˆ ˆ ˆ ( ˆ ( ˆ ( ˆ ˆ ˆ ˆ kˆ 7. b g Since entu is cnseed nd the bullet nd gun wee initilly t est: + M b g g γb, γ M ( +γ b b + γ

86 γ g + γ 7.4 Mentu is cnseed: + M blk γ γ M Ti Tf M γ + γ M 4 4 Ti Tf γ T 4 4 i 7.5 At the tp f the tjecty: ˆ cs 6 ˆ i i Mentu is cnseed: ˆ ˆ i j + ˆ ˆ i j Diectin: θ tn 6.6 Speed: When bll eches the fl, ε. blk belw the hizntl. gh. As esult f the bunce, The height f the fist bunce: gh ε h ε h g g Siilly, the height f the secnd bunce, h ε h ε 4 h 6 / θ

87 4 Ttl distnce h+ ε h+ ε h+ K h + ε n n n Nw, <. n + ε + + n ε n ε ε + ε ttl distnce h ε F the fist fll, gt h, s t h g h h F the fll f height h : t ε g g Accunting f equl ise nd fll ties: h h Ttl tie ( + ε + ε + K ε n g g + n h + ε Ttl tie g ε 7.7 F eqn : ( ε x& + ( + ε x& x& + x& ( ε & ( + x + ε x& c t Bth c nd tuck e teling in the initil diectin f the tuck with speeds nd 8, espectiely. - / 4 c t

88 7.8 F eqn. 7..5, T i i + i Menwhile: + c + μ + ( Theefe, T c + μ 7.9 F Pb. 7.8, T c + μ Q T T nd since c c : Q μ μ F eqn , ε Q μ ( ε 7. Cnsetin f entu: + + Cnsetin f enegy: T T ( + 4

89 T T T μ 4μ 7. F eqn. 7..4, L c c + i i i i i i i + i F eqn. 7.., + R + μ Since f eqn. 7.., R μ μ μ i i i R + R i μr ( R μ L + R μ c c 7. Let s ss f Sun nd e sei-j xis f Eth s bit then f eqn. 7..9c, τ + s s e τ + e s s y y 5.6 d 65d 6. e e 5 ( + y 6 s s 7. (Igne pies in nttin The cdintes f the tw piies, P nd P, e shwn t left lng with the cdintes f L 4 nd. L 5 5

90 b V( x, y ( α α x + y ( x α + y ( x+ α + y V ( α( x α α( x+ α + x x [ ] [ ] Nw x α.5 t L 4 nd L5 ls, ech bcket te in the denint equls t L 4, L5 V α α.5 α + α α.5 + α α.5 x.5 +.5α +.5α α +.5 V ( α y α y + y y [ ] [ ] Agin, the denint in bckets L 4, L5 V S, ( α ± + α ± ± y ± α ± α V V V x, y i + j x y t L, L. 4 5 Thus ˆ ˆ ( Cnsetin f entu: p p p + 4 p α cs α csφ p 4 cs p α φ sin 45 4 α sinφ p 4 sinφ α p 6 + p p α Cnsetin f enegy: 45 φ p Subtcting: p p p + 4 p α 6 4 α 4 p + 5 p p 6

91 ( 6 ± + 6 p ± >, s the psitie sque t is used. p p.988 p px py.657 α ( p (.988 α.85 p p.988 tnφ p p.988 φ tn αx α csφ.86 y sinφ.64 α α 7.5 Cnsetin f enegy: p p p + 4 p α + p 4 6 α 4 p F the cnsetin f entu eqn f Pb. 7.4: 6 α + p p Subtcting: + 5 p p ( 4 ± + 4 p ± Using the psitie sque t, since p > : p.7895 p px py.558 p α ( α.78 F the cnsetin f entu eqns f Pb. 7.4: p.7895 tnφ.7895 p 7

92 φ tn αx α csφ. y α α sinφ.4 sinθ 7.6 F eqn , tnφ γ + csθ φ nd θ e the sctteing ngles in the Lb nd C.M. fes espectiely. F eqn , f Q, γ sinθ tn 45 + cs θ 4 + cs θ sin θ nd squing 4 cs cs cs + θ + θ θ 6 5 cs θ + csθ 6 5 ± + cs θ 4.5 ± π Since < θ <, θ cs sinθ 7.7 F eqn , tnφ γ + csθ F eqn , Q γ + T γ sinθ tn csθ.5 + csθ sinθ (since sinθ > csθ, θ > 45.5 sin θ sinθcsθ + cs θ Using the identity sinθ csθ sin θ sin θ.5.99 Since θ > 45, θ > 9 : θ sin θ 57. 8

93 P 7.8 Cnsetin f entu: P P csφ + P cs ψ φ P sinφ P sin( ψ φ F Appendix B f sin ( α + β nd cs( α β + : P P csφ + P csψ csφ + sinψ sinφ P sinφ P sinψ csφ csψ sinφ ( φ P P cs φ + P cs ψ cs φ + csψ csφsinφsinψ + sin ψsin φ + PP cs φ csψ + csφsinψsin P sin φ + P sin ψ cs φ sinψ csφcsψsinφ + cs ψsin φ PP sinφ sinψ csφ csψ sin φ Adding: P P + P + P P csψ Cnsetin f enegy: P P P + + Q Q ( P P P ( P P cs ψ PP csψ Q P φ ψ P 7.9 T T T let ti f sctteed pticle t incident pticle enegy T Lking t Figue 7.6. c c + c c csφ hence c + cγ whee γ csφ c cγ + but the cente f ss speeds f the incident nd sctteed pticle e the se. α + + α f equtin 7.6. wheeα 9

Chapter 4 Motion in Two and Three Dimensions

Chapter 4 Motion in Two and Three Dimensions Chpte 4 Mtin in Tw nd Thee Dimensins In this chpte we will cntinue t stud the mtin f bjects withut the estictin we put in chpte t me ln stiht line. Insted we will cnside mtin in plne (tw dimensinl mtin)

More information

ME 236 Engineering Mechanics I Test #4 Solution

ME 236 Engineering Mechanics I Test #4 Solution ME 36 Enineein Mechnics I est #4 Slutin Dte: id, M 14, 4 ie: 8:-1: inutes Instuctins: vein hptes 1-13 f the tetbk, clsed-bk test, clcults llwed. 1 (4% blck ves utwd ln the slt in the pltf with speed f

More information

Chapter 4. Energy and Potential

Chapter 4. Energy and Potential Chpte 4. Enegy nd Ptentil Hyt; 0/5/009; 4-4. Enegy Expended in Mving Pint Chge in n Electic Field The electic field intensity is defined s the fce n unit test chge. The fce exeted y the electic field n

More information

SOLUTIONS TO CONCEPTS CHAPTER 11

SOLUTIONS TO CONCEPTS CHAPTER 11 SLUTINS T NEPTS HPTE. Gvittionl fce of ttction, F.7 0 0 0.7 0 7 N (0.). To clculte the gvittionl fce on t unline due to othe ouse. F D G 4 ( / ) 8G E F I F G ( / ) G ( / ) G 4G 4 D F F G ( / ) G esultnt

More information

Electric Potential Energy

Electric Potential Energy Electic Ptentil Enegy Ty Cnsevtive Fces n Enegy Cnsevtin Ttl enegy is cnstnt n is sum f kinetic n ptentil Electic Ptentil Enegy Electic Ptentil Cnsevtin f Enegy f pticle fm Phys 7 Kinetic Enegy (K) nn-eltivistic

More information

Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9

Measurement of Residual Stress/Strain (Using Strain Gages and the Hole Drilling Method) Summary of Discussion in Section 8.9 Mesuement f Residul Stess/Stin (Using Stin Gges nd the Hle Dilling Methd) Summy f Discussin in Sectin 8.9 The Hle Dilling Methd Is Bsed On: () Stess tnsfmtin equtins τ x' x' y' y' x' y' xx xx cs sin sin

More information

Picking Coordinate Axes

Picking Coordinate Axes Picing Coodinte Axes If the object you e inteested in Is cceleting Choose one xis long the cceletion Su of Foce coponents long tht xis equls Su of Foce coponents long ny othe xis equls 0 Clcultions e esie

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

Special Vector Calculus Session For Engineering Electromagnetics I. by Professor Robert A. Schill Jr.

Special Vector Calculus Session For Engineering Electromagnetics I. by Professor Robert A. Schill Jr. pecil Vect Clculus essin Engineeing Electmgnetics I Pfess et. cill J. pecil Vect Clculus essin f Engineeing Electmgnetics I. imple cmputtin f cul diegence nd gdient f ect. [peicl Cdinte stem] Cul Diegence

More information

MAGNETIC FIELDS & UNIFORM PLANE WAVES

MAGNETIC FIELDS & UNIFORM PLANE WAVES MAGNETIC FIELDS & UNIFORM PLANE WAVES Nme Sectin Multiple Chice 1. (8 Pts). (8 Pts) 3. (8 Pts) 4. (8 Pts) 5. (8 Pts) Ntes: 1. In the multiple chice questins, ech questin my hve me thn ne cect nswe; cicle

More information

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97

(A) 6.32 (B) 9.49 (C) (D) (E) 18.97 Univesity of Bhin Physics 10 Finl Exm Key Fll 004 Deptment of Physics 13/1/005 8:30 10:30 e =1.610 19 C, m e =9.1110 31 Kg, m p =1.6710 7 Kg k=910 9 Nm /C, ε 0 =8.8410 1 C /Nm, µ 0 =4π10 7 T.m/A Pt : 10

More information

CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS

CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS --------------------------------------------------------------------------------------------------------- Note to instructors there is a tpo in

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

Physics 11b Lecture #11

Physics 11b Lecture #11 Physics 11b Lectue #11 Mgnetic Fields Souces of the Mgnetic Field S&J Chpte 9, 3 Wht We Did Lst Time Mgnetic fields e simil to electic fields Only diffeence: no single mgnetic pole Loentz foce Moving chge

More information

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = = Chpte 1 nivesl Gvittion 11 *P1. () The un-th distnce is 1.4 nd the th-moon 8 distnce is.84, so the distnce fom the un to the Moon duing sol eclipse is 11 8 11 1.4.84 = 1.4 The mss of the un, th, nd Moon

More information

Inductance and Energy of B Maxwell s Equations Mon Potential Formulation HW8

Inductance and Energy of B Maxwell s Equations Mon Potential Formulation HW8 Wed. Fi. 7..3-7..5 Inductnce nd Enegy f 7.3.-.3.3 Mxwell s Equtins Mn. 0. -.. Ptentil Fmultin HW8 Whee we ve been Sttiny Chges pducing nd intecting vi Electic Fields Stedy Cuents pducing nd intecting vi

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

Chapter 4 Motion in Two and Three Dimensions

Chapter 4 Motion in Two and Three Dimensions Chapte 4 Mtin in Tw and Thee Dimensins In this chapte we will cntinue t stud the mtin f bjects withut the estictin we put in chapte t me aln a staiht line. Instead we will cnside mtin in a plane (tw dimensinal

More information

Lecture 4. Electric Potential

Lecture 4. Electric Potential Lectue 4 Electic Ptentil In this lectue yu will len: Electic Scl Ptentil Lplce s n Pissn s Eutin Ptentil f Sme Simple Chge Distibutins ECE 0 Fll 006 Fhn Rn Cnell Univesity Cnsevtive Ittinl Fiels Ittinl

More information

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70 Chapte Tw ce System 35.4 α α 100 Rx cs 0.354 R 69.3 35.4 β β 100 Ry cs 0.354 R 111 Example 11: The man shwn in igue (a) pulls n the cd with a fce f 70 lb. Repesent this fce actin n the suppt A as Catesian

More information

Physics 321 Solutions for Final Exam

Physics 321 Solutions for Final Exam Page f 8 Physics 3 Slutins fr inal Exa ) A sall blb f clay with ass is drpped fr a height h abve a thin rd f length L and ass M which can pivt frictinlessly abut its center. The initial situatin is shwn

More information

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r 1. Shw that if the angula entu f a bb is deteined with espect t an abita pint, then H can be epessed b H = ρ / v + H. This equies substituting ρ = ρ + ρ / int H = ρ d v + ρ ( ω ρ ) d and epanding, nte

More information

U>, and is negative. Electric Potential Energy

U>, and is negative. Electric Potential Energy Electic Potentil Enegy Think of gvittionl potentil enegy. When the lock is moved veticlly up ginst gvity, the gvittionl foce does negtive wok (you do positive wok), nd the potentil enegy (U) inceses. When

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

Lecture 6: Phase Space and Damped Oscillations

Lecture 6: Phase Space and Damped Oscillations Lecture 6: Phase Space and Damped Oscillatins Oscillatins in Multiple Dimensins The preius discussin was fine fr scillatin in a single dimensin In general, thugh, we want t deal with the situatin where:

More information

CHAPTER 2 ELECTRIC FIELD

CHAPTER 2 ELECTRIC FIELD lecticity-mgnetim Tutil (QU PROJCT) 9 CHAPTR LCTRIC FILD.. Intductin If we plce tet chge in the pce ne chged d, n electttic fce will ct n the chge. In thi ce we pek f n electic field in thi pce ( nlgy

More information

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic Descibing fields Gm Gm Gm Gm he net field t is: g ( d / ) ( 4d / ) d d Gm Gm Gm Gm Gm Gm b he net potentil t is: V d / 4d / d 4d d d V e 4 7 9 49 J kg 7 7 Gm d b E

More information

Charge in a Cavity of Conductor

Charge in a Cavity of Conductor Tdy s Pln Electic Ptentil Enegy (mesued in Jules Electic Ptentil Ptentil Enegy pe unit Chge (mesued in Vlts). Recll tht the electic field E is fce F pe unit chge. Cpcitnce BB Chge in Cvity f Cnduct A pticle

More information

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y ("ˆ ( ) ( ) ( (( ) # ("ˆ ( ) ( ) ( ) # B ˆ z ( k )

( ) ( ) ( ) ( ) ( ) # B x ( ˆ i ) ( ) # B y ( ˆ j ) ( ) # B y (ˆ ( ) ( ) ( (( ) # (ˆ ( ) ( ) ( ) # B ˆ z ( k ) Emple 1: A positie chge with elocit is moing though unifom mgnetic field s shown in the figues below. Use the ight-hnd ule to detemine the diection of the mgnetic foce on the chge. Emple 1 ˆ i = ˆ ˆ i

More information

Assistant Professor: Zhou Yufeng. N , ,

Assistant Professor: Zhou Yufeng. N , , Aitnt Pofeo: Zhou Yufeng N3.-0-5, 6790-448, yfzhou@ntu.edu.g http://www3.ntu.edu.g/home/yfzhou/coue.html . A pojectile i fied t flling tget hown. The pojectile lee the gun t the me intnt tht the tget dopped

More information

1. The sphere P travels in a straight line with speed

1. The sphere P travels in a straight line with speed 1. The sphee P tels in stight line with speed = 10 m/s. Fo the instnt depicted, detemine the coesponding lues of,,,,, s mesued eltie to the fixed Oxy coodinte system. (/134) + 38.66 1.34 51.34 10sin 3.639

More information

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set WYSE Academic Challenge Sectinal 006 Slutin Set. Cect answe: e. mph is 76 feet pe minute, and 4 mph is 35 feet pe minute. The tip up the hill takes 600/76, 3.4 minutes, and the tip dwn takes 600/35,.70

More information

Lecture #2 : Impedance matching for narrowband block

Lecture #2 : Impedance matching for narrowband block Lectue # : Ipedance atching f nawband blck ichad Chi-Hsi Li Telephne : 817-788-848 (UA) Cellula phne: 13917441363 (C) Eail : chihsili@yah.c.cn 1. Ipedance atching indiffeent f bandwidth ne pat atching

More information

Chapter 4 Two-Dimensional Motion

Chapter 4 Two-Dimensional Motion D Kinemtic Quntities Position nd Velocit Acceletion Applictions Pojectile Motion Motion in Cicle Unifom Cicul Motion Chpte 4 Two-Dimensionl Motion D Motion Pemble In this chpte, we ll tnsplnt the conceptul

More information

Chapter 4 Kinematics in Two Dimensions

Chapter 4 Kinematics in Two Dimensions D Kinemtic Quntities Position nd Velocit Acceletion Applictions Pojectile Motion Motion in Cicle Unifom Cicul Motion Chpte 4 Kinemtics in Two Dimensions D Motion Pemble In this chpte, we ll tnsplnt the

More information

WYSE Academic Challenge Regional Physics 2008 SOLUTION SET

WYSE Academic Challenge Regional Physics 2008 SOLUTION SET WYSE cdemic Chllenge eginl 008 SOLUTION SET. Crrect nswer: E. Since the blck is mving lng circulr rc when it is t pint Y, it hs centripetl ccelertin which is in the directin lbeled c. Hwever, the blck

More information

DYNAMICS. Kinetics of Particles: Newton s Second Law VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

DYNAMICS. Kinetics of Particles: Newton s Second Law VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Ninth E CHPTER VECTOR MECHNICS OR ENGINEERS: DYNMICS edinnd P. ee E. Russell Johnston, J. Lectue Notes: J. Wlt Ole Texs Tech Univesity Kinetics of Pticles: Newton s Second Lw The McGw-Hill Copnies, Inc.

More information

Fluids & Bernoulli s Equation. Group Problems 9

Fluids & Bernoulli s Equation. Group Problems 9 Goup Poblems 9 Fluids & Benoulli s Eqution Nme This is moe tutoil-like thn poblem nd leds you though conceptul development of Benoulli s eqution using the ides of Newton s 2 nd lw nd enegy. You e going

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

Q x = cos 1 30 = 53.1 South

Q x = cos 1 30 = 53.1 South Crdinatr: Dr. G. Khattak Thursday, August 0, 01 Page 1 Q1. A particle mves in ne dimensin such that its psitin x(t) as a functin f time t is given by x(t) =.0 + 7 t t, where t is in secnds and x(t) is

More information

Lecture 11: Potential Gradient and Capacitor Review:

Lecture 11: Potential Gradient and Capacitor Review: Lectue 11: Potentil Gdient nd Cpcito Review: Two wys to find t ny point in spce: Sum o Integte ove chges: q 1 1 q 2 2 3 P i 1 q i i dq q 3 P 1 dq xmple of integting ove distiution: line of chge ing of

More information

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468

Physics 111. Uniform circular motion. Ch 6. v = constant. v constant. Wednesday, 8-9 pm in NSC 128/119 Sunday, 6:30-8 pm in CCLIR 468 ics Announcements dy, embe 28, 2004 Ch 6: Cicul Motion - centipetl cceletion Fiction Tension - the mssless sting Help this week: Wednesdy, 8-9 pm in NSC 128/119 Sundy, 6:30-8 pm in CCLIR 468 Announcements

More information

Solutions to Midterm Physics 201

Solutions to Midterm Physics 201 Solutions to Midtem Physics. We cn conside this sitution s supeposition of unifomly chged sphee of chge density ρ nd dius R, nd second unifomly chged sphee of chge density ρ nd dius R t the position of

More information

1. A man pulls himself up the 15 incline by the method shown. If the combined mass of the man and cart is 100 kg, determine the acceleration of the

1. A man pulls himself up the 15 incline by the method shown. If the combined mass of the man and cart is 100 kg, determine the acceleration of the 1. n pulls hiself up the 15 incline b the ethod shown. If the cobined ss of the n nd ct is 100 g deteine the cceletion of the ct if the n eets pull of 50 on the ope. eglect ll fiction nd the ss of the

More information

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits Obitl Mechnic tellite Obit Let u tt by king the quetion, Wht keep tellite in n obit ound eth?. Why doen t tellite go diectly towd th, nd why doen t it ecpe th? The nwe i tht thee e two min foce tht ct

More information

Work, Energy, and Power. AP Physics C

Work, Energy, and Power. AP Physics C k, Eneg, and Pwe AP Phsics C Thee ae man diffeent TYPES f Eneg. Eneg is expessed in JOULES (J) 4.19 J = 1 calie Eneg can be expessed me specificall b using the tem ORK() k = The Scala Dt Pduct between

More information

Electric Charge. Electric charge is quantized. Electric charge is conserved

Electric Charge. Electric charge is quantized. Electric charge is conserved lectstatics lectic Chage lectic chage is uantized Chage cmes in incements f the elementay chage e = ne, whee n is an intege, and e =.6 x 0-9 C lectic chage is cnseved Chage (electns) can be mved fm ne

More information

Example

Example hapte Exaple.6-3. ---------------------------------------------------------------------------------- 5 A single hllw fibe is placed within a vey lage glass tube. he hllw fibe is 0 c in length and has a

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is: . Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016

Algebra Based Physics. Gravitational Force. PSI Honors universal gravitation presentation Update Fall 2016.notebookNovember 10, 2016 Newton's Lw of Univesl Gvittion Gvittionl Foce lick on the topic to go to tht section Gvittionl Field lgeb sed Physics Newton's Lw of Univesl Gvittion Sufce Gvity Gvittionl Field in Spce Keple's Thid Lw

More information

ME 3600 Control Systems Frequency Domain Analysis

ME 3600 Control Systems Frequency Domain Analysis ME 3600 Cntl Systems Fequency Dmain Analysis The fequency espnse f a system is defined as the steady-state espnse f the system t a sinusidal (hamnic) input. F linea systems, the esulting utput is itself

More information

Topics for Review for Final Exam in Calculus 16A

Topics for Review for Final Exam in Calculus 16A Topics fo Review fo Finl Em in Clculus 16A Instucto: Zvezdelin Stnkov Contents 1. Definitions 1. Theoems nd Poblem Solving Techniques 1 3. Eecises to Review 5 4. Chet Sheet 5 1. Definitions Undestnd the

More information

Lecture 2: Single-particle Motion

Lecture 2: Single-particle Motion Lecture : Single-particle Mtin Befre we start, let s l at Newtn s 3 rd Law Iagine a situatin where frces are nt transitted instantly between tw bdies, but rather prpagate at se velcity c This is true fr

More information

6. Gravitation. 6.1 Newton's law of Gravitation

6. Gravitation. 6.1 Newton's law of Gravitation Gvittion / 1 6.1 Newton's lw of Gvittion 6. Gvittion Newton's lw of gvittion sttes tht evey body in this univese ttcts evey othe body with foce, which is diectly popotionl to the poduct of thei msses nd

More information

Lecture 7: Damped and Driven Oscillations

Lecture 7: Damped and Driven Oscillations Lecture 7: Damped and Driven Oscillatins Last time, we fund fr underdamped scillatrs: βt x t = e A1 + A csω1t + i A1 A sinω1t A 1 and A are cmplex numbers, but ur answer must be real Implies that A 1 and

More information

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4 MATHEMATICS IV MARKS. If + + 6 + c epesents cicle with dius 6, find the vlue of c. R 9 f c ; g, f 6 9 c 6 c c. Find the eccenticit of the hpeol Eqution of the hpeol Hee, nd + e + e 5 e 5 e. Find the distnce

More information

Physics 1502: Lecture 2 Today s Agenda

Physics 1502: Lecture 2 Today s Agenda 1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept.

( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept. Physics Lectue 3 (Wlke: Ch. 6.4-5) Connected Objects Cicul Motion Centipetl Acceletion Centipetl Foce Sept. 30, 009 Exmple: Connected Blocks Block of mss m slides on fictionless tbletop. It is connected

More information

2015 Regional Physics Exam Solution Set

2015 Regional Physics Exam Solution Set 05 Reginal hysics Exa Slutin Set. Crrect answer: D Nte: [quantity] dentes: units f quantity WYSE Acadeic Challenge 05 Reginal hysics Exa SOLUTION SET r F r a lengthass length / tie ass length / tie. Crrect

More information

PHYS 601 HW3 Solution

PHYS 601 HW3 Solution 3.1 Norl force using Lgrnge ultiplier Using the center of the hoop s origin, we will describe the position of the prticle with conventionl polr coordintes. The Lgrngin is therefore L = 1 2 ṙ2 + 1 2 r2

More information

Solutions to Problems. Then, using the formula for the speed in a parabolic orbit (equation ), we have

Solutions to Problems. Then, using the formula for the speed in a parabolic orbit (equation ), we have Slutins t Prblems. Nttin: V speed f cmet immeditely befre cllisin. V speed f cmbined bject immeditely fter cllisin, mmentum is cnserved. V, becuse liner + k q perihelin distnce f riginl prblic rbit, s

More information

PHYSICS 151 Notes for Online Lecture #23

PHYSICS 151 Notes for Online Lecture #23 PHYSICS 5 Ntes fr Online Lecture #3 Peridicity Peridic eans that sething repeats itself. r exaple, eery twenty-fur hurs, the Earth aes a cplete rtatin. Heartbeats are an exaple f peridic behair. If yu

More information

Engg. Math. I. Unit-I. Differential Calculus

Engg. Math. I. Unit-I. Differential Calculus Dr. Satish Shukla 1 of 50 Engg. Math. I Unit-I Differential Calculus Syllabus: Limits of functions, continuous functions, uniform continuity, monotone and inverse functions. Differentiable functions, Rolle

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

1 Using Integration to Find Arc Lengths and Surface Areas

1 Using Integration to Find Arc Lengths and Surface Areas Novembe 9, 8 MAT86 Week Justin Ko Using Integtion to Find Ac Lengths nd Sufce Aes. Ac Length Fomul: If f () is continuous on [, b], then the c length of the cuve = f() on the intevl [, b] is given b s

More information

5.1 Moment of a Force Scalar Formation

5.1 Moment of a Force Scalar Formation Outline ment f a Cuple Equivalent System Resultants f a Fce and Cuple System ment f a fce abut a pint axis a measue f the tendency f the fce t cause a bdy t tate abut the pint axis Case 1 Cnside hizntal

More information

Mathematics of Motion II Projectiles

Mathematics of Motion II Projectiles Chmp+ Fll 2001 Dn Stump 1 Mthemtics of Motion II Projectiles Tble of vribles t time v velocity, v 0 initil velocity ccelertion D distnce x position coordinte, x 0 initil position x horizontl coordinte

More information

B 20 kg. 60 kg A. m s, m k

B 20 kg. 60 kg A. m s, m k 1. he sste is elesed o est with the cble tut. o the iction coeicients s =.5 nd =. clculte the cceletion o ech bod nd the tension in the cble. eglect the sll ss nd iction o the pulles.(3/9) s 6 g 3 g W

More information

+ r Position Velocity

+ r Position Velocity 1. The phee P tel in tight line with contnt peed of =100 m/. Fo the intnt hown, detemine the coeponding lue of,,,,, eltie to the fixed Ox coodinte tem. meued + + Poition Velocit e 80 e 45 o 113. 137 d

More information

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS ALGEBRA /TRIGONMETRY TOPIC REVIEW QUARTER LOGS Cnverting frm Epnentil frm t Lgrithmic frm: E B N Lg BN E Americn Ben t French Lg Ben-n Lg Prperties: Lg Prperties lg (y) lg + lg y lg y lg lg y lg () lg

More information

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 1 Q1. A ht bject and a cld bject ae placed in themal cntact and the cmbinatin is islated. They tansfe enegy until they each a final equilibium

More information

! 94

! 94 ! 94 4 : - : : / : : : : ( :) : : : - : / : / : : - 4 : -4 : : : : : -5 () ( ) : -6 : - - : : : () : : : :4 : -7. : : -8. (. : ( : -9 : ( ( ( (5 (4 4 : -0! : ( : ( :. : (. (. (. (4. ( ( ( : ( 4 : - : :

More information

g r mg sin HKPhO 香港物理奧林匹克 2014 Multiple Choices:

g r mg sin HKPhO 香港物理奧林匹克 2014 Multiple Choices: Multiple Chices: HKPhO 香港物理奧林匹克 04. Answer: A r D. The phne is min t cnstnt elcity. The nly frce ctin n the phne is the erth rity. Remrk: The nswer is D. Hweer, since the questin sks fr "instntneus sclr

More information

Phys101 First Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Wednesday, September 25, 2013 Page: 1

Phys101 First Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Wednesday, September 25, 2013 Page: 1 Phys11 First Majr-11 Zer Versin Crdinatr: Dr. A. A. Naqvi Wednesday, September 5, 1 Page: 1 Q1. Cnsider tw unifrm slid spheres A and B made f the same material and having radii r A and r B, respectively.

More information

PHYSICS 211 MIDTERM I 21 April 2004

PHYSICS 211 MIDTERM I 21 April 2004 PHYSICS MIDERM I April 004 Exm is closed book, closed notes. Use only your formul sheet. Write ll work nd nswers in exm booklets. he bcks of pges will not be grded unless you so request on the front of

More information

PRE-BOARD MATHEMATICS-1st (Held on 26 December 2017)

PRE-BOARD MATHEMATICS-1st (Held on 26 December 2017) P-B M 7-8 PRE-BOARD MATHEMATICS-st (Held n 6 Decemer 07) ANSWER KEY (FULL SYLLABUS) M.M : 80 Generl Instructins:. The questin pper cmprises f fur sectins, A, B, C & D.. All questins re cmpulsry.. Sectin

More information

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields Fi. 0/23 (C4) 4.4. Linea ielectics (ead est at yu discetin) Mn. (C 7) 2..-..2, 2.3. t B; 5..-..2 Lentz Fce Law: fields Wed. and fces Thus. (C 7) 5..3 Lentz Fce Law: cuents Fi. (C 7) 5.2 Bit-Savat Law HW6

More information

SOLUTIONS TO CONCEPTS CHAPTER 6

SOLUTIONS TO CONCEPTS CHAPTER 6 SOLUIONS O CONCEPS CHAPE 6 1. Let ss of the block ro the freebody digr, 0...(1) velocity Agin 0 (fro (1)) g 4 g 4/g 4/10 0.4 he co-efficient of kinetic friction between the block nd the plne is 0.4. Due

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions re of equl vlue

More information

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N).

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N). Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

More information

ELECTRO - MAGNETIC INDUCTION

ELECTRO - MAGNETIC INDUCTION NTRODUCTON LCTRO - MAGNTC NDUCTON Whenee mgnetic flu linked with cicuit chnges, n e.m.f. is induced in the cicuit. f the cicuit is closed, cuent is lso induced in it. The e.m.f. nd cuent poduced lsts s

More information

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

More information

CHAPTER 10 LAGRANGIAN MECHANICS

CHAPTER 10 LAGRANGIAN MECHANICS CHAPTER LAGRANGIAN MECHANICS. Solution ( t (, t + αη ( t ( t (, t +αη ( t where (, t sinωt nd (, cos t ω ωt T V k ω t J α ω dt so: ( ( t t + + ( ω cosωt αη ω ( sinωt αη dt t t t α t J ( α ω ( cos ωt sin

More information

As we have already discussed, all the objects have the same absolute value of

As we have already discussed, all the objects have the same absolute value of Lecture 3 Prjectile Mtin Lst time we were tlkin but tw-dimensinl mtin nd intrduced ll imprtnt chrcteristics f this mtin, such s psitin, displcement, elcit nd ccelertin Nw let us see hw ll these thins re

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signls & Systms Pf. Mk Fwl Discussin #1 Cmplx Numbs nd Cmplx-Vlud Functins Rding Assignmnt: Appndix A f Kmn nd Hck Cmplx Numbs Cmplx numbs is s ts f plynmils. Dfinitin f imginy # j nd sm sulting

More information

GENERAL PHYSICS PH 221-1D (Dr. S. Mirov) Test 4 (Sample) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

GENERAL PHYSICS PH 221-1D (Dr. S. Mirov) Test 4 (Sample) ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS. GENERAL PHYSICS PH -D (Dr. S. Mirv) Test 4 (Sple) STUDENT NAME: Ke STUDENT id #: -------------------------------------------------------------------------------------------------------------------------------------------

More information

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Selected Topics in Physics a lecture course for st year students by W.B. von Schlippe Spring Semester 7 Lecture : Oscillations simple harmonic oscillations; coupled oscillations; beats; damped oscillations;

More information

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU Physics 44 Electro-Magneto-Dynamics M. Berrondo Physics BYU 1 Paravectors Φ= V + cα Φ= V cα 1 = t c 1 = + t c J = c + ρ J J ρ = c J S = cu + em S S = cu em S Physics BYU EM Wave Equation Apply to Maxwell

More information

The Spring. Consider a spring, which we apply a force F A to either stretch it or compress it

The Spring. Consider a spring, which we apply a force F A to either stretch it or compress it The Spring Consider spring, which we pply force F A to either stretch it or copress it F A - unstretched -F A 0 F A k k is the spring constnt, units of N/, different for different terils, nuber of coils

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Mark Scheme (Results) January 2008

Mark Scheme (Results) January 2008 Mk Scheme (Results) Jnuy 00 GCE GCE Mthemtics (6679/0) Edecel Limited. Registeed in Englnd nd Wles No. 4496750 Registeed Office: One90 High Holbon, London WCV 7BH Jnuy 00 6679 Mechnics M Mk Scheme Question

More information

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

More information

CHAPTER GAUSS'S LAW

CHAPTER GAUSS'S LAW lutins--ch 14 (Gauss's Law CHAPTE 14 -- GAU' LAW 141 This pblem is ticky An electic field line that flws int, then ut f the cap (see Figue I pduces a negative flux when enteing and an equal psitive flux

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information