Annual Forum, AHS International

Size: px
Start display at page:

Download "Annual Forum, AHS International"

Transcription

1 Alexander A. Nikolsky Alexander A. Nikolsky Honorary Lectureship Annual Forum, AHS International Montreal, Canada April 29, 2008

2 How Dynamic Inflow Survives in the Competitive World of Rotorcraft Aerodynamics David A. Peters McDonnell Douglas Professor of Engineering Washington University in St. Louis

3 Alexander A. Nikolsky Acknowledgements Kurt Hohenemser

4 Acknowledgements Bob Ormiston Dave, some day you will bring me a curve with a glitch, and I will ask you what it is. If you say, I don t know, that s the way it came out of the computer, you re fired. Dewey Hodges Structures and dynamics are the exact sciences, aerodynamics and thermodynamics are the inexact sciences. Rose Brower: Design and production Debbie Peters: The Love of my Life

5 Ecological Niches of Aerodynamics CFD Free Wake Prescribed Wake Dynamic Wake

6 How Dynamic Wake Models Have Survived Is there still room for simple models in the competitive world of rotorcraft analysis? 1. These models have been developed in response to pressing needs to explain physical phenomena found in experimental data. 2. These models are physically intuitive. 3. These models have been consistently based on engineering physics rather than on any heuristic mathematical fit of data. 4. These models bring in just enough physics to explain the important behavior. 5. These models are hierarchical so that each improvement includes all earlier versions and so that some version of the model can run in real time on any given computing platform.

7 What is a dynamic wake model? 1. It is a model that given the time history of blade loading predicts the flow being pumped passed the rotor blades as a function of time, radius, and azimuth. 2. It is a model that represents this evolution of inflow in first-order form in terms of a finite number of state variables. [M]{dv n /dt} + [C]{v n } = {F m } 3. It is a model that allows the number of states to vary with user needs.

8 Foundation

9 Seminal Conjecture Ken (1950) found that the measured roll damping of helicopters was roughly twice that predicted by the mathematical theories of his day. Ken Amer 1988 Nikolsky

10 Amer Conjecture The... discrepancy between the data and the theory appears to be due primarily to the changes in induced velocity which occur during rolling because of changes in the distribution of thrust around the rotor disk. These changes in induced velocity are not taken into account in the theoretical calculations because of the excessive labor that would be involved. Ken Amer NACA TN 2136 October 1950, p.11. Figure 1: Source of damping in roll for a helicopter undergoing a rolling velocity.

11 G. J. Sissingh, 1952

12 G. J. Sissingh, 1952 Sissingh, in England, applied momentum theory to Ken Amer s insight, but he applied it in a new way in terms of moments in addition to thrust. Sissingh was able to obtain formulas for the gradient in inflow for the cases of hover and forward flight.

13 Classical Approach Bob Loewy (1955, 1957) realized that rotor inflow, unlike fixed-wing inflow, is dominated by the returning layers of vorticity below the rotor plane. Robert G. Loewy 1984 Nikolsky

14 Wake Layers

15 Loewy Function

16 Lessons Learned 1. It is better not to use any Wake Model at all than to use Theodorsen Theory for a rotating wing. 2. The buckets of the real part of the Loewy Function (including = 0) are the identical lift deficiency that was found by Amer and Sissingh. 3. The imaginary part of the Loewy function shows that there is a time lag in the development of that lift deficiency.

17 Classical Approach Rene Miller of MIT (1964) added a three-dimensional correction. Rene Miller 1983 Nikolsky

18 Development

19 H.C. Pat Curtiss, Jr Nikolsky Pat Curtiss and Norm Shupe (1971) show that the Sissingh Lift Deficiency could be formally cast as an equivalent Lock number with the same lift deficiency as that of Loewy = acr 4 /I y a*/a = [1 + a/8v] -1 Curtiss also realized that it was sometimes necessary to put a time delay into the dynamic inflow

20 REXOR Had Dynamic Inflow Lockheed s REXOR Program also had Sissingh s inflow effect with a time constant

21 Appendix on Dynamic Wake

22 Robert A. Ormiston Ormiston (1970) was analyzing data from the NASA 40x80 and 7x10 wind tunnels. He discovered large discrepancies and wondered if they might be due to elastic blade bending, reversed flow, higher harmonics, tip loss, or root cut-out.

23 New Hire Dave Peters had just arrived at Ames and was given the job to create a code that would solve the blade flapping problem including all of the aforementioned effects. The results still showed large discrepancies with data; and Bob Ormiston postulated the effect reported by Amer, Sissingh, and Curtiss. David Peters 2008 Nikolsky

24 First Correlations The calculations showed that the inflow effect corrected steady results in hover but not forward flight and not unsteady results in either case.

25 Apparent Mass Bob Ormiston postulated an apparent mass and inertia of the wake as posed by Carpenter and Fridovitch (1953) Simple potential flow theory gave the numbers.

26 Correlation was excellent in hover but lousy in forward flight

27 Correlation was excellent in hover but lousy in forward flight

28 Kurt Hohenemser Independently, Kurt Hohenemser was trying to correlate some wind tunnel data taken by him and Sam Crews at Washington University. Hohenemser postulated a lift deficiency and phase lag of the inflow to explain the data and Dev Banerjee did parameter identification to find the gains and time constants.

29 Parameter Identification The identified values were within 2% of the values used by Ormiston and Peters from the Sissingh theory and potential flow for apparent mass.

30 Anton J. Jack Landgrebe In the meantime, efforts by Peters and Ormiston to find a forward flight version of dynamic inflow were fruitless. However, Vortex Lattice Models were coming into their own as computational speed and memory increased.

31 Free-Vortex Wake x = - s 1 U t x t = G r G y Trailing Tip Vortex Trailing Vortex Filaments Vortex Lattice Vortex Sheet

32 Dale Pitt Dave Peters returned to Washington University in 1975 and Dale Pitt came as his first doctoral student in Pitt had a better idea and discovered Prandtl, Kinner and Mangler/Squire.

33 Circular Wing Theory Kinner Paper Wieslaw Z. Steppy Stepniewski 1981 Inaugural Nikolsky Recipient

34 Pitt - Peters Model.

35 Connections By the way, Pitt ran Landgrebe, too, with the same results.

36 Gopal Gaonkar Gaonkar helped with the correlations. IT WAS LIKE MAGIC!

37 Bousman and Johnson William G. Bousman had taken some ground resonance data. Wayne Johnson tried to correlate it with his new comprehensive code, CAMRAD.

38 Inflow Mode Wayne proved that there was an inflow mode. Soon every stability and handling qualities code had some form of dynamic inflow in it.

39 Peretz P. Friedmann As other aeroelasticians began to understand the importance of aerodynamics as states, Friedmann began to compare Loewy Theory and dynamic inflow theory and discovered what appeared to be a discrepancy.

40 Singularity The discrepancy was simply that Loewy theory has a singularity for the collective mode at zero frequency. But looking at that got Dave Peters thinking.

41 Plea to NASA - Army In January 1985, Dave Peters pitched an idea to Bob Ormiston and Bill Warmbrodt that we could generalize the wake.

42 Dynamic Flow Diagram

43 Time Constants at Harmonic Numbers Extension of Pitt Model: T = 0.75 / (1.5 + m) Loewy function at r = ¾: T = 0.75/m

44 Georgia Tech In 1985, Dave Peters joined Georgia Tech Robin Gray 1991 Nikolsky Dan Schrage 1999 Nikolsky

45 Cheng Jian He Cheng Jian He came as Dave Peter s first Georgia Tech doctoral student (déjà vu all over again) He came up with closed-form matrices for all harmonics and distributions.

46 Langley Wind Tunnel Data This was just in time for the Langley data. Why did dynamic wake out perform vortex lattice?

47 Hover Test Stand Data This was also just in time to correlate with hover test stand data taken by Komerath. Ay Su

48 Theory and Experiment When the theory did not agree with the experiment, it turned out that Narayanan M. Komerath discovered a phasing error in the data extraction. (No one believes the theory except the one who derived it, and everyone believes the data except the one who took it.)

49 Refinement 1990

50 Back to Washington University In 1991 Dave Peters returned to Washington University. Cheng Jian He was now at Advanced Rotorcraft Technology (ART), and dynamic wake models were now being put into real-time flight simulations, including FLIGHTLAB.

51 Back to Washington University People began to realize that these simulations were missing the off-axis coupling. Aviv Rosen postulated that, when in a pitching or rolling maneuver, the vortices piled up more densely on one side of the rotor than the other.

52 Aviv Rosen Fig. 2 A graphic description of the wake distortion during a constant pitch rate.

53 Wake Curvature Soon, Pat Curtiss had shown that this could also be predicted by momentum-theory dynamic inflow with the pitch rate as a new forcing function. Prasad and his students at Georgia Tech showed that, just as Pitt had added wake skew, one could add wake curvature as a new parameter effecting [L]. Pat Curtiss 2000 Nikolsky

54 Wake Distortion Parameters η + ν R χ Contraction V = η +2ν Skew X = tan(χ/2) Curvature К = 1/R

55 Generalized Dynamic Wake Model

56 Wake Curvature J.V.R. Prasad UH-60 Off-axis pitch to lateral stick doublet input (40 knots) 5 Zhao, Prasad and Peters No wake distortion effects Flight test data qb (deg/sec) 0 40knots, K Re = Time (sec)

57 Velocity Potential Model Jorge Morillo, Ke Yu, and Antonio Hsieh worked together to show that the entire inflow theory could be derived by application of a Galerkin Method to the potential flow equations with the states being coefficients of velocity potentials. Jorge Morillo Thus, the states imply all three components of flow everywhere in the flow field.

58 Jorge Morillo

59 Steven Makinen Makinen showed how swirl correction could give results of Goldstein/ Prandtl at high inflow. This gave answer to Frank Harris. Frank Harris 2006 Nikolsky

60 Effect of Wake Rotation Circulation at any blade radial location for Prandtl, Goldstein, and using Finite-State methods.

61 Effect of Wake Rotation Circulation at any blade radial location for Prandtl, Goldstein, and using Finite-State methods.

62 So, how have dynamic wake models survived in the competitive world of aerodynamic models? They are founded in responses to experimental data. They have just enough texture to explain the desired phenomena and no more. They are hierarchical so that each new model is easily put into the old slot and so that the user can truncate at just the fidelity needed. What they lack in modeling detail, they make up in efficient computation.

63 Will models like this ever be obsolete? I don t think so. No matter how fast computers become, they will never be able to solve every molecule in real time, and lower fidelity models will be needed. There will always be a need for real-time simulation. These models give physical insight into behavior that is helpful in the design process beyond just the numbers of the calculation.

64 Will CFD, Vortex lattice and comprehensive codes ever be replaced by simple models? Absolutely not. These analysis tools are indispensable; and, as computers become faster, these tools will take over more and more of the ecological niches now dominated by simple codes. There will always, however, be niches in which the big predators cannot compete as effectively as the simple, closed-form methods.

65 Conclusions There are more things in heaven and earth, Horatio, than are even dreamt of in your philosophy. Shakespeare Life consisteth not in the abundance of things which a man possesseth. Jesus of Nazareth The purpose of computing is insight, not numbers. Hamming Don t ever say, That s the way it came out of the computer. Ormiston

66 Finish ANY QUESTIONS?

How Dynamic Inflow Survives in the Competitive World of Rotorcraft Aerodynamics The Alexander Nikolsky Honorary Lecture

How Dynamic Inflow Survives in the Competitive World of Rotorcraft Aerodynamics The Alexander Nikolsky Honorary Lecture JOURNAL OF THE AMERICAN HELICOPTER SOCIETY 54, 011001 (2009) How Dynamic Inflow Survives in the Competitive World of Rotorcraft Aerodynamics The Alexander Nikolsky Honorary Lecture David A. Peters McDonnell

More information

A Free Wake Linear Inflow Model Extraction Procedure for Rotorcraft Analysis

A Free Wake Linear Inflow Model Extraction Procedure for Rotorcraft Analysis A Free Wake Linear Inflow Model Extraction Procedure for Rotorcraft Analysis Jeffrey D. Keller Senior Associate Robert M. McKillip, Jr. Senior Associate Continuum Dynamics, Inc. Ewing, NJ, USA Daniel A.

More information

Assessment of Comprehensive Analysis Calculation of Airloads on Helicopter Rotors

Assessment of Comprehensive Analysis Calculation of Airloads on Helicopter Rotors Assessment of Comprehensive Analysis Calculation of Airloads on Helicopter Rotors Hyeonsoo Yeo Raytheon ITSS NASA Ames Research Center Moffett Field, California Wayne Johnson Army/NASA Rotorcraft Division

More information

Helicopter Rotor Unsteady Aerodynamics

Helicopter Rotor Unsteady Aerodynamics Helicopter Rotor Unsteady Aerodynamics Charles O Neill April 26, 2002 Helicopters can t fly; they re just so ugly the earth repels them. 1 Introduction Unsteady helicopter rotor aerodynamics are complicated.

More information

Efficient Modeling of Dynamic Blockage Effects for Unsteady Wind Tunnel Testing

Efficient Modeling of Dynamic Blockage Effects for Unsteady Wind Tunnel Testing Efficient Modeling of Dynamic Blockage Effects for Unsteady Wind Tunnel Testing Sumant Sharma ssharma46@gatech.edu Undergraduate Research Assistant Narayanan Komerath komerath@gatech.edu Professor Vrishank

More information

AERODYNAMIC ANALYSIS OF THE HELICOPTER ROTOR USING THE TIME-DOMAIN PANEL METHOD

AERODYNAMIC ANALYSIS OF THE HELICOPTER ROTOR USING THE TIME-DOMAIN PANEL METHOD 7 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES AERODYNAMIC ANALYSIS OF THE HELICOPTER ROTOR USING THE TIME-DOMAIN PANEL METHOD Seawook Lee*, Hyunmin Choi*, Leesang Cho*, Jinsoo Cho** * Department

More information

Calculation of Wind Turbine Geometrical Angles Using Unsteady Blade Element Momentum (BEM)

Calculation of Wind Turbine Geometrical Angles Using Unsteady Blade Element Momentum (BEM) Proceedings Conference IGCRE 2014 16 Calculation of Wind Turbine Geometrical Angles Using Unsteady Blade Element Momentum (BEM) Adel Heydarabadipour, FarschadTorabi Abstract Converting wind kinetic energy

More information

Ideal Optimum Performance of Propellers, Lifting Rotors and Wind Turbines

Ideal Optimum Performance of Propellers, Lifting Rotors and Wind Turbines Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Summer 8-1-13 Ideal Optimum Performance of Propellers, Lifting Rotors and Wind Turbines Ramin

More information

UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOR BY USING THE TIME-DOMAIN PANEL METHOD

UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOR BY USING THE TIME-DOMAIN PANEL METHOD 6 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES UNSTEAD AERODNAMIC ANALSIS OF HELICOPTER ROTOR B USING THE TIME-DOMAIN PANEL METHOD Seawook Lee*, Leesang Cho*, Jinsoo Cho* *Hanyang University

More information

FINITE-STATE DYNAMIC WAKE INFLOW MODELLING FOR COAXIAL ROTORS

FINITE-STATE DYNAMIC WAKE INFLOW MODELLING FOR COAXIAL ROTORS FINITE-STATE DYNAMIC WAKE INFLOW MODELLING FOR COAXIAL ROTORS Felice Cardito, Riccardo Gori, Giovanni Bernardini, Jacopo Serafini, Massimo Gennaretti Department of Engineering, Roma Tre University, Rome,

More information

PERFORMANCE ANALYSIS OF A COAXIAL ROTOR SYSTEM IN HOVER: THREE POINTS OF VIEW

PERFORMANCE ANALYSIS OF A COAXIAL ROTOR SYSTEM IN HOVER: THREE POINTS OF VIEW PERFORMANCE ANALYSIS OF A COAXIAL ROTOR SYSTEM IN HOVER: THREE POINTS OF VIEW Jessica Yana, Omri Rand Graduate student, Professor Technion - Israel Institute of Technology yjessica@tx.technion.ac.il; omri@aerodyne.technion.ac.il;

More information

The Connection Between Acoustics and Unsteady Aerodynamics

The Connection Between Acoustics and Unsteady Aerodynamics National Aeronautics and Space Administration The Connection Between Acoustics and Unsteady Aerodynamics Keynote Address F. Farassat- Fellow of AIAA www.nasa.gov NASA Langley Research Center 14th AIAA/CEAS

More information

EXTRACTION OF LINEAR INFLOW MODEL FOR MANEUVERING HELICOPTER FROM FREE-WAKE ANALYSIS

EXTRACTION OF LINEAR INFLOW MODEL FOR MANEUVERING HELICOPTER FROM FREE-WAKE ANALYSIS EXTRACTION OF INEAR INFOW MODE FOR MANEVERING HEICOPTER FROM FREE-WAKE ANAYSIS Omri Rand, Vladimir Khromov Faculty of Aerospace Engineering Technion - Israel Institute of Technology, Haifa, Israel Keywords:

More information

Research on Propeller Characteristics of Tip Induced Loss

Research on Propeller Characteristics of Tip Induced Loss 4th International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2016) Research on Propeller Characteristics of Tip Induced Loss Yang Song1, a, Peng Shan2, b 1 School

More information

DEVELOPMENT OF A FINITE STATE COAXIAL ROTOR DYNAMIC INFLOW MODEL

DEVELOPMENT OF A FINITE STATE COAXIAL ROTOR DYNAMIC INFLOW MODEL DEVELOPMENT OF A FINITE STATE COAXIAL ROTOR DYNAMIC INFLOW MODEL A Thesis Presented to The Academic Faculty by Yong-Boon Kong In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

A Compact, Closed Form Solution for the Optimum, Ideal Wind Turbines

A Compact, Closed Form Solution for the Optimum, Ideal Wind Turbines Department of Mechanical Engineering & Material Sciences A Compact, Closed Form Solution for the Optimum, Ideal Wind Turbines David A. Peters McDonnell Douglas Professor of Engineering dap@wustl.edu Ramin

More information

Semi-Empirical Modeling of Two-Dimensional and Three-Dimensional Dynamic Stall

Semi-Empirical Modeling of Two-Dimensional and Three-Dimensional Dynamic Stall Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Spring 5-15-2016 Semi-Empirical Modeling

More information

FURTHER EXAMINATION OF THE VIBRATORY LOADS REDUCTION RESULTS FROM THE NASA/ARMY/MIT ACTIVE TWIST ROTOR TEST

FURTHER EXAMINATION OF THE VIBRATORY LOADS REDUCTION RESULTS FROM THE NASA/ARMY/MIT ACTIVE TWIST ROTOR TEST FURTHER EXAMINATION OF THE VIBRATORY LOADS REDUCTION RESULTS FROM THE NASA/ARMY/MIT ACTIVE TWIST ROTOR TEST Matthew L. Wilbur William T. Yeager, Jr. Martin K. Sekula m.l.wilbur@larc.nasa.gov w.t.yeager@larc.nasa.gov

More information

Multidisciplinary Design Optimization Of A Helicopter Rotor Blade

Multidisciplinary Design Optimization Of A Helicopter Rotor Blade Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-2010 Multidisciplinary Design Optimization Of A Helicopter Rotor Blade Michael G. Leahy Ryerson University Follow this and additional

More information

Copyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved.

Copyright 2007 N. Komerath. Other rights may be specified with individual items. All rights reserved. Low Speed Aerodynamics Notes 5: Potential ti Flow Method Objective: Get a method to describe flow velocity fields and relate them to surface shapes consistently. Strategy: Describe the flow field as the

More information

Lecture No. # 09. (Refer Slide Time: 01:00)

Lecture No. # 09. (Refer Slide Time: 01:00) Introduction to Helicopter Aerodynamics and Dynamics Prof. Dr. C. Venkatesan Department of Aerospace Engineering Indian Institute of Technology, Kanpur Lecture No. # 09 Now, I just want to mention because

More information

Blade Element Momentum Theory

Blade Element Momentum Theory Blade Element Theory has a number of assumptions. The biggest (and worst) assumption is that the inflow is uniform. In reality, the inflow is non-uniform. It may be shown that uniform inflow yields the

More information

Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Turbomachinery Aerodynamics Prof. Bhaskar Roy Prof. A M Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. # 26 Tutorial 4: 3D Flows in Axial Flow Turbines We

More information

Module No. # 01 Lecture No. # 22

Module No. # 01 Lecture No. # 22 Introduction to Helicopter Aerodynamics and Dynamics Prof. Dr. C. Venkatesan Department of Aerospace Engineering Indian Institute of Technology, Kanpur Module No. # 01 Lecture No. # 22 Lead lag dynamics

More information

Small-Scale Propellers Operating in the Vortex Ring State

Small-Scale Propellers Operating in the Vortex Ring State 49 th AIAA Aerospace Sciences Meeting AIAA 2011-1254 4-7 anuary 2011, Orlando, FL Small-Scale Propellers Operating in the Vortex Ring State Omkar R. Shetty and Michael S. Selig University of Illinois at

More information

CONSIDERATION OF STRUCTURAL CONSTRAINTS IN PASSIVE ROTOR BLADE DESIGN FOR IMPROVED PERFORMANCE

CONSIDERATION OF STRUCTURAL CONSTRAINTS IN PASSIVE ROTOR BLADE DESIGN FOR IMPROVED PERFORMANCE CONSIDERATION OF STRUCTURAL CONSTRAINTS IN PASSIVE ROTOR BLADE DESIGN FOR IMPROVED PERFORMANCE Joon W. Lim US Army Aviation Development Directorate - AFDD Aviation & Missile Research, Development & Engineering

More information

Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow

Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow Denis B. Kholodar, United States Air Force Academy, Colorado Springs, CO 88 Earl H. Dowell, Jeffrey P. Thomas, and Kenneth C. Hall Duke University,

More information

Assessment of a State-Space free wake model

Assessment of a State-Space free wake model Assessment of a State-Space free wake model Master of Science Thesis DELFT UNIVERSITY OF TECHNOLOGY Faculty of Aerospace Engineering Flight Performance and Propulsion Diego Hidalgo López I.A. Assessment

More information

Syllabus for AE3610, Aerodynamics I

Syllabus for AE3610, Aerodynamics I Syllabus for AE3610, Aerodynamics I Current Catalog Data: AE 3610 Aerodynamics I Credit: 4 hours A study of incompressible aerodynamics of flight vehicles with emphasis on combined application of theory

More information

OPTIMUM AND DESIGN TRENDS OF COMPOUND HELICOPTERS

OPTIMUM AND DESIGN TRENDS OF COMPOUND HELICOPTERS OPTIMUM AND DESIGN TRENDS OF COMPOUND HELICOPTERS Omri Rand, Vladimir Khromov Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel Keywords: Compound Helicopters,

More information

fffl.lflfff E-EAh~~h E-hE-EEEoh

fffl.lflfff E-EAh~~h E-hE-EEEoh U AD-A099 5532 ARMY TROOP SUPPORT AND AVIATION MATERIEL READINESS CO-.ETC F/S0/ ROTOR DYNAMIC INFLOW DERIVATIVES AND TIME CONSTANTS FROM VARIOU--ET(U) fffl.lflfff T DEC 80 D N PITT UNCLASSIFIED TSARCOM-TR81-2

More information

Control Volume Analysis For Wind Turbines

Control Volume Analysis For Wind Turbines Control Volume Analysis For Wind Turbines.0 Introduction In this Chapter we use the control volume (CV) method introduced informally in Section., to develop the basic equations for conservation of mass

More information

ROTORCRAFT AEROMECHANICS

ROTORCRAFT AEROMECHANICS ROTORCRAFT AEROMECHANICS Rotorcraft is a class of aircraft that uses large-diameter rotating wings to accomplish efficient vertical takeoff and landing. The class encompasses helicopters of numerous configurations

More information

An Airloads Theory for Morphing Airfoils in Dynamic Stall with Experimental Correlation

An Airloads Theory for Morphing Airfoils in Dynamic Stall with Experimental Correlation Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) January 21 An Airloads Theory for Morphing Airfoils in Dynamic Stall with Experimental Correlation

More information

MOST of the coupled ap-lag-torsion aeroelastic stability

MOST of the coupled ap-lag-torsion aeroelastic stability JOURNAL OF AIRCRAFT Vol. 34, No. 3, May June 997 Re ned Aeroelastic Analysis of Hingeless Rotor Blades in Hover Maeng Hyo Cho,* Seong Min Jeon, Sung Hyun Woo, and In Lee Korea Advanced Institute of Science

More information

A Short History of (Wind Turbine) Aerodynamics

A Short History of (Wind Turbine) Aerodynamics A Short History of (Wind Turbine) Aerodynamics Jens Nørkær Sørensen and Valery Okulov DTU Wind Energy Presentation at the Wind Denmark Conference Hedensted, October 30, 2018 Momentum (or slipstream, or

More information

GyroRotor program : user manual

GyroRotor program : user manual GyroRotor program : user manual Jean Fourcade January 18, 2016 1 1 Introduction This document is the user manual of the GyroRotor program and will provide you with description of

More information

Performance Evaluation of a Flexible Rotor in Extreme Ground Effect

Performance Evaluation of a Flexible Rotor in Extreme Ground Effect Performance Evaluation of a Flexible Rotor in Extreme Ground Effect Mor Gilad Inderjit Chopra Omri Rand Alfred Gessow Rotorcraft Center Department of Aerospace Engineering University of Maryland College

More information

Aeroelastic Analysis Of Membrane Wings

Aeroelastic Analysis Of Membrane Wings Aeroelastic Analysis Of Membrane Wings Soumitra P. Banerjee and Mayuresh J. Patil Virginia Polytechnic Institute and State University, Blacksburg, Virginia 46-3 The physics of flapping is very important

More information

USING TIGHTLY-COUPLED CFD/CSD SIMULATION FOR ROTORCRAFT STABILITY ANALYSIS

USING TIGHTLY-COUPLED CFD/CSD SIMULATION FOR ROTORCRAFT STABILITY ANALYSIS USING TIGHTLY-COUPLED CFD/CSD SIMULATION FOR ROTORCRAFT STABILITY ANALYSIS A Thesis Presented to The Academic Faculty by Afifa Adel Zaki In Partial Fulfillment of the Requirements for the Degree Doctor

More information

Peter And John Visit Jesus Tomb John 20:1-10

Peter And John Visit Jesus Tomb John 20:1-10 Lesson 279 Peter And John Visit Jesus Tomb John 20:1-10 MEMORY VERSE MARK 9:31 For He taught His disc iples and said to them, "The S on of Man is being delivered into the hands of m en, and they will kill

More information

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS 54 CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS The baseline characteristics and analysis of NACA 4 series airfoils are presented in this chapter in detail. The correlations for coefficient of lift and

More information

AN ABSTRACT OF THE THESIS OF. John R. Hartin for the degree of Doctor of Philosophy in. Evaluation of Horizontal Axis Wind Turbine Blade

AN ABSTRACT OF THE THESIS OF. John R. Hartin for the degree of Doctor of Philosophy in. Evaluation of Horizontal Axis Wind Turbine Blade AN ABSTRACT OF THE THESIS OF John R. Hartin for the degree of Doctor of Philosophy in Mechanical Engineering presented on May 24, 1989. Title: Evaluation of Horizontal Axis Wind Turbine Blade Loads Using

More information

AIAA A Computational Model for Rotor-Fuselage Interactional Aerodynamics

AIAA A Computational Model for Rotor-Fuselage Interactional Aerodynamics AIAA -56 A Computational Model for Rotor-Fuselage Interactional Aerodynamics D. Douglas Boyd, Jr. and Richard W. Barnwell Virginia Polytechnic Institute and State University Virginia Consortium of Engineering

More information

Rotary-Wing Aeroelasticity: Current Status and Future Trends

Rotary-Wing Aeroelasticity: Current Status and Future Trends AIAA JOURNAL Vol. 42, No. 10, October 2004 Rotary-Wing Aeroelasticity: Current Status and Future Trends Peretz P. Friedmann University of Michigan, Ann Arbor, Michigan 48109-2140 Introduction and Background

More information

Three-Dimensional Features of the Stalled Flow field of a Rotor Blade in Forward Flight

Three-Dimensional Features of the Stalled Flow field of a Rotor Blade in Forward Flight Three-Dimensional Features of the Stalled Flow field of a Rotor Blade in Forward Flight Vrishank Raghav, Phillip Richards, Narayanan Komerath, Marilyn Smith Daniel Guggenheim School of Aerospace Engineering,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : LOW SPEED AERODYNAMICS Course Code : AAE004 Regulation : IARE

More information

Computers and Mathematics with Applications. Fractal boundaries of basin of attraction of Newton Raphson method in helicopter trim

Computers and Mathematics with Applications. Fractal boundaries of basin of attraction of Newton Raphson method in helicopter trim Computers and Mathematics with Applications 60 (2010) 2834 2858 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Fractal

More information

A simplified model for a small propeller with different airfoils along the blade

A simplified model for a small propeller with different airfoils along the blade A simplified model for a small propeller with different airfoils along the blade Kamal A. R. Ismail 1) and *Célia V. A. G. Rosolen 2) 1), 2) State University of Campinas, Faculty of Mechanical Engineering,

More information

LEE-SIDE FLOW SIMULATIONS OF CRUCIFORM WING- BODY CONFIGURATIONS AT INCOMPRESSIBLE MACH NUMBERS

LEE-SIDE FLOW SIMULATIONS OF CRUCIFORM WING- BODY CONFIGURATIONS AT INCOMPRESSIBLE MACH NUMBERS LEE-SIDE FLOW SIMULATIONS OF CRUCIFORM WING- BODY CONFIGURATIONS AT INCOMPRESSIBLE MACH NUMBERS Janine Versteegh* ** *University of the Witwatersrand **Council for Scientific and Industrial Research (CSIR)

More information

Modeling Helicopter Rotor Blade Flapping Motion Considering Nonlinear Aerodynamics

Modeling Helicopter Rotor Blade Flapping Motion Considering Nonlinear Aerodynamics Copyright c 28 Tech Science Press CMES, vol.27, no.1, pp.2-36, 28 Modeling Helicopter Rotor Blade Flapping Motion Considering Nonlinear Aerodynamics Jyoti Ranjan Majhi, Ranjan Ganguli 1 Abstract: The flapping

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 May 11(7): pages 126-131 Open Access Journal Computational Analysis

More information

Application of an aerodynamic code to marine propellers

Application of an aerodynamic code to marine propellers Application of an aerodynamic code to marine propellers M. Schaffar, J. Haertig To cite this version: M. Schaffar, J. Haertig. Application of an aerodynamic code to marine propellers. Journal de Physique

More information

Reduced reliance on wind tunnel data

Reduced reliance on wind tunnel data Reduced reliance on wind tunnel data The recreation of the industrial gust loads process, using CFD in place of experimental data Investigation of the underlying assumptions of the current industrial gust

More information

A Numerical Study of Circulation Control on a Flapless UAV

A Numerical Study of Circulation Control on a Flapless UAV Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-xxxx A Numerical Study of Circulation Control on a Flapless UAV Huaixun Ren 1, Weimin

More information

Notation. a 0, a 1. c fm c D c L c M. α κ η λ ( c M / η)/(c fm / η)

Notation. a 0, a 1. c fm c D c L c M. α κ η λ ( c M / η)/(c fm / η) Trailing Edge Flaps for Active Rotor Control Aeroelastic Characteristics of the ADASYS Rotor System Oliver Dieterich Bernhard Enenkl Dieter Roth Oliver.dieterich@eurocopter.com Bernhard.enenkl@eurocopter.com

More information

ANALYSIS OF HORIZONTAL AXIS WIND TURBINES WITH LIFTING LINE THEORY

ANALYSIS OF HORIZONTAL AXIS WIND TURBINES WITH LIFTING LINE THEORY ANALYSIS OF HORIZONTAL AXIS WIND TURBINES WITH LIFTING LINE THEORY Daniela Brito Melo daniela.brito.melo@tecnico.ulisboa.pt Instituto Superior Técnico, Universidade de Lisboa, Portugal December, 2016 ABSTRACT

More information

Aeroelastic Gust Response

Aeroelastic Gust Response Aeroelastic Gust Response Civil Transport Aircraft - xxx Presented By: Fausto Gill Di Vincenzo 04-06-2012 What is Aeroelasticity? Aeroelasticity studies the effect of aerodynamic loads on flexible structures,

More information

Performance Investigation of Ducted Aerodynamic Propulsors

Performance Investigation of Ducted Aerodynamic Propulsors First International Symposium on Marine Propulsors Smp 9, Trondheim, Norway, June 29 Performance Investigation of Ducted Aerodynamic Propulsors Naipei P. Bi, Kevin R. Kimmel, David J. Haas Naval Surface

More information

Energy can change from one form to another without a net loss or gain.

Energy can change from one form to another without a net loss or gain. Energy can change from one form to another without a net loss or gain. Energy may be the most familiar concept in science, yet it is one of the most difficult to define. We observe the effects of energy

More information

A Numerical Blade Element Approach to Estimating Propeller Flowfields

A Numerical Blade Element Approach to Estimating Propeller Flowfields Utah State University DigitalCommons@USU Mechanical and Aerospace Engineering Faculty Publications Mechanical and Aerospace Engineering 1-8-27 A Numerical Blade Element Approach to Estimating Propeller

More information

Supplementary Section D: Additional Material Relating to Helicopter Flight Mechanics Models for the Case Study of Chapter 10.

Supplementary Section D: Additional Material Relating to Helicopter Flight Mechanics Models for the Case Study of Chapter 10. Supplementary Section D: Additional Material Relating to Helicopter Flight Mechanics Models for the Case Study of Chapter 1. D1 Nonlinear Flight-Mechanics Models and their Linearisation D1.1 Introduction

More information

USING MULTIBODY DYNAMICS FOR THE STABILITY ASSESSMENT OF A NEW ROTOR TEST RIG

USING MULTIBODY DYNAMICS FOR THE STABILITY ASSESSMENT OF A NEW ROTOR TEST RIG USING MULTIBODY DYNAMICS FOR THE STABILITY ASSESSMENT OF A NEW ROTOR TEST RIG Jürgen Arnold, Stefan Waitz DLR German Aerospace Center D-37073 Göttingen Germany Abstract The secure entry into service of

More information

EPGY Special and General Relativity. Lecture 4B

EPGY Special and General Relativity. Lecture 4B Lecture 4B In the previous lecture we found that the proper description of the universe is one consisting of a four-dimensional manifold (space) endowed with a Lorentzian metric, (of course we are restricting

More information

MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES

MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES Journal of KONES Powertrain and Transport, Vol. 21, No. 2 2014 MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES Institute of Aviation Department of Aerodynamics and Flight Mechanics Krakowska

More information

Validation of Chaviaro Poulos and Hansen Stall Delay Model in the Case of Horizontal Axis Wind Turbine Operating in Yaw Conditions

Validation of Chaviaro Poulos and Hansen Stall Delay Model in the Case of Horizontal Axis Wind Turbine Operating in Yaw Conditions Energy and Power Engineering, 013, 5, 18-5 http://dx.doi.org/10.436/epe.013.51003 Published Online January 013 (http://www.scirp.org/journal/epe) Validation of Chaviaro Poulos and Hansen Stall Delay Model

More information

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk.

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. Aerodynamic Performance 1 1 Momentum Theory Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. 1. The flow is perfect fluid, steady, and incompressible.

More information

Rotor Loads Prediction: A Matched-Harmonic Confluence Approach, with Application to 600+ UH-60A Flight Counters

Rotor Loads Prediction: A Matched-Harmonic Confluence Approach, with Application to 600+ UH-60A Flight Counters Rotor Loads Prediction: A Matched-Harmonic Confluence Approach, with Application to 600+ UH-60A Flight Counters Chance McColl cmccoll@tda-i.com Director of Engineering - Marietta Technical Data Analysis,

More information

Simulation of Aeroelastic System with Aerodynamic Nonlinearity

Simulation of Aeroelastic System with Aerodynamic Nonlinearity Simulation of Aeroelastic System with Aerodynamic Nonlinearity Muhamad Khairil Hafizi Mohd Zorkipli School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School

More information

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6] Code No: R05322101 Set No. 1 1. (a) Explain the following terms with examples i. Stability ii. Equilibrium. (b) Comment upon the requirements of stability of a i. Military fighter aircraft ii. Commercial

More information

Period Analysis on a Spreadsheet

Period Analysis on a Spreadsheet Aliases in Depth An alias for a period is another period where the data seemingly fits as well, or nearly so, as the correct period. The most common encounter with aliasing is when you observe a target

More information

Actuator Surface Model for Wind Turbine Flow Computations

Actuator Surface Model for Wind Turbine Flow Computations Actuator Surface Model for Wind Turbine Flow Computations Wen Zhong Shen* 1, Jens Nørkær Sørensen 1 and Jian Hui Zhang 1 Department of Mechanical Engineering, Technical University of Denmark, Building

More information

Drag Computation (1)

Drag Computation (1) Drag Computation (1) Why drag so concerned Its effects on aircraft performances On the Concorde, one count drag increase ( C D =.0001) requires two passengers, out of the 90 ~ 100 passenger capacity, be

More information

OPTIMAL AEROELASTIC TRIM FOR ROTORCRAFT WITH CONSTRAINED, NON-UNIQUE TRIM SOLUTIONS

OPTIMAL AEROELASTIC TRIM FOR ROTORCRAFT WITH CONSTRAINED, NON-UNIQUE TRIM SOLUTIONS OPTIMAL AEROELASTIC TRIM FOR ROTORCRAFT WITH CONSTRAINED, NON-UNIQUE TRIM SOLUTIONS A Thesis Presented to The Academic Faculty by Troy C. Schank In Partial Fulfillment of the Requirements for the Degree

More information

Aerodynamic Rotor Model for Unsteady Flow and Wake Impact

Aerodynamic Rotor Model for Unsteady Flow and Wake Impact Aerodynamic Rotor Model for Unsteady Flow and Wake Impact N. Bampalas, J. M. R. Graham Department of Aeronautics, Imperial College London, Prince Consort Road, London, SW7 2AZ June 28 1 (Steady Kutta condition)

More information

Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction

Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction Numerical Study on Performance of Curved Wind Turbine Blade for Loads Reduction T. Maggio F. Grasso D.P. Coiro 13th International Conference Wind Engineering (ICWE13), 10-15 July 011, Amsterdam, the Netherlands.

More information

TILTROTOR AEROACOUSTIC CODE (TRAC) PREDICTION ASSESSMENT AND INITIAL COMPARISONS WITH TRAM TEST DATA

TILTROTOR AEROACOUSTIC CODE (TRAC) PREDICTION ASSESSMENT AND INITIAL COMPARISONS WITH TRAM TEST DATA TILTROTOR AEROACOUSTIC CODE (TRAC) PREDICTION ASSESSMENT AND INITIAL COMPARISONS WITH TRAM TEST DATA Casey L. Burley and Thomas F. Brooks NASA Langley Research Center Hampton, VA Bruce D. Charles The Boeing

More information

Physics 10 Spring Final Exam: You are a Turtle. Name:

Physics 10 Spring Final Exam: You are a Turtle. Name: Physics 10 Spring 2013 Final Exam: You are a Turtle. Name: (c) Randall Munroe, www.xkcd.com also (c) Randall Munroe, www.xkcd.com Part I: Short-Answer Questions. Answer all the questions in this section.

More information

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru

PEMP ACD2505. M.S. Ramaiah School of Advanced Studies, Bengaluru Two-Dimensional Potential Flow Session delivered by: Prof. M. D. Deshpande 1 Session Objectives -- At the end of this session the delegate would have understood PEMP The potential theory and its application

More information

Princeton University. Department of ö^^ovuä^,^^^' Aoroopnco- Engineering. %x SS? ^

Princeton University. Department of ö^^ovuä^,^^^' Aoroopnco- Engineering. %x SS? ^ - -...- Princen University.NOTES ON DERVATON OF EMFRCAL CHARTS FOR CALCULATON OF ROTOR BLADE ARADS CO o Department of Aeronautical Engineering Report No. 458 May, 1959 ' SV8 NVHttjg Department of ö^^ovuä^,^^^'

More information

The Pennsylvania State University The Graduate School College of Engineering AERODYNAMIC ANALYSIS OF HELICOPTER ROTORS USING

The Pennsylvania State University The Graduate School College of Engineering AERODYNAMIC ANALYSIS OF HELICOPTER ROTORS USING The Pennsylvania State University The Graduate School College of Engineering AERODYNAMIC ANALYSIS OF HELICOPTER ROTORS USING A HIGHER-ORDER, FREE-WAKE METHOD A Dissertation in Aerospace Engineering by

More information

INTERFACING COMPREHENSIVE ROTORCRAFT ANALYSIS WITH ADVANCED AEROMECHANICS AND VORTEX WAKE MODELS

INTERFACING COMPREHENSIVE ROTORCRAFT ANALYSIS WITH ADVANCED AEROMECHANICS AND VORTEX WAKE MODELS INTERFACING COMPREHENSIVE ROTORCRAFT ANALYSIS WITH ADVANCED AEROMECHANICS AND VORTEX WAKE MODELS A Thesis Presented to The Academic Faculty by Haiying Liu In Partial Fulfillment of the Requirements for

More information

SIMULATION STUDIES OF MICRO AIR VEHICLE

SIMULATION STUDIES OF MICRO AIR VEHICLE Journal of KONES Powertrain and Transport, Vol. 22, No. 4 2015 SIMULATION STUDIES OF MICRO AIR VEHICLE Krzysztof Sibilski, Andrzej Zyluk, Miroslaw Kowalski Air Force Institute of Technology Ksiecia Boleslawa

More information

Rotor reference axis

Rotor reference axis Rotor reference axis So far we have used the same reference axis: Z aligned with the rotor shaft Y perpendicular to Z and along the blade (in the rotor plane). X in the rotor plane and perpendicular do

More information

Some effects of large blade deflections on aeroelastic stability

Some effects of large blade deflections on aeroelastic stability 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 29, Orlando, Florida AIAA 29-839 Some effects of large blade deflections on aeroelastic stability

More information

The AVINOR Aeroelastic Simulation Code and its Application to Reduced Vibration Composite Rotor Blade Design

The AVINOR Aeroelastic Simulation Code and its Application to Reduced Vibration Composite Rotor Blade Design 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference17th 4-7 May 2009, Palm Springs, California AIAA 2009-2601 The AVINOR Aeroelastic Simulation Code and its Application

More information

Experimental investigation of the aerodynamic characteristics of generic fan-in-wing configurations

Experimental investigation of the aerodynamic characteristics of generic fan-in-wing configurations THE AERONAUTICAL JOURNAL JANUARY 2009 VOLUME 113 NO 1139 9 Experimental investigation of the aerodynamic characteristics of generic fan-in-wing configurations N. Thouault, C. Breitsamter and N. A. Adams

More information

R. Dennis Farmer X4820. OCA Contact. 2) Sponsor Ad min/contractua I Matters: (or) Company/Industrial Proprietary:

R. Dennis Farmer X4820. OCA Contact. 2) Sponsor Ad min/contractua I Matters: (or) Company/Industrial Proprietary: 1 GEORGIA INSTITUTE OF TECHNOLOGY PROJECT ADMINISTRATION DATA SHEET OFFICE OF CONTRACT ADMINISTRATION ORIGINAL n REVISION NO. Project No. E- 16-44 R5929-0A1 GTRCAKI DATE 8 / 6 / 85 Project Director: Dr.

More information

The Shunammite Woman s Land Restored 2 Kings 8:1-6

The Shunammite Woman s Land Restored 2 Kings 8:1-6 Lesson 111 The Shunammite Woman s Land Restored 2 Kings 8:1-6 MEMORY VERSE 2 KIN GS 8:6 Restore all that w as hers, and all the proc eeds of the field from the day that she left the land until now. WHAT

More information

Study. Aerodynamics. Small UAV. AVL Software

Study. Aerodynamics. Small UAV. AVL Software Study of the Aerodynamics of a Small UAV using AVL Software Prepared For: Prof. Luis Bernal Prepared By: Paul Dorman April 24, 2006 Table of Contents Introduction.1 Aerodynamic Data...2 Flight Assessment..

More information

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford FLIGHT DYNAMICS Robert F. Stengel Princeton University Press Princeton and Oxford Preface XV Chapter One Introduction 1 1.1 ELEMENTS OF THE AIRPLANE 1 Airframe Components 1 Propulsion Systems 4 1.2 REPRESENTATIVE

More information

There wasn t Big Bang.

There wasn t Big Bang. There wasn t Big Bang. Vyacheslav Telnin Abstract Two ideas gave birth to this paper : The law of the galaxies scattering and the existence of the infinitely large and infinitely small numbers. Content

More information

HELICOPTERS radiate noise over a large frequency

HELICOPTERS radiate noise over a large frequency 596 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 7, NO. 5, SEPTEMBER 1999 Feedback Attenuation and Adaptive Cancellation of Blade Vortex Interaction on a Helicopter Blade Element Kartik B. Ariyur

More information

Using CFD to Improve Simple Aerodynamic Models for Rotor Codes

Using CFD to Improve Simple Aerodynamic Models for Rotor Codes Using CFD to Improve Simple Aerodynamic Models for Rotor Codes J. Beedy, G. N. Barakos, K. J. Badcock, and B. E. Richards Computational Fluid Dynamics Lab, Department of Aerospace Engineering, University

More information

EVOLVING DOCUMENT ME 5070 Flight Dynamics

EVOLVING DOCUMENT ME 5070 Flight Dynamics EVOLVING DOCUMENT ME 5070 Flight Dynamics Homework Date of this version: March 20, 2015 Hyperlinks look like this Dates in headings below are the dates of the associated lecture Due January 27, 2015 1

More information

Mathematical Modeling of the Flow behind Propeller

Mathematical Modeling of the Flow behind Propeller Studies in Engineering and Technology Vol. 2, No. 1; August 2015 ISSN 2330-2038 E-ISSN 2330-2046 Published by Redfame Publishing URL: http://set.redfame.com Mathematical Modeling of the Flow behind Propeller

More information

VORTEX METHOD APPLICATION FOR AERODYNAMIC LOADS ON ROTOR BLADES

VORTEX METHOD APPLICATION FOR AERODYNAMIC LOADS ON ROTOR BLADES EWEA 2013: Europe s Premier Wind Energy Event, Vienna, 4-7 February 2013 Figures 9, 10, 11, 12 and Table 1 corrected VORTEX METHOD APPLICATION FOR AERODYNAMIC LOADS ON ROTOR BLADES Hamidreza Abedi *, Lars

More information

Performance. 5. More Aerodynamic Considerations

Performance. 5. More Aerodynamic Considerations Performance 5. More Aerodynamic Considerations There is an alternative way of looking at aerodynamic flow problems that is useful for understanding certain phenomena. Rather than tracking a particle of

More information

Creating a database of helicopter main rotor acoustics for validation of CFD methods

Creating a database of helicopter main rotor acoustics for validation of CFD methods 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Creating a database of helicopter main rotor acoustics for validation of CFD methods Pakhov, V.*, Stepanov, R.*, Bozhenko, A.*, Batrakov,

More information

Experimental Aerodynamics. Experimental Aerodynamics

Experimental Aerodynamics. Experimental Aerodynamics Lecture 3: Vortex shedding and buffeting G. Dimitriadis Buffeting! All structures exposed to a wind have the tendency to vibrate.! These vibrations are normally of small amplitude and have stochastic character!

More information