Supporting Information for. Electric-magneto-optical Kerr effect in a. hybrid organic-inorganic perovskite

Size: px
Start display at page:

Download "Supporting Information for. Electric-magneto-optical Kerr effect in a. hybrid organic-inorganic perovskite"

Transcription

1 Supporting Information for Electric-magneto-optical Kerr effect in a hybrid organic-inorganic perovskite Feng-Ren Fan, Hua Wu,,, Dmitrii Nabok, Shunbo Hu, Wei Ren, Claudia Draxl, and Alessandro Stroppa,, Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 2433, China Collaborative Innovation Center of Advanced Microstructures, Nanjing 2193, China Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, Zum Groβen Windkanal 6, D Berlin, Germany Department of Physics, and International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 2444, China CNR-SPIN, Via Vetoio, L Aquila, Italy wuh@fudan.edu.cn; alessandro.stroppa@spin.cnr.it I. Illustrative MOKE picture MOKE is an optical effect describing the change of the polarization of light when reflected from the surface of a magnetic material: a rotation of the polarization plane, the so-called Kerr rotation θ K, and a phase difference between the electric-field components perpendicular and parallel to the plane of the incident light, the so-called Kerr ellipticity, η K. In Fig- S1

2 (a) (b) θ K θ K Figure S1: Schematic diagram of MOKE and its switching upon reversal of the magnetization in a ferromagnetic sample. The red arrows denote the propagation of the light. The black (cyan) arrows in black circles are the polarization directions of the light without (with) rotations. The black arrows on the sample surfaces are the magnetization directions. ure S1 we show MOKE in a FM material, where the reversal of the magnetization, usually accomplished by an external magnetic field, leads to a reversal of the Kerr rotation. II. Crystal structure The crystal structure of Cr-MOF is shown in Figure S2. The Cr 2+ ions are connected by HCOO organic ligands, and the guanidinium cation, C(NH 2 ) + 3 are at the A sites of the perovskite structure. The Cr 2+ ions sit at the center of the octahedrons. Since Cr 2+ is a Jahn-Teller active ion the Cr-O bonds are not equal, and they are grouped in two longer and two shorter ones in the ab plane while the two medium ones are along the c axis. (a) (b) Cr O N C A: C(NH 2 ) 3 + (c) H X: HCOO - Figure S2: (a) Crystal structure of [C(NH 2 ) 3 ]Cr[(HCOO) 3 ], blue octahedrons are CrO 6 units. Details of (b) C(NH 2 ) + 3 and (c) HCOO groups are shown on the right. S2

3 III. Methods Calculations for the relaxed atomic positions were performed using the VASP code 1,2 as done in our previous work. 3 The Kerr angle is calculated as implemented in the all-electron full-potential code EXCITING. 4 The wavefunctions are expanded in terms of the (linearized) augmented planewaves plus local orbitals [(L)APW+lo] basis. 5 The muffin-tin radii (R MT ) for Cr, Cu, K, O, C, N and H atoms are 2.2, 2.2, 2.4, 1.18, 1.18, 1.18, and.75 bohr, respectively. The (L)APW+lo basis size is determined by R MT G Max = 3.. The Brillouin zone (BZ) is sampled by a k-mesh. The exchange-correlation effects are treated within the local-density approximation (LDA). 6 The spin-orbit coupling (SOC) term is included using the second-variation method. The complex Kerr angle is calculated using the equation 4 φ K = θ K +iη K = σ xy, (S1) σ xx 1+ 4πiσ ω xx where σ and ω are the optical conductivity tensor and the frequency of the incident light, respectively. In principle, Equation S1 applies to systems with higher than 3-fold rotational symmetry, 7 e.g., cubic systems, in which σ xy = σ yx and the anti-symmetric part σ A xy = (σ xy σ yx )/2 = σ xy. If not, σ A xy should be used, instead of σ xy, in Equation S1. However, for the calculations of MOKE in Cr-MOF, Equation S1 is a reasonably good approximation (see the following Section V for more details). In addition, σ xx = σ yy is assumed, in view of the leading contribution of σxy A. For calculating the optical conductivity tensor, both interband and intraband term (also called Drude term) are considered in our calculations. For the spectra calculations, broadening of.1 Ha was used. For the 49 calculations of the Kerr angles in (P, M) space (Figure 4 and S6), a smaller energy cutoff was used, by changing the R MT of H to 1.. S3

4 θ K (degree) Cr-MOF Zn-MOF GaAs Energy (ev) Figure S3: Variation of the light rotation as a function of the incident photon energy for Cr-MOF and Zn-MOF with λ=1, and also for GaAs. Zn-MOF is an artificial analog to Cr-MOF. The inversion symmetry is broken in all of them; the time reversal symmetry is preserved in Zn-MOF and GaAs, but not in Cr-MOF. IV. MOKE without time-reversal symmetry breaking Besides the most concerned MOKE in this work, one may consider an influence of the electric Pockels effect. The electric Pockels effect is also related to the inversion symmetry breaking, and it is linearly proportional to the electric field. It produces a polarization rotation for a light to propagate through an electric-optic crystal. It is important to note that although our theoretical approaches and the used EXCIT ING code do not account for the electric Pockels effect, this does not affect our conclusions on the EMOKE in this study, as proven by the following two computational experiments. First, we substitute Zn for Cr in Cr-MOF at λ=1 and then obtain an artificial nonmagnetic material Zn-MOF in a polar structure. Therefore, in Zn-MOF the time-reversal symmetry is preserved, but the inversion symmetry is still broken. As well known, without breaking the time-reversal symmetry, the Kerr rotation should always be zero. In Figure S3, we show our calculated light rotations for both Cr-MOF and Zn-MOF: the Kerr rotation for Zn-MOF is indeed zero at any energy but it is non zero for Cr-MOF. This infers that our approach does not account for the electric Pockels effect (as expected in the nonmagnetic but polar Zn-MOF) but truly describes the Kerr effect present in Cr-MOF. To further confirm this point, secondly we have calculated the light rotation according to our formalism for zinc-blend GaAs, a typical Pockels material. Again, S4

5 the calculated light rotation is zero for GaAs (Figure S3). With these two test calculations for nonmagnetic Zn-MOF and GaAs (both with the broken inversion symmetry), all the present results clearly show that the light rotation obtained for Cr-MOF is not due to the electric Pockels effect but to EMOKE. For a better accuracy, the electric Pockels effect shall be included in a future study. V. MOKE from anti-symmetric part of the optical conductivity tensor θ K (degree) P, M = P =, M = P, M = (σ xy -σ yx )/2 σ xy Energy (ev) Figure S4: Variation of the Kerr rotation as a function of the incident photon energy at (+P, M=), (P=, M=), and ( P, M=). The solid lines are the results calculated using (σ xy σ yx )/2, and dashed lines using σ xy. The existence of MOKE can be explained by the form of the conductivity tensor σ(ω), see Equation S1. For polar case, if there is MOKE, the off-diagonal components σ xy and σ yx are different from zero. More precisely, MOKE comes from the non-zero anti-symmetric part of the conductivity tensor, i.e. σxy A = (σ xy σ yx )/2. So, we have also calculated the Kerr rotation using the following Equation S2, which replaces σ xy in Equation S1 with σxy, A i.e. φ K = θ K +iη K = (σ xy σ yx )/2. (S2) σ xx 1+ 4πiσ ω xx The results for three typical cases, (+P, M=), (P=, M=), and ( P, M=), are shown in Figure S4 (solid lines). Compared with the results calculated using Equation S1 (dashed S5

6 lines in Figure S4), the values of the Kerr rotations somehow change, but mostly at the low energy (E<2.5 ev). However, it is interesting to point out that the results for (+P, M=) are always opposite to those for ( P, M=), independent of the two different formulations of the Kerr rotation. Thus, these test calculations once again confirm our conclusions about the EMOKE made in the main text. VI. The role of the A-site: trilinear coupling and cation substitution The Cr-MOF shows a trilinear coupling among two unstable non-polar modes and a stable polar mode: the two-non polar modes correspond to the tilting of the A-site (X 1 ) and to the pseudo-rotation at B site (X 4 ) due to the orbital ordering of the JT orbitals. 3 This implies that Kerr switching should occur either by switching the JT orbital ordering or by switching the tilting of the A-sites. The former has been discussed in the main text (Figure 2(a)) which basically corresponds to the switching of the Kerr angle by the electric polarization and corresponding JT orbital ordering. Here we discuss the effect of the tilting of A-sites (X 1 mode) and, in particular, we show that the reversal of the tilting also reverses the sign of the Kerr angle. In Figure S5(a) we report the calculated Kerr angle for two energyequivalent structures but with different tilting of the A site, i.e. for +X 1 and X 1, where X 1 is the symmetric mode related to the A-site tilting using the irreducible representation of the high symmetric space group, Imma. 3 The change of the tilting angle is shown in the inset of Figure S5(a). The switching of the Kerr angle is accompanied by a reversal of M z. Therefore, the tilting of the organic cation at the A site has an important role in shaping the Kerr spectra through the mechanism of hybrid improper ferroelectricity. It is conceivable that a judicious choice of a different organic cations may give a different tilting and therefore induces changes in the Kerr spectra. We further explore the role of the A site by considering an extreme case where we replace the guanidinium cation with a simple spherical atom such as K +. Unexpectedly, the Kerr spectra changes (Figure S5(b)). This further highlights the possibility of tuning of the Kerr S6

7 (a) θ K (Deg) (b) θ K (Deg) (c) θ K (Deg) X 1 X 1 X 4 X 1 X 4 X 1 Cr-MOF K@A -.5 Cr-MOF -.1 Cu-MOF Energy(eV) Figure S5: Variation of the Kerr rotation as a function of the incident photon energy for different cases. (a) Two trilinear modes X 4 X 1 (red solid) and X 4 -X 1 (blue dashed); (b) Cr- MOF (red solid) and K-replaced A site Cr-MOF (blue dashed); (c) Cr-MOF (red solid) and Cu-MOF (blue dashed). angle by proper choice of the A-site cations, which, in turn, modifies the molecular tilting at the A site and the ferroelectric polarization of the unit cell, opening new possibilities for the Kerr-angle engineering in complex hybrid materials. While these are certainly new directions to explore, it is beyond the scope of this paper to go in further details. A more appropriate discussion will be considered in a forthcoming publication. VII. Cr-MOF and Cu-MOF Last but not least, although we have started our calculations by considering the Cr-MOF, to the best of our knowledge, this compound has not been synthesized yet. However, a similar compound, a Cu-MOF has been grown and experimentally characterized. 8 According to previous studies, 3,9 Cu-MOF and Cr-MOF have very similar properties. In particular, both S7

8 of them show trilinear coupling as source of ferroelectricity and they are magneto-electric. All these properties have been experimentally verified for the Cu-MOF. Therefore we have also calculated the Kerr spectra in this case. Although the calculated weak-fm component is smaller in the Cu-MOF with respect to the Cr-MOF i.e..19 µ B /Cu and 1.4 µ B /Cr respectively, the ferroelectric polarization is larger in the Cu-MOF than in the Cr-MOF, i.e..46 and.23 µc/cm 2 respectively. 3,9 In Figure S5(c) we show the Kerr spectra for both the Cu-MOF and the Cr-MOF in the two equivalent ferroelectric states. First of all, in both cases, the Kerr reverses its sign upon reversal of both P and M. Interestingly, the Cu-MOF shows the largest Kerr angle in the explored energy range. This is probably related to the larger polarization in the Cu-MOF despite its small net magnetization. This highlights the interesting role of the α, β coefficients which can be strongly depending the specific material. A more extended analysis will be presented in a forthcoming publication. VIII. Fitting In order to test how the Kerr rotation depends on P and M, we perform 49 calculations on a grid of points in (P, M) space. As a result, we have a distribution of Kerr angles in (P, M) space at each energy point, e.g. E=3.82 ev (Figure S6(a)). All these computational experiments show that the Kerr rotation can be switched only by switching both P and M at the same time. Based on the 49 calculations, we can fit Kerr rotations in (P, M) space at each energy point. Because of the centro-symmetry of the Kerr rotation in (P, M) space, we use a target function, that is where n is a positive integer. i θ K (P,M) = αj i P(i j) M j i=2n 1 j= (S3) If only the first order terms are considered, Equation S3 becomes a multilinear equation θ K (P,M) = α 1 P +α1 1 M (S4) S8

9 (a) 1 Original data (b) 1 1st-order fitting (c) 1 3rd-order fitting.6 M / M max P / P max P / P max (d) (e) θ K (degree) original 1st order fitting 3rd order fitting Energy (ev) P / P max P / P max (f) M / M max P / P max M / M max -.6 Figure S6: Kerr-rotation distribution at 3.82 ev in the whole (P, M) space. (a) The original 49 grid points, (b) first-order multilinear fitting, and (c) third-order fitting. The black-square line is the magneto-electric path, and the orange line stands for points which give a zero Kerr rotation. (d) Comparison of the original (black), first-order fitting (blue) and third-order fitting (red) of the Kerr rotations at (+P max, +M max ). (e) Comparison of the original (black dots) and first-order fitting of the Kerr rotations at 3.82 ev. (f) Comparison of the original (black dots) and third-order fits of the Kerr rotations at 3.82 ev. We can see that the third order fitting results are much closer to the original data than the first-order ones. where α 1 and α1 1 are the parameters α and β mentioned in main text. The fitting is a multilinear fitting. As long as we have α 1 and α1 1, we can reproduce all the Kerr rotations in the whole (P, M) space at each energy point. We show the Kerr-rotation distribution at E = 3.82 ev in Figure S6(b). Moreover, we have also expanded Equation S3 up to the third order, θ K (P,M) = α 1 P +α1 1 M +α3 P3 +α 3 1 P2 M +α 3 2 PM2 +α 3 3 M3 (S5) We can also reproduce the Kerr-rotation distribution in the whole (P, M) space (Figure S6(c)). We can now compare the two fitting procedures, first vs third order. In S9

10 Figure S6(d), we show the spectra θ K (+P max,+m max ;E). The black, blue, and red line correspond to the original, first-order and third-order fitting results respectively. We can see that both the first and third order fitting describe the Kerr rotation rather well. In Figure S6(e) and (f), we give the comparison at E = 3.82 ev for the first-order and third-order fitting with the original results respectively. As we have seen in Figure S6(d), the third-order result is closer to the original one, as expected. However, in both cases, the fitted values represent very well the real values and, in particular, they reproduce the underlying symmetry in (P, M) space. The fitting procedure confirms the switching properties that we discussed previously, i.e. only when P and M are reversed at the same time, the Kerr angle can be switched. The most important result is that a measure of θ K is proportional to P and M not just only to M as previously believed. Thus EMOKE represents a new property in material science which deserves further investigation both from theory and experiments. References (1) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, (2) Blöchl, P. E. Phys. Rev. B 1994, 5, (3) Stroppa, A.; Barone, P.; Jain, P.; Perez-Mato, J. M.; Picozzi, S. Adv. Mater. 213, 25, (4) Gulans, A.; Kontur, S.; Meisenbichler, C.; Nabok, D.; Pavone, P.; Rigamonti, S.; Sagmeister, S.; Werner, U.; Draxl, C. J. Phys. Condens. Matter. 214, 26, (5) Singh, D. J.; Nordstrom, L. Planewaves, Pseudopotentials, and the LAPW method; Springer Science & Business Media, 26. (6) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, (7) Kahn, F. J.; Pershan, P. S.; Remeika, J. P. Phys. Rev. 1969, 186, S1

11 (8) Hu, K. L.; Kurmoo, M.; Wang, Z.; Gao, S. Chem. Eur. J. 29, 15, 125. (9) Stroppa, A.; Jain, P.; Barone, P.; Marsman, M.; Perez-Mato, J. M.; Cheetham, A. K.; Kroto, H. W.; Picozzi, S. Angew. Chem. 211, 123, S11

Strong Facet-Induced and Light-Controlled Room-Temperature. Ferromagnetism in Semiconducting β-fesi 2 Nanocubes

Strong Facet-Induced and Light-Controlled Room-Temperature. Ferromagnetism in Semiconducting β-fesi 2 Nanocubes Supporting Information for Manuscript Strong Facet-Induced and Light-Controlled Room-Temperature Ferromagnetism in Semiconducting β-fesi 2 Nanocubes Zhiqiang He, Shijie Xiong, Shuyi Wu, Xiaobin Zhu, Ming

More information

Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film

Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film Z. F. Wang 1,2,3+, Huimin Zhang 2,4+, Defa Liu 5, Chong Liu 2, Chenjia Tang 2, Canli Song 2, Yong Zhong 2, Junping Peng

More information

Energy-Level Alignment at the Interface of Graphene Fluoride and Boron Nitride Monolayers: An Investigation by Many-Body Perturbation Theory

Energy-Level Alignment at the Interface of Graphene Fluoride and Boron Nitride Monolayers: An Investigation by Many-Body Perturbation Theory Supporting Information Energy-Level Alignment at the Interface of Graphene Fluoride and Boron Nitride Monolayers: An Investigation by Many-Body Perturbation Theory Qiang Fu, Dmitrii Nabok, and Claudia

More information

Behind the "exciting" curtain: The (L)APW+lo method

Behind the exciting curtain: The (L)APW+lo method Behind the "exciting" curtain: The (L)APW+lo method Aug 7, 2016 Andris Gulans Humboldt-Universität zu Berlin Kohn-Sham equation Potential due to nuclei Exchange-correlation potential Potential due to electron

More information

Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application

Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application Jingying Liu,, Yunzhou Xue,,, Ziyu Wang,, Zai-Quan Xu, Changxi Zheng, Bent Weber, Jingchao Song, Yusheng Wang, Yuerui

More information

Study Of Electronic And Linear Optical Properties Of Indium Pnictides (InX, X = P, As, Sb)

Study Of Electronic And Linear Optical Properties Of Indium Pnictides (InX, X = P, As, Sb) International Journal of Physics and Applications. ISSN 0974-3103 Volume 7, Number 1 (2015), pp. 9-14 International Research Publication House http://www.irphouse.com Study Of Electronic And Linear Optical

More information

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material]

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] S. K. Panda, I. dasgupta, E. Şaşıoğlu, S. Blügel, and D. D. Sarma Partial DOS, Orbital projected band structure

More information

Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type

Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type Zhigang Gu, a Lars Heinke, a,* Christof Wöll a, Tobias Neumann,

More information

The Linearized Augmented Planewave (LAPW) Method

The Linearized Augmented Planewave (LAPW) Method The Linearized Augmented Planewave (LAPW) Method David J. Singh Oak Ridge National Laboratory E T [ ]=T s [ ]+E ei [ ]+E H [ ]+E xc [ ]+E ii {T s +V ks [,r]} I (r)= i i (r) Need tools that are reliable

More information

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set Chapter 3 The (L)APW+lo Method 3.1 Choosing A Basis Set The Kohn-Sham equations (Eq. (2.17)) provide a formulation of how to practically find a solution to the Hohenberg-Kohn functional (Eq. (2.15)). Nevertheless

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Helicoidal magnetic structure and ferroelectric polarization in. Cu 3 Nb 2 O 8

Helicoidal magnetic structure and ferroelectric polarization in. Cu 3 Nb 2 O 8 Helicoidal magnetic structure and ferroelectric polarization in Cu 3 Nb 2 O 8 Zheng-Lu Li, 1 M.-H. Whangbo, 2 X. G. Gong, 1, * and H. J. Xiang 1, * 1 Key Laboratory of Computational Physical Sciences (Ministry

More information

Electronic and Bonding Properties of Half-metallic PtMnSb and NiMnSb : First Principles Study

Electronic and Bonding Properties of Half-metallic PtMnSb and NiMnSb : First Principles Study J. Pure Appl. & Ind. Phys. Vol.2 (3), 278-285 (2012) Electronic and Bonding Properties of Half-metallic PtMnSb and NiMnSb : First Principles Study I. B. SHAMEEM BANU Department of Physics, B.S. Abdur Rahman

More information

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 143 CHAPTER 6 ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 6.1 INTRODUCTION Almost the complete search for possible magnetic materials has been performed utilizing

More information

Supporting Information

Supporting Information Supporting Information Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture Hyun You Kim 1, Mark S. Hybertsen 2*, and Ping Liu 2* 1 Department of Materials Science

More information

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based Supporting information Realizing Two-Dimensional Magnetic Semiconductors with Enhanced Curie Temperature by Antiaromatic Ring Based Organometallic Frameworks Xingxing Li and Jinlong Yang* Department of

More information

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC 286 Brazilian Journal of Physics, vol. 36, no. 2A, June, 2006 Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC Clas Persson and Susanne Mirbt Department

More information

PBS: FROM SOLIDS TO CLUSTERS

PBS: FROM SOLIDS TO CLUSTERS PBS: FROM SOLIDS TO CLUSTERS E. HOFFMANN AND P. ENTEL Theoretische Tieftemperaturphysik Gerhard-Mercator-Universität Duisburg, Lotharstraße 1 47048 Duisburg, Germany Semiconducting nanocrystallites like

More information

Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials

Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials Excited state properties p within WIEN2k Claudia Ambrosch-Draxl, University of Leoben, Austria Chair of Atomistic Modelling and Design of Materials Beyond the ground state Basics about light scattering

More information

Exchange-induced negative-u charge order in N-doped WO 3 : A spin-peierls-like system

Exchange-induced negative-u charge order in N-doped WO 3 : A spin-peierls-like system Exchange-induced negative-u charge order in N-doped WO 3 : A spin-peierls-like system Muhammad N. Huda,*, Yanfa Yan, Su-Huai Wei, and Mowafak M. Al-Jassim National Renewable Energy Laboratory, Golden,

More information

Structural, electronic and optical properties of the quinary Al 0.50 Ga 0.38 In 0.12 N 0.03 Sb 0.97 :First-principles study

Structural, electronic and optical properties of the quinary Al 0.50 Ga 0.38 In 0.12 N 0.03 Sb 0.97 :First-principles study IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-1676,p-ISSN: 30-3331, Volume 9, Issue Ver. V (Mar Apr. 014), PP 1-16 Structural, electronic and optical properties of the quinary

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: Towards Active and Stable Oxygen Reduction Cathode: A Density Functional Theory Survey on Pt 2 M skin alloys Guang-Feng Wei and Zhi-Pan Liu* Shanghai Key Laboratory of lecular

More information

University of Chinese Academy of Sciences, Beijing , People s Republic of China,

University of Chinese Academy of Sciences, Beijing , People s Republic of China, SiC 2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cell Liu-Jiang Zhou,, Yong-Fan Zhang, Li-Ming Wu *, State Key Laboratory of Structural Chemistry, Fujian Institute of Research

More information

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even,

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, whereas in (b) it is odd. An odd number of non-degenerate

More information

SnO 2 Physical and Chemical Properties due to the Impurity Doping

SnO 2 Physical and Chemical Properties due to the Impurity Doping , March 13-15, 2013, Hong Kong SnO 2 Physical and Chemical Properties due to the Impurity Doping Richard Rivera, Freddy Marcillo, Washington Chamba, Patricio Puchaicela, Arvids Stashans Abstract First-principles

More information

Linear and non-linear spectroscopy of GaAs and GaP: theory versus experiment

Linear and non-linear spectroscopy of GaAs and GaP: theory versus experiment Thin Solid Films 313 314 1998 574 578 Linear and non-linear spectroscopy of GaAs and GaP: theory versus experiment A.I. Shkrebtii a,, J.L.P. Hughes a, J.E. Sipe a, O. Pulci b a Department of Physics, Uni

More information

Non-collinear OEP for solids: SDFT vs CSDFT

Non-collinear OEP for solids: SDFT vs CSDFT Non-collinear OEP for solids: SDFT vs Sangeeta Sharma 1,2, J. K. Dewhurst 3 S. Pittalis 2, S. Kurth 2, S. Shallcross 4 and E. K. U. Gross 2 1. Fritz-Haber nstitut of the Max Planck Society, Berlin, Germany

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

Electronic structure of U 5 Ge 4

Electronic structure of U 5 Ge 4 Materials Science-Poland, Vol. 25, No. 2, 2007 Electronic structure of U 5 Ge 4 A. SZAJEK * Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland U 5

More information

Condensed Matter A Week 2: Crystal structure (II)

Condensed Matter A Week 2: Crystal structure (II) QUEEN MARY, UNIVERSITY OF LONDON SCHOOL OF PHYSICS AND ASTRONOMY Condensed Matter A Week : Crystal structure (II) References for crystal structure: Dove chapters 3; Sidebottom chapter. Last week we learnt

More information

Basics of DFT applications to solids and surfaces

Basics of DFT applications to solids and surfaces Basics of DFT applications to solids and surfaces Peter Kratzer Physics Department, University Duisburg-Essen, Duisburg, Germany E-mail: Peter.Kratzer@uni-duisburg-essen.de Periodicity in real space and

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Supplementary Information: Construction of Hypothetical MOFs using a Graph Theoretical Approach. Peter G. Boyd and Tom K. Woo*

Supplementary Information: Construction of Hypothetical MOFs using a Graph Theoretical Approach. Peter G. Boyd and Tom K. Woo* Electronic Supplementary Material ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Supplementary Information: Construction of Hypothetical MOFs using a Graph Theoretical Approach

More information

Supporting Information

Supporting Information Supporting Information Yi et al..73/pnas.55728 SI Text Study of k z Dispersion Effect on Anisotropy of Fermi Surface Topology. In angle-resolved photoemission spectroscopy (ARPES), the electronic structure

More information

First-principles study of electronic and optical properties of BaS, BaSe and BaTe

First-principles study of electronic and optical properties of BaS, BaSe and BaTe Cent. Eur. J. Phys. 8(5) 2010 782-788 DOI: 10.2478/s11534-009-0154-1 Central European Journal of Physics First-principles study of electronic and optical properties of BaS, BaSe and BaTe Research Article

More information

exciting in a nutshell

exciting in a nutshell http://exciting-code.org exciting in a nutshell Pasquale Pavone Humboldt-Universität zu Berlin http://exciting-code.org exciting in a (coco)nutshell Pasquale Pavone Humboldt-Universität zu Berlin Outline

More information

2.3 Band structure and lattice symmetries: example of diamond

2.3 Band structure and lattice symmetries: example of diamond 2.2.9 Product of representaitons Besides the sums of representations, one can also define their products. Consider two groups G and H and their direct product G H. If we have two representations D 1 and

More information

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY C.A. Madu and B.N Onwuagba Department of Physics, Federal University of Technology Owerri, Nigeria

More information

Weyl semimetal phase in the non-centrosymmetric compound TaAs

Weyl semimetal phase in the non-centrosymmetric compound TaAs Weyl semimetal phase in the non-centrosymmetric compound TaAs L. X. Yang 1,2,3, Z. K. Liu 4,5, Y. Sun 6, H. Peng 2, H. F. Yang 2,7, T. Zhang 1,2, B. Zhou 2,3, Y. Zhang 3, Y. F. Guo 2, M. Rahn 2, P. Dharmalingam

More information

Supplementary Figure 1: Projected density of states (DOS) of the d states for the four titanium ions in the SmSr superlattice (Ti 1 -Ti 4 as defined

Supplementary Figure 1: Projected density of states (DOS) of the d states for the four titanium ions in the SmSr superlattice (Ti 1 -Ti 4 as defined Supplementary Figure 1: Projected density of states (DOS) of the d states for the four titanium ions in the SmSr superlattice (Ti 1 -Ti 4 as defined in the main text). Supplementary Table 1: Comparison

More information

Influence of tetragonal distortion on the topological electronic structure. of the half-heusler compound LaPtBi from first principles

Influence of tetragonal distortion on the topological electronic structure. of the half-heusler compound LaPtBi from first principles Influence of tetragonal distortion on the topological electronic structure of the half-heusler compound LaPtBi from first principles X. M. Zhang, 1,3 W. H. Wang, 1, a) E. K. Liu, 1 G. D. Liu, 3 Z. Y. Liu,

More information

Molecular Orbital Theory and Charge Transfer Excitations

Molecular Orbital Theory and Charge Transfer Excitations Molecular Orbital Theory and Charge Transfer Excitations Chemistry 123 Spring 2008 Dr. Woodward Molecular Orbital Diagram H 2 Antibonding Molecular Orbital (Orbitals interfere destructively) H 1s Orbital

More information

Supporting Information for. Revealing Surface Elemental Composition and Dynamic Processes

Supporting Information for. Revealing Surface Elemental Composition and Dynamic Processes Supporting Information for Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-dependent Oxidation of Pt 3 Co Nanoparticles via in-situ Transmission Electron Microscopy Sheng

More information

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate 2017 International Conference on Energy Development and Environmental Protection (EDEP 2017) ISBN: 978-1-60595-482-0 Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate Miao-Juan REN

More information

Calculation and Analysis of the Dielectric Functions for BaTiO 3, PbTiO 3, and PbZrO 3

Calculation and Analysis of the Dielectric Functions for BaTiO 3, PbTiO 3, and PbZrO 3 CHINESE JOURNAL OF PHYSICS VOL. 1, NO. 3 June 213 Calculation and Analysis of the Dielectric Functions for BaTiO 3, PbTiO 3, and PbZrO 3 Chao Zhang and Dashu Yu School of Physics & Electronic Information

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/7/e1700704/dc1 Supplementary Materials for Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies Yaxin Zhai,

More information

CHAPTER 3 WIEN2k. Chapter 3 : WIEN2k 50

CHAPTER 3 WIEN2k. Chapter 3 : WIEN2k 50 CHAPTER 3 WIEN2k WIEN2k is one of the fastest and reliable simulation codes among computational methods. All the computational work presented on lanthanide intermetallic compounds has been performed by

More information

Polarization Enhancement in Perovskite Superlattices by Oxygen. Octahedral Tilts

Polarization Enhancement in Perovskite Superlattices by Oxygen. Octahedral Tilts Polarization Enhancement in Perovskite Superlattices by Oxygen Octahedral Tilts X. Z. Lu a), X. G. Gong, and H. J. Xiang b) Key Laboratory of Computational Physical Sciences (Ministry of Education), State

More information

Molecular Orbital Theory and Charge Transfer Excitations

Molecular Orbital Theory and Charge Transfer Excitations Molecular Orbital Theory and Charge Transfer Excitations Chemistry 123 Spring 2008 Dr. Woodward Molecular Orbital Diagram H 2 Antibonding Molecular Orbital (Orbitals interfere destructively) H 1s Orbital

More information

Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles

Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles I. Aguilera, P. Palacios, P. Wahnon Institute de Energia Solar and Departamiento de Tecnologias

More information

Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2*

Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2* Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2* 1 Key Laboratory of Computational Physical Sciences (Ministry of Education), State

More information

Jie Ma and Lin-Wang Wang Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. Abstract

Jie Ma and Lin-Wang Wang Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. Abstract The role of the isolated s states in BiO on the electronic and atomic structures Jie Ma and Lin-Wang Wang Lawrence Berkeley National Laboratory, Berkeley, California 90, USA Abstract BiO is one of the

More information

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Supplementary Information Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Shiheng Liang 1, Rugang Geng 1, Baishun Yang 2, Wenbo Zhao 3, Ram Chandra Subedi 1,

More information

Insights on Spin Polarization through the Spin Density Source Function. Electronic Supplementary Information (ESI)

Insights on Spin Polarization through the Spin Density Source Function. Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 Insights on Spin Polarization through the Spin Density Source Function Carlo Gatti*,,,

More information

A Tunable, Strain-Controlled Nanoporous MoS 2 Filter for Water Desalination

A Tunable, Strain-Controlled Nanoporous MoS 2 Filter for Water Desalination Supporting Information A Tunable, Strain-Controlled Nanoporous MoS 2 Filter for Water Desalination Weifeng Li 1, Yanmei Yang 1, Jeffrey K. Weber 2, Gang Zhang* 3, Ruhong Zhou* 1,2,4 1. School for Radiological

More information

Electronic Structure and Magnetic Properties of Cu[C(CN) 3 ] 2 and Mn[C(CN) 3 ] 2 Based on First Principles

Electronic Structure and Magnetic Properties of Cu[C(CN) 3 ] 2 and Mn[C(CN) 3 ] 2 Based on First Principles Commun. Theor. Phys. (Beijing, China) 54 (2010) pp. 938 942 c Chinese Physical Society and IOP Publishing Ltd Vol. 54, No. 5, November 15, 2010 Electronic Structure and Magnetic Properties of Cu[C(CN)

More information

Phonon calculations with SCAN

Phonon calculations with SCAN Workshop on the SCAN density functional: Fundamentals, practices, and extensions Temple university, Philadelphia May 18th, 2017 Hands-on tutorial 3 Phonon calculations with SCAN Yubo Zhang and Jianwei

More information

Chern insulator and Chern half-metal states in the two-dimensional. spin-gapless semiconductor Mn 2 C 6 S 12

Chern insulator and Chern half-metal states in the two-dimensional. spin-gapless semiconductor Mn 2 C 6 S 12 Supporting Information for Chern insulator and Chern half-metal states in the two-dimensional spin-gapless semiconductor Mn 2 C 6 S 12 Aizhu Wang 1,2, Xiaoming Zhang 1, Yuanping Feng 3 * and Mingwen Zhao

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e151117/dc1 Supplementary Materials for Quantum Hall effect in a bulk antiferromagnet EuMni2 with magnetically confined two-dimensional Dirac fermions Hidetoshi

More information

Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were

Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were performed for the Platonic model of PbI 3 -based perovskites

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Supplementary Information. Structural Transition and Unusually Strong Antiferromagnetic Superexchange Coupling in Perovskite KAgF3

Supplementary Information. Structural Transition and Unusually Strong Antiferromagnetic Superexchange Coupling in Perovskite KAgF3 Supplementary Information Structural Transition and Unusually Strong Antiferromagnetic Superexchange Coupling in Perovskite KAgF3 Dominik Kurzydłowski, *a Zoran Mazej, b Zvonko Jagličić, c Yaroslav Filinchuk

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

Defects in TiO 2 Crystals

Defects in TiO 2 Crystals , March 13-15, 2013, Hong Kong Defects in TiO 2 Crystals Richard Rivera, Arvids Stashans 1 Abstract-TiO 2 crystals, anatase and rutile, have been studied using Density Functional Theory (DFT) and the Generalized

More information

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY S. Hara, T. Kumagai, S. Izumi and S. Sakai Department of mechanical engineering, University of

More information

A comparative computational study of the electronic properties of planar and buckled silicene

A comparative computational study of the electronic properties of planar and buckled silicene A comparative computational study of the electronic properties of planar and buckled silicene Harihar Behera 1 and Gautam Mukhopadhyay 2 Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI:.38/NMAT4855 A magnetic heterostructure of topological insulators as a candidate for axion insulator M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki,

More information

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Atomic Models for Anionic Ligand Passivation of Cation- Rich

More information

Energy Stabilities, Magnetic Properties, and Electronic Structures of Diluted Magnetic Semiconductor Zn 1 x Mn x S(001) Thin Films

Energy Stabilities, Magnetic Properties, and Electronic Structures of Diluted Magnetic Semiconductor Zn 1 x Mn x S(001) Thin Films CHINESE JOURNAL OF CHEMICAL PHYSICS VOLUME 24, NUMBER 1 FEBRUARY 27, 2011 ARTICLE Energy Stabilities, Magnetic Properties, and Electronic Structures of Diluted Magnetic Semiconductor Zn 1 x Mn x S(001)

More information

3D topological insulators and half- Heusler compounds

3D topological insulators and half- Heusler compounds 3D topological insulators and half- Heusler compounds Ram Seshadri Materials Department, and Department of Chemistry and Biochemistry Materials Research Laboratory University of California, Santa Barbara

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supporting online material SUPPLEMENTARY INFORMATION doi: 0.038/nPHYS8 A: Derivation of the measured initial degree of circular polarization. Under steady state conditions, prior to the emission of the

More information

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann.

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann. Supporting information The Unusual and the Expected in the Si/C Phase Diagram Guoying Gao, N. W. Ashcroft and Roald Hoffmann Table of Contents Computational Methods...S1 Hypothetical Structures for Si

More information

CHAPTER: 8. ELECTRONIC STRUCTURE AND ELASTIC PROPERTIES OF CrC AND CrN. 8.1 Introduction. Ph.D. Thesis: J. Maibam

CHAPTER: 8. ELECTRONIC STRUCTURE AND ELASTIC PROPERTIES OF CrC AND CrN. 8.1 Introduction. Ph.D. Thesis: J. Maibam CHAPTER -8 CHAPTER: 8 ELECTRONIC STRUCTURE AND ELASTIC PROPERTIES OF CrC AND CrN 8.1 Introduction In this chapter, we have selected CrC and CrN from group VIB transition metal carbides and nitrides for

More information

Lecture on First-principles Computations (11): The Linearized Augmented Plane-wave Method

Lecture on First-principles Computations (11): The Linearized Augmented Plane-wave Method Lecture on First-principles Computations (11): The Linearized Augmented Plane-wave Method 任新国 (Xinguo Ren) 中国科学技术大学量子信息重点实验室 Key Laboratory of Quantum Information, USTC Hefei, 2018.10.24 Recall: orthogonalized

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Materials and Methods Single crystals of Pr 2 Ir 2 O 7 were grown by a flux method [S1]. Energy dispersive x-ray analysis found no impurity phases, no inhomogeneities and a ratio between Pr and Ir of 1:1.03(3).

More information

Monitoring Local Strain Vector in Atomic-layered MoSe 2 by. Second-Harmonic Generation

Monitoring Local Strain Vector in Atomic-layered MoSe 2 by. Second-Harmonic Generation Supporting information for Monitoring Local Strain Vector in Atomic-layered MoSe 2 by Second-Harmonic Generation Jing Liang, Jin Zhang, Zhenzhu Li, Hao Hong, Jinhuan Wang, Zhihong Zhang, Xu Zhou, Ruixi

More information

Quantum anomalous Hall states on decorated magnetic surfaces

Quantum anomalous Hall states on decorated magnetic surfaces Quantum anomalous Hall states on decorated magnetic surfaces David Vanderbilt Rutgers University Kevin Garrity & D.V. Phys. Rev. Lett.110, 116802 (2013) Recently: Topological insulators (TR-invariant)

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

Some surprising results of the Kohn-Sham Density Functional

Some surprising results of the Kohn-Sham Density Functional arxiv:1409.3075v1 [cond-mat.mtrl-sci] 10 Sep 2014 Some surprising results of the Kohn-Sham Density Functional L. G. Ferreira 1, M. Marques 2, L. K. Teles 2, R. R. Pelá 2 1 Instituto de Física, Universidade

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Cyclotron frequency coupled enhancement of Kerr rotation in low refractive index-dielectric/magnetooptic bilayer thin-film structures

Cyclotron frequency coupled enhancement of Kerr rotation in low refractive index-dielectric/magnetooptic bilayer thin-film structures University of New Orleans ScholarWorks@UNO Physics Faculty Publications Department of Physics 1-1-2002 Cyclotron frequency coupled enhancement of Kerr rotation in low refractive index-dielectric/magnetooptic

More information

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Supplementary Material Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Youngjae Kim, Won Seok Yun, and J. D. Lee* Department

More information

Optical Properties with Wien2k

Optical Properties with Wien2k Optical Properties with Wien2k Elias Assmann Vienna University of Technology, Institute for Solid State Physics WIEN2013@PSU, Aug 13 Menu 1 Theory Screening in a solid Calculating ϵ: Random-Phase Approximation

More information

Experiment Section Fig. S1 Fig. S2

Experiment Section Fig. S1 Fig. S2 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Materials Experiment Section The STM experiments were carried out in an ultrahigh

More information

PROOF COPY [LD9110BJ] PRB

PROOF COPY [LD9110BJ] PRB Effect of oxygen stoichiometry on spin, charge, and orbital ordering in manganites R. Vidya,* P. Ravindran, P. Vajeeston, A. Kjekshus, and H. Fjellvåg Department of Chemistry, University of Oslo, P.O.

More information

Supporting Information

Supporting Information Supporting Information Exploring the detection of metal ions by tailoring the coordination mode of V-shaped thienylpyridyl ligand in three MOFs Li-Juan Han,, Wei Yan, Shu-Guang Chen, Zhen-Zhen Shi, and

More information

NMR Shifts. I Introduction and tensor/crystal symmetry.

NMR Shifts. I Introduction and tensor/crystal symmetry. NMR Shifts. I Introduction and tensor/crystal symmetry. These notes were developed for my group as introduction to NMR shifts and notation. 1) Basic shift definitions and notation: For nonmagnetic materials,

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL Multiphase Nanodomains in a Strained BaTiO3 Film on a GdScO3 Substrate Shunsuke Kobayashi 1*, Kazutoshi Inoue 2, Takeharu Kato 1, Yuichi Ikuhara 1,2,3 and Takahisa Yamamoto 1, 4

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering Yan Chen, 1,2,,$, * Shengxi Huang, 3,6, Xiang Ji, 2 Kiran Adepalli, 2 Kedi Yin, 8 Xi Ling, 3,9 Xinwei

More information

Practical Guide to Density Functional Theory (DFT)

Practical Guide to Density Functional Theory (DFT) Practical Guide to Density Functional Theory (DFT) Brad Malone, Sadas Shankar Quick recap of where we left off last time BD Malone, S Shankar Therefore there is a direct one-to-one correspondence between

More information

External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures

External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures X. Liu, a, W. L. Lim, a L. V. Titova, a T. Wojtowicz, a,b M. Kutrowski, a,b K. J. Yee, a M. Dobrowolska,

More information

Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties

Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties (Supporting information) Kezhen Qi, a Jiaqin Yang, a Jiaqi Fu, a Guichang

More information

Noncollinear Magnetism

Noncollinear Magnetism Noncollinear Magnetism David Hobbs 1 (hobbs@tele2adsl.dk) and Jürgen Hafner 2 (juergen.hafner@univie.ac.at) 1 Terma A/S, Space, Vasekær 12, 2730 Herlev, Denmark 2 Institut für Materialphysik, Sensengasse

More information

3rd International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2015)

3rd International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2015) 3rd International Conference on Machinery, Materials and Information Technology Applications (ICMMITA 2015) Study on Energy Band-gap Calculation of CuGaS 2 Liuyang YUa, Yong Xub, Kegao LIUc* School of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Stable Three-dimensional Topological Dirac Semimetal Cd 3 As 2 Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. -K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang,

More information

Structural and Electronic Effects on the Properties of Fe 2 (dobdc) upon Oxidation with N 2 O

Structural and Electronic Effects on the Properties of Fe 2 (dobdc) upon Oxidation with N 2 O Supporting information for paper in Inorganic Chemistry, April 11, 016, page S-1 Structural and Electronic Effects on the Properties of Fe (dobdc) upon Oxidation with N O oshua Borycz, 1, oachim Paier,

More information

Electronic structure calculations results from LDA+U method

Electronic structure calculations results from LDA+U method Electronic structure calculations results from LDA+U method Vladimir I. Anisimov Institute of Metal Physics Ekaterinburg, Russia LDA+U method applications Mott insulators Polarons and stripes in cuprates

More information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, Supported Single Pt 1 /Au 1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, State Key

More information