Strong Facet-Induced and Light-Controlled Room-Temperature. Ferromagnetism in Semiconducting β-fesi 2 Nanocubes

Size: px
Start display at page:

Download "Strong Facet-Induced and Light-Controlled Room-Temperature. Ferromagnetism in Semiconducting β-fesi 2 Nanocubes"

Transcription

1 Supporting Information for Manuscript Strong Facet-Induced and Light-Controlled Room-Temperature Ferromagnetism in Semiconducting β-fesi 2 Nanocubes Zhiqiang He, Shijie Xiong, Shuyi Wu, Xiaobin Zhu, Ming Meng, and Xinglong Wu * Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing , P. R. China Figure S1. Diagrammatic illustration of the chemical vapor deposition apparatus showing that a shorter and smaller diameter quartz tube with a diameter of 2.5 cm (tube 1) is placed in the 6 cm diameter quartz tube (tube 2). S1

2 Figure S2. EDX spectrum obtained from a β-fesi 2 nanocube. The C and Cu elements are from the Cu grid substrate which is used for measuring the EDX spectrum. Details pertaining to the growth process and mechanism of β-fesi 2 nanocubes. To investigate the growth process of the β-fesi 2 nanocubes, the FE-SEM images acquired from the samples at different time during the reaction are shown in Figure S3. Figure S3a shows the beginning of nucleation in the first 30 min. After 45 min, a three-dimensional structure with six protuberances is formed as shown in Figure S3b. The six protuberances may evolve into two {100} top facets and four {011} lateral facets. After 1 h, a three-dimensional octahedral structure begins to take shape (Figure S3c). The eight crystal facets are the {101} facets and {110} facets and have higher growth rate than others, resulting in formation of nanocubes after 90 min (Figure S3d). The crystal surface becomes smoother and the nanocube grows bigger afterwards as shown in Figure S3e. In the case when the carrier gas flow rate is constant at 100 SCCM, the reaction temperature is found to be crucial (Figures S4 and S5). The optimal synthesis S2

3 conditions for the β-fesi 2 nanocubes are attained at a downstream heating temperature of 800 o C (Hung, S. W. et al., J. Mater. Chem. 2011, 21, 5704). Figure S4a shows the products at 750 o C. The sheet structures and small cubic particles coexist on the Si substrate. including ε-fesi and β-fesi 2. The XRD pattern in Figure S4c shows two phases The small particles possess the shape of a cube corresponding to β-fesi 2 and it is reasonable that the sheet structures are ε-fesi. Figure S4b shows the nanowires and cubic particles on the Si substrate at 850 o C and the XRD pattern in Figure S4d also reveals the two phases of ε-fesi and β-fesi 2. The cubic particles are clearly observed and almost the same as those obtained under the optimal conditions corresponding to β-fesi 2. So the nanowires should be ε-fesi. As shown in Figure S5 in Supporting Information, when the temperature of the downstream heating zone is set at 725 and 900 o C, pure phase ε-fesi microsheets and nanowires are obtained (Hung, S. W. et al., J. Phys. Chem. C 2011, 115, 15592). It is noted that Fe 3 Si nanooctahedrons form directly at 650 o C, as shown in Figure S5a. Figure S3. Schematic illustration and SEM images of the β-fesi 2 nanocube at different times during the reaction: (a) 30, (b) 45, (c) 60, (d) 90, and (e) 120 min. S3

4 Figure S4. (a) and (b) SEM images of the synthesized products found at the downstream zone at 750 and 850 o C, respectively. Insets: higher magnification image of the regions shown in boxes in (a) and (b). (c) and (d) XRD patterns corresponding to (a) and (b). Black and red (hkl) indices belong to the diffraction peaks of β-fesi 2 and ε-fesi phases, respectively. S4

5 Figure S5. Morphology of the products formed at different temperature: (a) 675 o C, Fe 3 Si nanooctahedrons with inset showing the magnified image of a single nanooctahedron. (b) XRD pattern confirming that the nanooctahedrons have the Fe 3 Si phase. (c) 725 o C, ε-fesi microsheets with the inset showing the magnified image of several microsheets. (d) XRD pattern confirming that the sheets have the ε-fesi phase. (e) 900 o C, ε-fesi nanowires with the inset showing the high-resolution image revealing that the growth direction is along [110]. (f) XRD pattern showing that the nanowires have the ε-fesi phase. S5

6 Figure S6. (a,b) Topography and MFM images of the oxidized β-fesi 2 nanocubes. (c,d) Topography and MFM images of the as-made (pristine) β-fesi 2 nanocubes deposited with a 10 nm thin layer of Au, taken after exposure to dry air for weeks. First-principles calculation: First-principles calculation is performed using the generalized gradient approximation (GGA) of the Perdew, Burke, and Ernzerholf (PBE) form (Perdew, J. P. et al., Phys. Rev. Lett. 1996, 77, 3865) under package CASTEP (Clark, S. J. et al., Zeitschrift fuer Kristallographie 2005, 220, 567) in which a plane-wave norm-conserving pseudopotential method (Hamann, D. R. et al., Phys. Rev. Lett. 1979, 43, 1494) is adopted. A kinetic energy cutoff of 600 ev is used to represent the single-particle wave functions. The calculation is conducted on two slabs with Fe atoms exposed on the surfaces normal to the {011} and {100} directions and having thicknesses 1.42 and 0.95 nm, respectively. S6 To form a periodic structure for the band

7 calculation, the same slabs are repeated along the normal direction and separated with vacuum slabs of thickness 1.0 nm. The geometry of the configurations is optimized using the BFGS minimizer in the CASTEP package with default convergence tolerances: 2 x 10-5 ev for the energy change, 0.05 ev/å for the maximum force, and Å for the maximum displacement (Pfrommer, B. G. et al., J. Comput. Phys. 1997, 131, 233). In the self-consistent (SC) calculation of the electronic properties, the spin configurations are optimized in every 6 SC steps. To take into account the strong correlation effects on the Fe atoms, the GGA+U scheme (Dudarev, S. L. et al., Phys. Rev. B 1998, 57, 1505) is adopted with U = 2.5 ev for the Fe 3d states. Figures S7a and S7b show the structure of the {011} and {100} slabs, respectively, with the non-zero Mulliken spins of atoms in units of µ B marked on the atoms. The Fe atoms on the surfaces have large magnetic moments which are in the ferromagnetic phase. To investigate the energy distribution of the spin states of the surface Fe atoms, Figure S8 plots the local density of spin states of the surface Fe atoms in the {100} slab. The occupied itinerant band at the Fermi level has a down spin, but the majority of the electrons in the occupied bands contributing to the local moments have an up spin. S7

8 Figure S7. Structure of (a) {011} and (b) {100} β-fesi 2 slabs with the non-zero Mulliken spins of atoms in units of µ B marked on the atoms. The intersections of the purple and yellow bonds represent Fe and Si atoms, respectively. The Fe atoms on the surfaces of the slabs have large magnetic moments which are in ferromagnetic phase. Calculated temperature and size dependence of magnetization: In the Hamiltonian expressed in Eq. (3) of the main text, the sum of k is over the states in the itinerant continuum, including the Fe dangling bonds created by the S8

9 surfaces and by vacancies near the surfaces. An electron with a spin σ experiences a repulsive interaction I on a site occupied by another electron with opposite spin σ. In the mean-field treatment, this repulsion is described by an effective potential λi n σ in the Hamiltonian. Spin σ of the electron feels an effective magnetic field h, expressed with the Zeeman term µ σ. The effective B h field includes the external field h 0 and the internal field produced by the local moments. With the classical treatment, the internal field is proportional to the average projection of local moments to the direction of external field as expressed by JS cosθ. The average number of electrons of spin σ per site at temperature T is nσ = f ( E σµ Bh + λi n σ, T ) ρ( E) de ( S1) where ρ(e) is the density of states of the itinerant electrons per site, and 1 f ( E, T ) = exp[( E E ) / k T ] + 1. is the Fermi-Dirac distribution factor with E F being the Fermi energy. The edge effect of facets with a size d influences the area of width w, and can be estimated as F B 4 w( d w) λ 1. (S2) 2 d The average direction cosine <cosθ> of local moments can be approximately calculated as cos θ = dxx exp{ Sx[ h J µ ( n n )] / k T} 0 0 B dx exp{ Sx[ h J µ ( n n )] / k T} B B B. (S3) From Eqs. (S1) and (S3), one can solve n σ and cosθ. The average magnetization per atom is S9

10 M 0 = S cos θ + µ B ( n n ). (S4) One can convert the magnetization per atom in Eq. (S3) to the magnetization per unit mass as M = νm o /m o, where m o is the total mass of a cell containing one Fe atom and ν is the fraction of volume influenced by the magnetization. In vacancy-rich layers beneath the surfaces, the vacancy-induced dangling bonds of Fe ions are merged into the itinerant continuum of the surfaces. So the continuum should have a finite thickness η, rather than a single layer at the surface. Thus the fraction ν can be estimated as 3 d 2η ν = 1 d. (S5) The parameters are fitted from the experiment. By comparing the calculated curves in Figure 8 with the experimental data, we can fit out that J = 0.45 ev/µ 2 B, I = 2.5 ev, w = 50 nm and ν = 0.2. According to the first-principles calculation shown in Figure S7, we determine the density of states ρ ( E) and the magnetic moment on a Fe atom as S = 3 µ B. S10

11 Figure S8. Local density of spin states of the surface Fe atoms in the (100) slab. The green circle indicates the area of the gap where the detailed density of spin states is given in Figure 7. The occupied itinerant band at the Fermi level has a down spin but the majority of the electrons in the occupied bands contributing to the local moments have an up spin. S11

12 Figure S9. Main panel: Plot of transformed Kubelka-Munk function versus the photo energy of the β-fesi 2 nanocubes on Si substrate. The dotted line is used to determine the direct band gap. Inset: UV-visible diffusive reflectance curves of the β-fesi 2 nanocubes on Si substrate. To estimate the band gap E gap, (αhν) 2 is plotted as a function of the photon energy in Fig. S9. The linear behavior of the absorption spectrum suggests a direct optical gap. Extrapolating the linear fit to α = 0, we can find that E gap = 0.79 ev, which is consistent with the band gap determined for β-fesi 2 (He, J. Y. et al., RSC Adv. 2012, 2, S12

Supporting Information

Supporting Information Supporting Information A Porous Two-Dimensional Monolayer Metal-Organic Framework Material and its Use for the Size-Selective Separation of Nanoparticles Yi Jiang, 1 Gyeong Hee Ryu, 1, 3 Se Hun Joo, 4

More information

Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application

Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application Two-Dimensional CH 3 NH 3 PbI 3 Perovskite: Synthesis and Optoelectronic Application Jingying Liu,, Yunzhou Xue,,, Ziyu Wang,, Zai-Quan Xu, Changxi Zheng, Bent Weber, Jingchao Song, Yusheng Wang, Yuerui

More information

Support Information. For. Theoretical study of water adsorption and dissociation on Ta 3 N 5 (100) surfaces

Support Information. For. Theoretical study of water adsorption and dissociation on Ta 3 N 5 (100) surfaces Support Information For Theoretical study of water adsorption and dissociation on Ta 3 N 5 (100) surfaces Submitted to Physical Chemistry Chemical Physics by Jiajia Wang a, Wenjun Luo a, Jianyong Feng

More information

Etching-limited branching growth of cuprous oxide during ethanol-assisted. solution synthesis

Etching-limited branching growth of cuprous oxide during ethanol-assisted. solution synthesis Electronic supplementary information Etching-limited branching growth of cuprous oxide during ethanol-assisted solution synthesis Shaodong Sun, Hongjun You, Chuncai Kong, Xiaoping Song, Bingjun Ding, and

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. X-ray diffraction patterns of (a) pure LDH, (b) AuCl 4 ion-exchanged LDH and (c) the Au/LDH hybrid catalyst. The refined cell parameters for pure, ion-exchanged,

More information

Supporting Information for. Structural and Chemical Dynamics of Pyridinic Nitrogen. Defects in Graphene

Supporting Information for. Structural and Chemical Dynamics of Pyridinic Nitrogen. Defects in Graphene Supporting Information for Structural and Chemical Dynamics of Pyridinic Nitrogen Defects in Graphene Yung-Chang Lin, 1* Po-Yuan Teng, 2 Chao-Hui Yeh, 2 Masanori Koshino, 1 Po-Wen Chiu, 2 Kazu Suenaga

More information

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves

Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Supplementary Information Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves Shiheng Liang 1, Rugang Geng 1, Baishun Yang 2, Wenbo Zhao 3, Ram Chandra Subedi 1,

More information

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a)

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a) Co 2p Co(0) 778.3 Rh 3d Rh (0) 307.2 810 800 790 780 770 Binding Energy (ev) (a) 320 315 310 305 Binding Energy (ev) (b) Supplementary Figure 1 Photoemission features of a catalyst precursor which was

More information

Edge-to-edge oriented self-assembly of ReS 2 nanoflakes

Edge-to-edge oriented self-assembly of ReS 2 nanoflakes Edge-to-edge oriented self-assembly of ReS 2 nanoflakes Qin Zhang,, Wenjie Wang,, Xin Kong, Rafael G. Mendes, Liwen Fang, Yinghui Xue, Yao Xiao, Mark H. Rümmeli,#,, Shengli Chen and Lei Fu*, College of

More information

University of Chinese Academy of Sciences, Beijing , China. To whom correspondence should be addressed :

University of Chinese Academy of Sciences, Beijing , China. To whom correspondence should be addressed : Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 NaBaM III Q 3 (M III = Al, Ga; Q = S, Se): First quaternary chalcogenides with the isolated

More information

Defects in TiO 2 Crystals

Defects in TiO 2 Crystals , March 13-15, 2013, Hong Kong Defects in TiO 2 Crystals Richard Rivera, Arvids Stashans 1 Abstract-TiO 2 crystals, anatase and rutile, have been studied using Density Functional Theory (DFT) and the Generalized

More information

Supporting Information for. Revealing Surface Elemental Composition and Dynamic Processes

Supporting Information for. Revealing Surface Elemental Composition and Dynamic Processes Supporting Information for Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-dependent Oxidation of Pt 3 Co Nanoparticles via in-situ Transmission Electron Microscopy Sheng

More information

Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal

Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Supporting Information Iodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Dichalcogenides Qiqi Zhang,, Yao Xiao, #, Tao Zhang,, Zheng Weng, Mengqi Zeng, Shuanglin Yue, ± Rafael

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting Information Pyrite FeS 2 for High-rate and Long-life Rechargeable

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

Experiment Section Fig. S1 Fig. S2

Experiment Section Fig. S1 Fig. S2 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Materials Experiment Section The STM experiments were carried out in an ultrahigh

More information

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based Supporting information Realizing Two-Dimensional Magnetic Semiconductors with Enhanced Curie Temperature by Antiaromatic Ring Based Organometallic Frameworks Xingxing Li and Jinlong Yang* Department of

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Single Layer Lead Iodide: Computational Exploration of Structural, Electronic

More information

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES 42 CHAPTER 3 OPTICAL STUDIES ON SnS NANOPARTICLES 3.1 INTRODUCTION In recent years, considerable interest has been shown on semiconducting nanostructures owing to their enhanced optical and electrical

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

Synthesis and Characterization of Innovative Multilayer, Multi Metal Oxide Thin Films by Modified Silar Deposition Method

Synthesis and Characterization of Innovative Multilayer, Multi Metal Oxide Thin Films by Modified Silar Deposition Method STUDENT JOURNAL OF PHYSICS Indian Association of Physics Teachers Presentations Synthesis and Characterization of Innovative Multilayer, Multi Metal Oxide Thin Films by Modified Silar Deposition Method

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Methods Materials Synthesis The In 4 Se 3-δ crystal ingots were grown by the Bridgeman method. The In and Se elements were placed in an evacuated quartz ampoule with an excess of In (5-10

More information

1-amino-9-octadecene, HAuCl 4, hexane, ethanol 55 o C, 16h AuSSs on GO

1-amino-9-octadecene, HAuCl 4, hexane, ethanol 55 o C, 16h AuSSs on GO Supplementary Figures GO Supplementary Figure S1 1-amino-9-octadecene, HAuCl 4, hexane, ethanol 55 o C, 16h AuSSs on GO Schematic illustration of synthesis of Au square sheets on graphene oxide sheets.

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance Fan Dong *a, Yanjuan

More information

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author.   ciac - Shanghai P. R. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry Supplementary Information For Journal of Materials Chemistry A Perovskite- @BiVO

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties

Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties (Supporting information) Kezhen Qi, a Jiaqin Yang, a Jiaqi Fu, a Guichang

More information

SnO 2 Physical and Chemical Properties due to the Impurity Doping

SnO 2 Physical and Chemical Properties due to the Impurity Doping , March 13-15, 2013, Hong Kong SnO 2 Physical and Chemical Properties due to the Impurity Doping Richard Rivera, Freddy Marcillo, Washington Chamba, Patricio Puchaicela, Arvids Stashans Abstract First-principles

More information

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate 2017 International Conference on Energy Development and Environmental Protection (EDEP 2017) ISBN: 978-1-60595-482-0 Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate Miao-Juan REN

More information

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee 1. Depleted heterojunction solar cells 2. Deposition of semiconductor layers with solution process June 7, 2016 Yonghui Lee Outline 1. Solar cells - P-N junction solar cell - Schottky barrier solar cell

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201502134 Stable Metallic 1T-WS 2 Nanoribbons Intercalated with Ammonia

More information

Supporting Information. Modulating the photocatalytic redox preferences between

Supporting Information. Modulating the photocatalytic redox preferences between Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Modulating the photocatalytic redox preferences between anatase TiO 2 {001}

More information

Supplementary Information. for. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer

Supplementary Information. for. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer Supplementary Information for Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer MoS 2 Films Yifei Yu 1, Chun Li 1, Yi Liu 3, Liqin Su 4, Yong Zhang 4, Linyou Cao 1,2 * 1 Department

More information

Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects

Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects Shunfu Xu Institute of Architecture and Engineering, Weifang University of Science and Technology,

More information

and strong interlayer quantum confinement

and strong interlayer quantum confinement Supporting Information GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement Yu Jing 1,3, Yandong Ma 1, Yafei Li 2, *, Thomas Heine 1,3 * 1 Wilhelm-Ostwald-Institute

More information

Supporting Information

Supporting Information Supporting Information Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation** Jian Bao, Xiaodong Zhang,* Bo Fan, Jiajia Zhang, Min Zhou, Wenlong

More information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, Supported Single Pt 1 /Au 1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, State Key

More information

Construction of Two Dimensional Chiral Networks

Construction of Two Dimensional Chiral Networks Supporting Information Construction of Two Dimensional Chiral Networks through Atomic Bromine on Surfaces Jianchen Lu, De-Liang Bao, Huanli Dong, Kai Qian, Shuai Zhang, Jie Liu, Yanfang Zhang, Xiao Lin

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

UTC Power, South Windsor, CT United Technologies Research Center, East Hartford, CT

UTC Power, South Windsor, CT United Technologies Research Center, East Hartford, CT Supporting Information Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity Minhua Shao,, * Amra Peles,, * Krista Shoemaker UTC Power, South Windsor, CT

More information

First-principles studies of the structural, electronic, and optical properties of a novel thorium compound Rb 2 Th 7 Se 15

First-principles studies of the structural, electronic, and optical properties of a novel thorium compound Rb 2 Th 7 Se 15 First-principles studies of the structural, electronic, and optical properties of a novel thorium compound Rb 2 Th 7 Se 15 M.G. Brik 1 Institute of Physics, University of Tartu, Riia 142, Tartu 5114, Estonia

More information

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Atomic Models for Anionic Ligand Passivation of Cation- Rich

More information

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supplementary Figure 1 Ribbon length statistics. Distribution of the ribbon lengths and the fraction of kinked ribbons for

More information

Facet engineered Ag 3 PO 4 for efficient water photooxidation

Facet engineered Ag 3 PO 4 for efficient water photooxidation Supporting Information Facet engineered Ag 3 PO 4 for efficient water photooxidation David James Martin, Naoto Umezawa, Xiaowei Chen, Jinhua Ye and Junwang Tang* This file includes the following experimental/theoretical

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/325/5948/1670/dc1 Supporting Online Material for Coordinatively Unsaturated Al 3+ Centers as Binding Sites for Active Catalyst Phases of Platinum on γ-al 2 O 3 Ja Hun

More information

First-principles calculations of structural, electronic and optical properties of HfZn 2

First-principles calculations of structural, electronic and optical properties of HfZn 2 ~ 1 ~ First-principles calculations of structural, electronic and optical properties of HfZn 2 Md. Atikur Rahman *1, Md. Afjalur Rahman 2, Md. Zahidur Rahaman 3 1, 2, 3 Department of Physics, Pabna University

More information

Chern insulator and Chern half-metal states in the two-dimensional. spin-gapless semiconductor Mn 2 C 6 S 12

Chern insulator and Chern half-metal states in the two-dimensional. spin-gapless semiconductor Mn 2 C 6 S 12 Supporting Information for Chern insulator and Chern half-metal states in the two-dimensional spin-gapless semiconductor Mn 2 C 6 S 12 Aizhu Wang 1,2, Xiaoming Zhang 1, Yuanping Feng 3 * and Mingwen Zhao

More information

Supporting information:

Supporting information: Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting information: A Simultaneous Increase in the ZT and the Corresponding

More information

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial carrier concentrations: (a) N0 = 4.84 10 18 cm -3 ; (c)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Anisotropic conductance at improper ferroelectric domain walls D. Meier 1,, *, J. Seidel 1,3, *, A. Cano 4, K. Delaney 5, Y. Kumagai 6, M. Mostovoy 7, N. A. Spaldin 6, R. Ramesh

More information

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before

Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before Supplementary Figure 1. Electron micrographs of graphene and converted h-bn. (a) Low magnification STEM-ADF images of the graphene sample before conversion. Most of the graphene sample was folded after

More information

Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Microstructure, morphology and chemical composition of the carbon microspheres: (a) A SEM image of the CM-NFs; and EDS spectra of CM-NFs (b), CM-Ns (d) and

More information

Facet Effect of Single-Crystalline Ag 3 PO 4 Sub-microcrystals on Photocatalytic Properties. Experimental Section

Facet Effect of Single-Crystalline Ag 3 PO 4 Sub-microcrystals on Photocatalytic Properties. Experimental Section Supporting Information for Facet Effect of Single-Crystalline Ag 3 PO 4 Sub-microcrystals on Photocatalytic Properties Yingpu Bi, Shuxin Ouyang, Naoto Umezawa, Junyu Cao, and Jinhua Ye* International Center

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: Electronic Kohn-Sham potential profile of a charged monolayer MoTe 2 calculated using PBE-DFT. Plotted is the averaged electronic Kohn- Sham potential

More information

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube Journal of Physics: Conference Series PAPER OPEN ACCESS Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube To cite this article: Jyotirmoy Deb et al 2016 J. Phys.: Conf. Ser.

More information

[100] directed Cu-doped h-coo Nanorods: Elucidation of. Growth Mechanism and Application to Lithium-Ion Batteries

[100] directed Cu-doped h-coo Nanorods: Elucidation of. Growth Mechanism and Application to Lithium-Ion Batteries Supplementary Information [100] directed Cu-doped h-coo Nanorods: Elucidation of Growth Mechanism and Application to Lithium-Ion Batteries Ki Min Nam, Young Cheol Choi, Sung Chul Jung, Yong-Il Kim, Mi

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information Rational modifications on champion porphyrin

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figure S1STM images of four GNBs and their corresponding STS spectra. a-d, STM images of four GNBs are shown in the left side. The experimental STS data with respective

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/8/e1700732/dc1 This PDF file includes: Supplementary Materials for Oriented assembly of anisotropic nanoparticles into frame-like superstructures Jianwei Nai,

More information

Structure of CoO(001) surface from DFT+U calculations

Structure of CoO(001) surface from DFT+U calculations Structure of CoO(001) surface from DFT+U calculations B. Sitamtze Youmbi and F. Calvayrac Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283 16 septembre 2013 Introduction Motivation Motivation

More information

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass and a reference pattern of anatase TiO 2 (JSPDS No.: 21-1272).

More information

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function of temperature (T) at zero magnetic field. (b) Magnetoresistance

More information

Supporting Information. Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang, Richard G. Hennig, and. Richard D.

Supporting Information. Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang, Richard G. Hennig, and. Richard D. Supporting Information The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles Don-Hyung Ha, Liane M. Moreau, Clive R. Bealing, Haitao Zhang,

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

arxiv: v1 [cond-mat.mes-hall] 15 Aug 2014

arxiv: v1 [cond-mat.mes-hall] 15 Aug 2014 The potential applications of phosphorene as anode arxiv:1408.3488v1 [cond-mat.mes-hall] 15 Aug 2014 materials in Li-ion batteries Shijun Zhao,, and Wei Kang, HEDPS, Center for Applied Physics and Technology,

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201800144 H 2 V 3 O 8 Nanowire/Graphene Electrodes for Aqueous

More information

Electronic Supplementary Information for

Electronic Supplementary Information for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 018 Electronic Supplementary Information for Broadband Photoresponse Based on

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information First example of oxide semiconductor photocatalyst

More information

Solid State Spectroscopy Problem Set 7

Solid State Spectroscopy Problem Set 7 Solid State Spectroscopy Problem Set 7 Due date: June 29th, 2015 Problem 5.1 EXAFS Study of Mn/Fe substitution in Y(Mn 1-x Fe x ) 2 O 5 From article «EXAFS, XANES, and DFT study of the mixed-valence compound

More information

Controlling Interfacial Contact and Exposed Facets for. Enhancing Photocatalysis via 2D-2D Heterostructure

Controlling Interfacial Contact and Exposed Facets for. Enhancing Photocatalysis via 2D-2D Heterostructure Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Controlling Interfacial Contact and Exposed

More information

On the Origin of High Ionic Conductivity in Na-doped SrSiO 3

On the Origin of High Ionic Conductivity in Na-doped SrSiO 3 Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 On the Origin of High Ionic Conductivity in Na-doped SrSiO 3 Po-Hsiu Chien, a Youngseok

More information

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering

Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering Supporting Information Tuning Local Electronic Structure of Single Layer MoS2 through Defect Engineering Yan Chen, 1,2,,$, * Shengxi Huang, 3,6, Xiang Ji, 2 Kiran Adepalli, 2 Kedi Yin, 8 Xi Ling, 3,9 Xinwei

More information

Chemical Dynamics of the First Proton Coupled Electron Transfer of Water Oxidation on TiO 2 Anatase

Chemical Dynamics of the First Proton Coupled Electron Transfer of Water Oxidation on TiO 2 Anatase Supplementary Information Chemical Dynamics of the First Proton Coupled Electron Transfer of Water Oxidation on TiO 2 Anatase Jia Chen, Ye-Fei Li, Patrick Sit, and Annabella Selloni Department of Chemistry,

More information

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY

STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON: AB-INITIO AND CLASSICAL MOLECULAR DYNAMICS STUDY S. Hara, T. Kumagai, S. Izumi and S. Sakai Department of mechanical engineering, University of

More information

Supplementary Figure 1. A photographic image of directionally grown perovskite films on a glass substrate (size: cm).

Supplementary Figure 1. A photographic image of directionally grown perovskite films on a glass substrate (size: cm). Supplementary Figure 1. A photographic image of directionally grown perovskite films on a glass substrate (size: 1.5 4.5 cm). 1 Supplementary Figure 2. Optical microscope images of MAPbI 3 films formed

More information

Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped graphene/sulfur electrode for high performance lithiumsulfur

Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped graphene/sulfur electrode for high performance lithiumsulfur Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supporting Information for Atomic layer deposited TiO 2 on nitrogen-doped

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/9/eaat8355/dc1 Supplementary Materials for Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi 2 O 2 Se

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 XRD patterns and TEM image of the SrNbO 3 film grown on LaAlO 3(001) substrate. The film was deposited under oxygen partial pressure of 5 10-6 Torr. (a) θ-2θ scan, where * indicates

More information

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer

Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Supplementary Material Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer Youngjae Kim, Won Seok Yun, and J. D. Lee* Department

More information

Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility

Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility Tinselenidene: a Two-dimensional Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility Li-Chuan Zhang, Guangzhao Qin, Wu-Zhang Fang, Hui-Juan Cui, Qing-Rong Zheng, Qing-Bo

More information

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm.

Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The. scale bars are 5 nm. Supplementary Figure 1. HRTEM images of PtNi / Ni-B composite exposed to electron beam. The scale bars are 5 nm. S1 Supplementary Figure 2. TEM image of PtNi/Ni-B composite obtained under N 2 protection.

More information

It is known that the chemical potential of lithium ion in the cathode material can be expressed as:

It is known that the chemical potential of lithium ion in the cathode material can be expressed as: Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplementary material For Li/Li + /Li x M a X b cell with cathode material presenting

More information

Urchin-like Ni-P microstructures: A facile synthesis, properties. and application in the fast removal of heavy-metal ions

Urchin-like Ni-P microstructures: A facile synthesis, properties. and application in the fast removal of heavy-metal ions SUPPORTING INFORMATION Urchin-like Ni-P microstructures: A facile synthesis, properties and application in the fast removal of heavy-metal ions Yonghong Ni *a, Kai Mi a, Chao Cheng a, Jun Xia a, Xiang

More information

Supporting Information

Supporting Information Supporting Information Dynamic Interaction between Methylammonium Lead Iodide and TiO 2 Nanocrystals Leads to Enhanced Photocatalytic H 2 Evolution from HI Splitting Xiaomei Wang,, Hong Wang,, Hefeng Zhang,,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/7/e1700704/dc1 Supplementary Materials for Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies Yaxin Zhai,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Shape-controlled TiO 2 nanoparticles and TiO 2 P25 interacting with CO and H 2 O 2 molecular probes: a synergic approach for surface structure recognition and physico-chemical

More information

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface Supporting Information for Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite Edge Water Interface Zhen Jiang, Konstantin Klyukin, and Vitaly Alexandrov,, Department

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Initial stage showing monolayer MoS 2 islands formation on Au (111) surface. a, Scanning tunneling microscopy (STM) image of molybdenum (Mo) clusters deposited

More information

Enhanced Photocatalytic Performance through Magnetic Field Boosting Carrier

Enhanced Photocatalytic Performance through Magnetic Field Boosting Carrier Supporting Information for Enhanced Photocatalytic Performance through Magnetic Field Boosting Carrier Transport Jun Li,, Qi Pei, Ruyi Wang,, Yong Zhou,, Zhengming Zhang,, Qingqi Cao,, Dunhui Wang,*,,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Measured versus calculated optical transitions in the CPX. The UV/Vis/NIR spectrum obtained experimentally for the 1:1 blend of 4T and F4TCNQ (red curve) is

More information

Supporting Information for. Electric-magneto-optical Kerr effect in a. hybrid organic-inorganic perovskite

Supporting Information for. Electric-magneto-optical Kerr effect in a. hybrid organic-inorganic perovskite Supporting Information for Electric-magneto-optical Kerr effect in a hybrid organic-inorganic perovskite Feng-Ren Fan, Hua Wu,,, Dmitrii Nabok, Shunbo Hu, Wei Ren, Claudia Draxl, and Alessandro Stroppa,,

More information

Supporting Information

Supporting Information Supporting Information Chemically Modulated Carbon Nitride Nanosheets for Highly Selective Electrochemiluminescent Detection of Multiple Metal-ions Zhixin Zhou, Qiuwei Shang, Yanfei Shen, Linqun Zhang,

More information

University of Chinese Academy of Sciences, Beijing , People s Republic of China,

University of Chinese Academy of Sciences, Beijing , People s Republic of China, SiC 2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cell Liu-Jiang Zhou,, Yong-Fan Zhang, Li-Ming Wu *, State Key Laboratory of Structural Chemistry, Fujian Institute of Research

More information

Properties of Individual Nanoparticles

Properties of Individual Nanoparticles TIGP Introduction technology (I) October 15, 2007 Properties of Individual Nanoparticles Clusters 1. Very small -- difficult to image individual nanoparticles. 2. New physical and/or chemical properties

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Anatase TiO 2 single crystals with a large percentage of reactive facets Hua Gui Yang, Cheng Hua Sun, Shi Zhang Qiao, Jin Zou, Gang Liu, Sean Campbell Smith, Hui Ming Cheng & Gao Qing Lu Part I: Calculation

More information

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires CITY UNIVERSITY OF HONG KONG Ë Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires u Ä öä ªqk u{ Submitted to Department of Physics and Materials Science gkö y in Partial Fulfillment

More information

FYS Vår 2017 (Kondenserte fasers fysikk)

FYS Vår 2017 (Kondenserte fasers fysikk) FYS3410 - Vår 2017 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v16/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9, 11, 17, 18,

More information

Supplementary Information

Supplementary Information Supplementary Information Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride Kun Ba 1,, Wei Jiang 1,,Jingxin Cheng 2, Jingxian Bao 1, Ningning Xuan 1,Yangye Sun 1, Bing Liu 1, Aozhen

More information