Electricity Market Modelling Using Dynamic LQ Games

Size: px
Start display at page:

Download "Electricity Market Modelling Using Dynamic LQ Games"

Transcription

1 XII International PhD Workshop OWD 1, 3-6 October 1 Electricity Market Modelling Using Dynamic LQ Games Michał Ganobis, Institute of Automatics, AGH ( , prof. Wojciech Mitkowski, University of Science and Technology AGH) Abstract This paper presents possibilities of modelling of electricity market using linear-quadratic (LQ) game theory. First section is a short introduction. In the second section, the main characteristic of electricity market is presented - its legal base and assumptions of consumers behaviour. Third and fourth sections provide an overview of main results of LQ game theory, and exact algorithm for solving them. Fifth section contains an example and its simulations in MATLAB. The last part are the conclusions, where pros and cons of such modelling are analysed. 1. Introduction Dynamic game theory takes into consideration the situation, when two or more controls (called players) are trying to optimise their performance indexes with respect to some dynamical system. Applications of this theory are very wide, such as robotics [1], military [1], or biology. The most natural area for applications for dynamic game theory appears to be the area of economy sciences - many macro- and microeconomic problems can be described and solved as a game. In this paper, linear-quadratic games are taken into consideration. It means that we deal with the situation with linear dynamical system, and quadratic cost functional. Linear systems are well-known and very deeply analysed (see e.g. [9], [11]). This is because of the possibility of linearization for many nonlinear systems, which is very efficient method for many problems. The quadratic performance index is typical for minimal-cost and minimal-energy problems, and for this reason used very frequently. In optimization theory (i.e. with only one control and performance index), linear-quadratic problems are the subject of many publications (e.g. [8]).. The main characteristic of electricity market The legal base of electricity market in Poland is an act "Energetic Law" (see Polish Journal of Laws, 1th April 1997). According to this law, there is a possibility of free choose of electric energy for companies and, since 1st July 7, for private subjects. It is distinguished between producer and provider of energy. The delivery services are monopolised, i.e. there is no possibility to connect a consumer to more then one electric network. As a result, energy delivering is not taken into account in the model - the only competition on the market takes place between producers of energy. Energy market is an area where interests of producers should be balanced with interest of the country and its citizens. Tendency to profit maximisation is natural for producers, but it should come with stability and long term development of the market, and be aligned with energetic policy of the country. A simple model of the electricity market will be based on the following assumptions: 75

2 1. Consumer can change the producer of energy, but it requires some effort from both sides. As a result, electricity market seems to be characterized with relatively big inertia. The price of energy is partly regulated by Urząd Regulacji Energetyki (URE). In particular, price can not exceed some fixed value, further called maximal price 3. Business model for energy producers is based on the long-term strategies, and, besides of profits, must take into account the trust and opinion of the consumer Basing on above assumptions, we can create linear model as follows: x i (state) represents the level of aversion of a client to the particular producer. Greater level of aversion causes with lower amount of energy purchased by clients u i (control) - the level of discount. As mentioned in assumptions, the price of energy has its upper bound, defined by URE. Nevertheless, producers can sell their energy cheaper. The value of u i defines how much the price is lower in compare to maximal price, i.e. u i = U C i, where U -maximal price, C i - the price of energy for producer i J i - performance index for i-th producer. The goal of producer is some kind of compromise between maximization of profit and gain of clients trust. We will try to get linear differential equation of (1), representing the dynamic of clients attitude to particular producer. Such model takes into account the inertia of customers trust, which, as mentioned, appears on the real markets (see e.g. [4]). It can be expected, than elements of matrix A will be negative on its diagonal and also besides it. The justification of signs depends on the following observations of customers behaviour: 1. Elements on the diagonal represent the influence of current opinion of the producer on the future opinion. This elements should be negative, because the natural tendency of consumer is to assure them in their opinions (phenomenon of such called after decision discord, see e.g. []). The choice of some producer make consumer "convincing themselves", even without any particular actions from the side of the producer.. Elements which are not on the diagonal represent the influence of other produrers opinion on opinion of particular producer. When the opinion is bad in comparing to others, it will cause with further making it worse. Matrix B decides of the influence of discount on the produrer s opinion. It is obvious, that more expensive energy causes with worse opinion. This is because b i element of the vector B i (it means the element linking x i with B i ) should be negative. As mentioned, in the characteristic of energy market is favoring long-term planning, with taking into account the opinion and trust of the consumer. Because trust can not be explicitly converted to money, it becomes the separate factor in the performance index which is optimized by producers of energy. The relationship between matrices Q and R (see next section) tells us if the particular operator more counts on profits and ignore consumers opinion, or rather prefers building of trust and relations, dealing with partial reduction of profits. Of course, the situation when producer completely ignores its profits may not be taken into account. 3. Basics of -person LQ game theory In the linear-quadratic game theory, linear invariant systems (1) are taken into account ẋ(t) = Ax(t) + B 1 u 1 (t) + + B N u N (t) x = x() (1) whre x(t) R n, u i (t) R, and A, B - constant matrices. Additionally, players optimise quadratic payoff functions in form (). J = T [x T (t)qx(t) + u T 1 (t)r 1 ut 1 + u T (t)r ut ]d t + xt (T )Q T x(t ) () where x(t) is a state vector, and u 1, u are controls of players. When we assume the horizon T, thus () will take a form 76

3 J = [x T (t)q x(t) + u T 1 (t)r 1 ut 1 + ut (t)r ut ]d t (3) Moreover, the unique equilibrium actions are given by u i (t) = R 1 i i BT P i i Φ(t) (8) where Φ(t) satisfies the transition equation It should be noticed, that, in general case, each player has his own performance index () or (3) being minimized. So, in -person game with infinite time horizon, we can have two indexes with Φ = A c l Φ, Φ() = x (9) A c l = A S 1 P 1 S P and J 1 = J = [x T (t)q 1 x(t) + u T 1 (t)r 11 ut 1 + ut (t)r 1 ut ]d t (4) [x T (t)q x(t) + u T 1 (t)r 1 ut 1 + ut (t)r ut ]d t (5) We also assume, that R i i >, i = 1,. Now we will introduce a concept of a Nash equilibrium. We say that a pair of strategies (u 1, u ) is in the Nash equilibrium, when they satisfies simultaneously J 1 (u 1, u ) J 1 (u 1, u ) and J (u 1, u ) J 1 (u 1, u ) for every admissible u 1, u. In other words, each strategy in the Nash equilibrium is a best response to all other strategies in that equilibrium. In case of a game given by linear equation (1) and index (3), it can be proven (see [7]) that the equilibrium exists and is unique for every initial state if the following conditions are satisfied The set of coupled Riccati equations = A T P 1 P 1 A Q 1 + P 1 S 1 P 1 + P 1 S P = A T P P A Q + P S P + P S 1 P 1 (6) where S i = B i R 1 i i BT, has a stabilising solution i the two Riccati equations = A T K 1 + K 1 A K 1 S 1 K 1 + Q 1 = A T K + K A K S K + Q (7) has symmetric stabilising solution The costs of using this actions is (for player i = 1,) J i = x T Φ i xt (1) where Φ i is the matrix defined as an unique solution of the Lyapunov equation A T c l Φ i + Φ i A c l + Q i + P T i S i P i = (11) There are several ways to solve the problem given by Riccati equations (6), (7). Below we present an algorithm introduced by J.Engwerda [6]. Its advantage is that it can be relatively easy implemented in numerical environments such as MATLAB. 4. Algorithm for solving LQ game In general, there are two groups of algorithms for solving LQ games - accurate (see e.g. [6]) and iterative ([3]). Accurate algorithms can provide an exact solution (if we can obtain the exact eigenvalues of some matrices), but can not be applied to big problems because of its complexity. Nevertheless, ranks of presented problems are small - so this methodology can be used. Presented algorithm comes from [5]. Let s define an invariant subspace as Definition 4.1 Subspace S R n of the matrix A is called inwariant, if Ax S for any x S Invariant subspace can be obtained using eigenvectors of matrix A. Definition 4. Invariant subspace S of matrix A is called stable, if eigenvalues of matrix A related with subspace S have negative real parts In case of invariant subspaces composed with eigenvalues of A, stable invariant subspaces are created by using combinations of eigenvectors related with stable eigenvalues of matrix A 77

4 Definition 4.3 Let s assume that invariant subspace V of matrix A is created as follows X1 V = X If exists X 1, then V is called a graph subspace Using above definitions, the following algorithm can be used (see [5]). 1. Find eigenvalues and eigenvectors of matrices A S1 H i = Q i A T (1) If both of this matrices have stable invariant subspaces, go to step ). Otherwise there are no Nash equilibrium in this game.. Build a matrix M = A S 1 S Q i A T Q A T (13) and find its eigenvalues. If the number of stable eigenvalues (including multiplies) is less then n, there is no Nash equilibrium in this game 3. Calculate all stable invariant subspaces Θ of M. 4. Decompose Θ on three n n matrices as below Then calculate Θ = X Y Z (14) P 1 = Y X 1 (15) P = ZX 1 (16) Obtained matrices P 1, P are solutions of Riccati equation (6) The first step of presented algorithm checks if equations (7) have stabilizing solutions. In steps ) and 3) we verify, if matrix M has stable graph subspaces (and, as a result, if there exist P 1, P ), and step 4) allows to obtain the solution of (6). In case when M has more then one stable n n graph subspaces, we have more than one pair of strategies in Nash equilibrium (the solution is not unique). Performing calculations from step 4) for all of them, we can otbain all of Nash equilibria. It can be easily verified, that maximal number of n strategies in equilibrium is - it is because n of limited number of eigenvectors of matrix M. 5. Simulations Let s take into consideration the following example A = B 1 =.5, B = where weight matrices are 1 Q 1 =, Q =.5 3 and R 1 =.4, R =.. It is easy to notice, that in this model Producer emphasises trust and customer s opinion, and Producer 1 counts on bigger profit. In first step, we obtain two matrices H 1, H. It can be easily proven, that stable graph subspaces exist for both of them. Then, we are calculating M matrix. It has the following eigenvalues λ 1 =.895 λ =.861 λ 3 =.9 λ 4 =.9983 λ 5 =.7111 λ 6 =.84 As we can see, two of them have negative real parts - the condition from step 3) is fulfilled, and the solution is unique. Stable graph subspace exists. Then, using calculations from step 4) we have the following unique solution of Riccati equation (6) P 1 =

5 data which can be helpful in such modelling, is confidential and not available. Nevertheless, on short horizon, such model could probably be enough for many applications. Bibliography Fig. 1. Trajectories in Nash equilibrium P = which leads us to the following closed loop matrix A c l = and trajectories of the system will be as on the figure (1) It can be noticed that, as expected, optimal strategy for Player (the "greedy" one) is to offer a low discount - it will make his profit greater. Player 1 offers much bigger discount, which results with much better opinion after a short while (to make it more visible, in the example the initial aversion to both producers is identical). 6. Conclusions In paper, linear-quadratic model of electricity market has been introduced, which allows to plan and predict some strategies on electricity market. The justification of its parameters has been presented. Then, an algorithm for finding a Nash equilibrium for such model is provided. Thanks to its simplicity, proposed model can be analysed both using numerical and more algebraic methods. The main disadvantage of presented model is the problem with model parameters. There is no easy way to obtain entries of the matrices A, B, Q, R, because they represent such volatile things as trust, attitude, influence of price and so on. Additionally, in most cases, the kind of [1] A.Gałuszka and A.Świerniak. Non-cooperative game approach to multi-robot planning. International Journal of Applied Mathematic and Computer Science, 15(3):359 67, 5. [] J. Brehm. Postdecision changes in the desirability of alternatives. Journal of Abnormal and Social Psychology, 5: , [3] Tobias Damm, Vasile Dragan, and Gerhard Freiling. Lyapunov iterations for coupled riccati differential equations arising in connection with nash differetial games. Mathematical Reports, 9(59):35 46, 7. [4] Alan S. Dick and Kunal Basu. Customer loyalty: Toward an integrated conceptual framework. Journal of the Academy of Marketing Science, (): 113, [5] Jacob Engwerda. LQ Dynamic Optimization and Differential Games. Chichester, Wiley, 5. [6] Jacob Engwerda. Algorithms for computing nash equilibria in deterministic lq games. CMS, Springer-Verlag, 6. [7] Jacob Engwerda. The open-loop linear quadratic differential game revisited. Tilburg University, discussion paper, 6. [8] Henryk Górecki, Stanisław Fuksa, Adam Korytowski, and Wojciech Mitkowski. Sterowanie optymalne w systemach liniowych z kwadratowym wskaźnikiem jakości. Biblioteka Naukowa Inżyniera. Państwowe Wydawnictwa Naukowe, [9] Tadeusz Kaczorek. Teoria Sterowania, volume I. Wydawnictwa Naukowe PWN, [1] P. K. Menon. Short-range nonlinear feedback strategies for aircraft pursuit-evasion. Joumal of Guidance, Control, and Dynamics, 1(1):7 3, [11] Wojciech Mitkowski. Stabilizacja Systemów Dynamicznych. Wydawnictwo AGH, Kraków,

6 Authors: M.Sc.Michał Ganobis University of Science and Technology AGH al.mickiewicza Kraków ganobis@agh.edu.pl This work was supported by Ministry of Science and Higher Education in Poland in the years 8-11 as a research project No N N

Distributed control of "ball on beam" system

Distributed control of ball on beam system XI International PhD Workshop OWD 29, 17 2 Octoer 29 Distriuted control of "all on eam" system Michał Ganois, University of Science and Technology AGH Astract This paper presents possiilities of control

More information

Analysis of undamped second order systems with dynamic feedback

Analysis of undamped second order systems with dynamic feedback Control and Cybernetics vol. 33 (24) No. 4 Analysis of undamped second order systems with dynamic feedback by Wojciech Mitkowski Chair of Automatics AGH University of Science and Technology Al. Mickiewicza

More information

An Introduction to Noncooperative Games

An Introduction to Noncooperative Games An Introduction to Noncooperative Games Alberto Bressan Department of Mathematics, Penn State University Alberto Bressan (Penn State) Noncooperative Games 1 / 29 introduction to non-cooperative games:

More information

Tilburg University. Linear Quadratic Games Engwerda, Jacob. Publication date: Link to publication

Tilburg University. Linear Quadratic Games Engwerda, Jacob. Publication date: Link to publication Tilburg University Linear Quadratic Games Engwerda, Jacob Publication date: 26 Link to publication Citation for published version (APA): Engwerda, J. C. (26). Linear Quadratic Games: An Overview. (CentER

More information

Tilburg University. Uniqueness conditions for the affine open-loop linear quadratic differential games Engwerda, Jacob. Published in: Automatica

Tilburg University. Uniqueness conditions for the affine open-loop linear quadratic differential games Engwerda, Jacob. Published in: Automatica Tilburg University Uniqueness conditions for the affine open-loop linear quadratic differential games Engwerda, Jacob Published in: Automatica Publication date: 2008 Link to publication Citation for published

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Leonardo Felli EC441: Room D.106, Z.332, D.109 Lecture 8 bis: 24 November 2004 Monopoly Consider now the pricing behavior of a profit maximizing monopolist: a firm that is the only

More information

Basics of Game Theory

Basics of Game Theory Basics of Game Theory Giacomo Bacci and Luca Sanguinetti Department of Information Engineering University of Pisa, Pisa, Italy {giacomo.bacci,luca.sanguinetti}@iet.unipi.it April - May, 2010 G. Bacci and

More information

MTH 2032 Semester II

MTH 2032 Semester II MTH 232 Semester II 2-2 Linear Algebra Reference Notes Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2 ii Contents Table of Contents

More information

Chapter 7 Duopoly. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction

Chapter 7 Duopoly. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction Chapter 7 Duopoly O. Afonso, P. B. Vasconcelos Computational Economics: a concise introduction O. Afonso, P. B. Vasconcelos Computational Economics 1 / 21 Overview 1 Introduction 2 Economic model 3 Numerical

More information

Optimal Control Feedback Nash in The Scalar Infinite Non-cooperative Dynamic Game with Discount Factor

Optimal Control Feedback Nash in The Scalar Infinite Non-cooperative Dynamic Game with Discount Factor Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 4 (2016), pp. 3463-3468 Research India Publications http://www.ripublication.com/gjpam.htm Optimal Control Feedback Nash

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. VII - System Characteristics: Stability, Controllability, Observability - Jerzy Klamka

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. VII - System Characteristics: Stability, Controllability, Observability - Jerzy Klamka SYSTEM CHARACTERISTICS: STABILITY, CONTROLLABILITY, OBSERVABILITY Jerzy Klamka Institute of Automatic Control, Technical University, Gliwice, Poland Keywords: stability, controllability, observability,

More information

Algorithmic Game Theory and Applications. Lecture 4: 2-player zero-sum games, and the Minimax Theorem

Algorithmic Game Theory and Applications. Lecture 4: 2-player zero-sum games, and the Minimax Theorem Algorithmic Game Theory and Applications Lecture 4: 2-player zero-sum games, and the Minimax Theorem Kousha Etessami 2-person zero-sum games A finite 2-person zero-sum (2p-zs) strategic game Γ, is a strategic

More information

Chapter 2 Optimal Control Problem

Chapter 2 Optimal Control Problem Chapter 2 Optimal Control Problem Optimal control of any process can be achieved either in open or closed loop. In the following two chapters we concentrate mainly on the first class. The first chapter

More information

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10) Subject: Optimal Control Assignment- (Related to Lecture notes -). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must

More information

Ergodicity and Non-Ergodicity in Economics

Ergodicity and Non-Ergodicity in Economics Abstract An stochastic system is called ergodic if it tends in probability to a limiting form that is independent of the initial conditions. Breakdown of ergodicity gives rise to path dependence. We illustrate

More information

Political Economy of Institutions and Development: Problem Set 1. Due Date: Thursday, February 23, in class.

Political Economy of Institutions and Development: Problem Set 1. Due Date: Thursday, February 23, in class. Political Economy of Institutions and Development: 14.773 Problem Set 1 Due Date: Thursday, February 23, in class. Answer Questions 1-3. handed in. The other two questions are for practice and are not

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Dynamic stochastic game and macroeconomic equilibrium

Dynamic stochastic game and macroeconomic equilibrium Dynamic stochastic game and macroeconomic equilibrium Tianxiao Zheng SAIF 1. Introduction We have studied single agent problems. However, macro-economy consists of a large number of agents including individuals/households,

More information

Product differences and prices

Product differences and prices Product differences and prices Claude d Aspremont, Jean Jaskold Gabszewicz and Jacques-François Thisse Abstract Under assumptions following Hotelling s 1929 paper Stability in Competition, the possibility

More information

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education MTH 3 Linear Algebra Study Guide Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education June 3, ii Contents Table of Contents iii Matrix Algebra. Real Life

More information

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem Pulemotov, September 12, 2012 Unit Outline Goal 1: Outline linear

More information

Decentralised economies I

Decentralised economies I Decentralised economies I Martin Ellison 1 Motivation In the first two lectures on dynamic programming and the stochastic growth model, we solved the maximisation problem of the representative agent. More

More information

Constrained controllability of semilinear systems with delayed controls

Constrained controllability of semilinear systems with delayed controls BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 56, No. 4, 28 Constrained controllability of semilinear systems with delayed controls J. KLAMKA Institute of Control Engineering, Silesian

More information

Impulsive Stabilization and Application to a Population Growth Model*

Impulsive Stabilization and Application to a Population Growth Model* Nonlinear Dynamics and Systems Theory, 2(2) (2002) 173 184 Impulsive Stabilization and Application to a Population Growth Model* Xinzhi Liu 1 and Xuemin Shen 2 1 Department of Applied Mathematics, University

More information

WEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS

WEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS U.P.B. Sci. Bull., Series D, Vol. 75, Iss. 2, 2013 ISSN 1454-2358 WEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS Raluca M. STEFANESCU 1, Claudiu L. PRIOROC 2, Adrian M. STOICA

More information

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them.

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them. What is market design? Increasingly, economists are asked not just to study or explain or interpret markets, but to design them. This requires different tools and ideas than neoclassical economics, which

More information

QUALIFYING EXAM IN SYSTEMS ENGINEERING

QUALIFYING EXAM IN SYSTEMS ENGINEERING QUALIFYING EXAM IN SYSTEMS ENGINEERING Written Exam: MAY 23, 2017, 9:00AM to 1:00PM, EMB 105 Oral Exam: May 25 or 26, 2017 Time/Location TBA (~1 hour per student) CLOSED BOOK, NO CHEAT SHEETS BASIC SCIENTIFIC

More information

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31 Contents Preamble xiii Linear Systems I Basic Concepts 1 I System Representation 3 1 State-Space Linear Systems 5 1.1 State-Space Linear Systems 5 1.2 Block Diagrams 7 1.3 Exercises 11 2 Linearization

More information

Collaborative Network Formation in Spatial Oligopolies

Collaborative Network Formation in Spatial Oligopolies Collaborative Network Formation in Spatial Oligopolies 1 Shaun Lichter, Terry Friesz, and Christopher Griffin arxiv:1108.4114v1 [math.oc] 20 Aug 2011 Abstract Recently, it has been shown that networks

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 8: Basic Lyapunov Stability Theory

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 8: Basic Lyapunov Stability Theory MCE/EEC 647/747: Robot Dynamics and Control Lecture 8: Basic Lyapunov Stability Theory Reading: SHV Appendix Mechanical Engineering Hanz Richter, PhD MCE503 p.1/17 Stability in the sense of Lyapunov A

More information

THEORY OF OLIGOPOLIES: DYNAMICS AND STABILITY OF EQUILIBRIA

THEORY OF OLIGOPOLIES: DYNAMICS AND STABILITY OF EQUILIBRIA ROMAI J., 4, (2008), 47 60 THEORY OF OLIGOPOLIES: DYNAMICS AND STABILITY OF EQUILIBRIA Konstantinos Andriopoulos, Tassos Bountis, Nikos Papadopoulos Centre for Research and Applications of Nonlinear Systems

More information

Tilburg University. An equivalence result in linear-quadratic theory van den Broek, W.A.; Engwerda, Jacob; Schumacher, Hans. Published in: Automatica

Tilburg University. An equivalence result in linear-quadratic theory van den Broek, W.A.; Engwerda, Jacob; Schumacher, Hans. Published in: Automatica Tilburg University An equivalence result in linear-quadratic theory van den Broek, W.A.; Engwerda, Jacob; Schumacher, Hans Published in: Automatica Publication date: 2003 Link to publication Citation for

More information

DISCRETE-TIME DYNAMICS OF AN

DISCRETE-TIME DYNAMICS OF AN Chapter 1 DISCRETE-TIME DYNAMICS OF AN OLIGOPOLY MODEL WITH DIFFERENTIATED GOODS K. Andriopoulos, T. Bountis and S. Dimas * Department of Mathematics, University of Patras, Patras, GR-26500, Greece Abstract

More information

AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Introduction to Automatic Control & Linear systems (time domain)

AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Introduction to Automatic Control & Linear systems (time domain) 1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Introduction to Automatic Control & Linear systems (time domain) 2 What is automatic control? From Wikipedia Control theory is an interdisciplinary

More information

RECURSION EQUATION FOR

RECURSION EQUATION FOR Math 46 Lecture 8 Infinite Horizon discounted reward problem From the last lecture: The value function of policy u for the infinite horizon problem with discount factor a and initial state i is W i, u

More information

Game theory Lecture 19. Dynamic games. Game theory

Game theory Lecture 19. Dynamic games. Game theory Lecture 9. Dynamic games . Introduction Definition. A dynamic game is a game Γ =< N, x, {U i } n i=, {H i } n i= >, where N = {, 2,..., n} denotes the set of players, x (t) = f (x, u,..., u n, t), x(0)

More information

Optimal Control. McGill COMP 765 Oct 3 rd, 2017

Optimal Control. McGill COMP 765 Oct 3 rd, 2017 Optimal Control McGill COMP 765 Oct 3 rd, 2017 Classical Control Quiz Question 1: Can a PID controller be used to balance an inverted pendulum: A) That starts upright? B) That must be swung-up (perhaps

More information

Alberto Bressan. Department of Mathematics, Penn State University

Alberto Bressan. Department of Mathematics, Penn State University Non-cooperative Differential Games A Homotopy Approach Alberto Bressan Department of Mathematics, Penn State University 1 Differential Games d dt x(t) = G(x(t), u 1(t), u 2 (t)), x(0) = y, u i (t) U i

More information

Robotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage:

Robotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage: Robotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage: http://wcms.inf.ed.ac.uk/ipab/rss Control Theory Concerns controlled systems of the form: and a controller of the

More information

Mathematical Methods and Economic Theory

Mathematical Methods and Economic Theory Mathematical Methods and Economic Theory Anjan Mukherji Subrata Guha C 263944 OXTORD UNIVERSITY PRESS Contents Preface SECTION I 1 Introduction 3 1.1 The Objective 3 1.2 The Tools for Section I 4 2 Basic

More information

Monetary Economics: Solutions Problem Set 1

Monetary Economics: Solutions Problem Set 1 Monetary Economics: Solutions Problem Set 1 December 14, 2006 Exercise 1 A Households Households maximise their intertemporal utility function by optimally choosing consumption, savings, and the mix of

More information

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Mostafa D. Awheda Department of Systems and Computer Engineering Carleton University Ottawa, Canada KS 5B6 Email: mawheda@sce.carleton.ca

More information

SF2972 Game Theory Exam with Solutions March 15, 2013

SF2972 Game Theory Exam with Solutions March 15, 2013 SF2972 Game Theory Exam with s March 5, 203 Part A Classical Game Theory Jörgen Weibull and Mark Voorneveld. (a) What are N, S and u in the definition of a finite normal-form (or, equivalently, strategic-form)

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2016

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2016 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2016 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28 OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from

More information

MATHS WORKSHOPS Simultaneous Equations and Inequalities. Business School

MATHS WORKSHOPS Simultaneous Equations and Inequalities. Business School MATHS WORKSHOPS Simultaneous Equations and Inequalities Business School Outline Recap of Algebra, Linear and Quadratic Functions Simultaneous Equations Inequalities Applications in Business Summary and

More information

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples February 24, 2011 Summary: We introduce the Nash Equilibrium: an outcome (action profile) which is stable in the sense that no player

More information

Residential Market and Urban Planning in Transition. Case Study of Poznań.

Residential Market and Urban Planning in Transition. Case Study of Poznań. 3 rd Central European Conference in Regional Science CERS, 2009 1258 Residential Market and Urban Planning in Transition. Case Study of Poznań. ADAM RADZIMSKI Adam Mickiewicz University 61-680 Poznań,

More information

Competitive Equilibrium

Competitive Equilibrium Competitive Equilibrium Econ 2100 Fall 2017 Lecture 16, October 26 Outline 1 Pareto Effi ciency 2 The Core 3 Planner s Problem(s) 4 Competitive (Walrasian) Equilibrium Decentralized vs. Centralized Economic

More information

Robotics. Control Theory. Marc Toussaint U Stuttgart

Robotics. Control Theory. Marc Toussaint U Stuttgart Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability,

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Noncooperative continuous-time Markov games

Noncooperative continuous-time Markov games Morfismos, Vol. 9, No. 1, 2005, pp. 39 54 Noncooperative continuous-time Markov games Héctor Jasso-Fuentes Abstract This work concerns noncooperative continuous-time Markov games with Polish state and

More information

Math-Net.Ru All Russian mathematical portal

Math-Net.Ru All Russian mathematical portal Math-Net.Ru All Russian mathematical portal Anna V. Tur, A time-consistent solution formula for linear-quadratic discrete-time dynamic games with nontransferable payoffs, Contributions to Game Theory and

More information

Game Theory. Professor Peter Cramton Economics 300

Game Theory. Professor Peter Cramton Economics 300 Game Theory Professor Peter Cramton Economics 300 Definition Game theory is the study of mathematical models of conflict and cooperation between intelligent and rational decision makers. Rational: each

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

Suppose that we have a specific single stage dynamic system governed by the following equation:

Suppose that we have a specific single stage dynamic system governed by the following equation: Dynamic Optimisation Discrete Dynamic Systems A single stage example Suppose that we have a specific single stage dynamic system governed by the following equation: x 1 = ax 0 + bu 0, x 0 = x i (1) where

More information

MS&E 246: Lecture 4 Mixed strategies. Ramesh Johari January 18, 2007

MS&E 246: Lecture 4 Mixed strategies. Ramesh Johari January 18, 2007 MS&E 246: Lecture 4 Mixed strategies Ramesh Johari January 18, 2007 Outline Mixed strategies Mixed strategy Nash equilibrium Existence of Nash equilibrium Examples Discussion of Nash equilibrium Mixed

More information

Motivation for introducing probabilities

Motivation for introducing probabilities for introducing probabilities Reaching the goals is often not sufficient: it is important that the expected costs do not outweigh the benefit of reaching the goals. 1 Objective: maximize benefits - costs.

More information

A New Algorithm for Solving Cross Coupled Algebraic Riccati Equations of Singularly Perturbed Nash Games

A New Algorithm for Solving Cross Coupled Algebraic Riccati Equations of Singularly Perturbed Nash Games A New Algorithm for Solving Cross Coupled Algebraic Riccati Equations of Singularly Perturbed Nash Games Hiroaki Mukaidani Hua Xu and Koichi Mizukami Faculty of Information Sciences Hiroshima City University

More information

Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium

Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium Exercises 8 Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium Objectives - know and understand the relation between a quadratic function and a quadratic

More information

CENTRAL OR POLARIZED PATTERNS IN COLLECTIVE ACTIONS

CENTRAL OR POLARIZED PATTERNS IN COLLECTIVE ACTIONS 1 IMITATION, LEARNING, AND COMMUNICATION: CENTRAL OR POLARIZED PATTERNS IN COLLECTIVE ACTIONS Ping Chen I.Prigogine Center for Studies in Statistical Mechanics and Complex Systems and IC2 Institute University

More information

Mathematical models in economy. Short descriptions

Mathematical models in economy. Short descriptions Chapter 1 Mathematical models in economy. Short descriptions 1.1 Arrow-Debreu model of an economy via Walras equilibrium problem. Let us consider first the so-called Arrow-Debreu model. The presentation

More information

Preliminary Results on Social Learning with Partial Observations

Preliminary Results on Social Learning with Partial Observations Preliminary Results on Social Learning with Partial Observations Ilan Lobel, Daron Acemoglu, Munther Dahleh and Asuman Ozdaglar ABSTRACT We study a model of social learning with partial observations from

More information

Area I: Contract Theory Question (Econ 206)

Area I: Contract Theory Question (Econ 206) Theory Field Exam Summer 2011 Instructions You must complete two of the four areas (the areas being (I) contract theory, (II) game theory A, (III) game theory B, and (IV) psychology & economics). Be sure

More information

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016 UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016 More on strategic games and extensive games with perfect information Block 2 Jun 12, 2016 Food for thought LUPI Many players

More information

Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October

Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October 23 2011 1 Scores The exam was long. I know this. Final grades will definitely be curved. Here is a rough

More information

SIMPLE CONDITIONS FOR PRACTICAL STABILITY OF POSITIVE FRACTIONAL DISCRETE TIME LINEAR SYSTEMS

SIMPLE CONDITIONS FOR PRACTICAL STABILITY OF POSITIVE FRACTIONAL DISCRETE TIME LINEAR SYSTEMS Int. J. Appl. Math. Comput. Sci., 2009, Vol. 19, No. 2, 263 269 DOI: 10.2478/v10006-009-0022-6 SIMPLE CONDITIONS FOR PRACTICAL STABILITY OF POSITIVE FRACTIONAL DISCRETE TIME LINEAR SYSTEMS MIKOŁAJ BUSŁOWICZ,

More information

CDS 110b: Lecture 2-1 Linear Quadratic Regulators

CDS 110b: Lecture 2-1 Linear Quadratic Regulators CDS 110b: Lecture 2-1 Linear Quadratic Regulators Richard M. Murray 11 January 2006 Goals: Derive the linear quadratic regulator and demonstrate its use Reading: Friedland, Chapter 9 (different derivation,

More information

Linear Quadratic Zero-Sum Two-Person Differential Games

Linear Quadratic Zero-Sum Two-Person Differential Games Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard To cite this version: Pierre Bernhard. Linear Quadratic Zero-Sum Two-Person Differential Games. Encyclopaedia of Systems and Control,

More information

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Abstract As in optimal control theory, linear quadratic (LQ) differential games (DG) can be solved, even in high dimension,

More information

Computers Methods for Chaos Diagnostic

Computers Methods for Chaos Diagnostic AUTOMATYKA 2011 Tom 15 Zeszyt 1 Anna Obrączka Computers Methods for Chaos Diagnostic 1. Introduction In this article some computer methods for chaos diagnostic were presented. These methods are based on

More information

Chapter III. Stability of Linear Systems

Chapter III. Stability of Linear Systems 1 Chapter III Stability of Linear Systems 1. Stability and state transition matrix 2. Time-varying (non-autonomous) systems 3. Time-invariant systems 1 STABILITY AND STATE TRANSITION MATRIX 2 In this chapter,

More information

A finite population ESS and a long run equilibrium in an n players coordination game

A finite population ESS and a long run equilibrium in an n players coordination game Mathematical Social Sciences 39 (000) 95 06 www.elsevier.nl/ locate/ econbase A finite population ESS and a long run equilibrium in an n players coordination game Yasuhito Tanaka* Faculty of Law, Chuo

More information

Equilibrium in Factors Market: Properties

Equilibrium in Factors Market: Properties Equilibrium in Factors Market: Properties Ram Singh Microeconomic Theory Lecture 12 Ram Singh: (DSE) Factor Prices Lecture 12 1 / 17 Questions What is the relationship between output prices and the wage

More information

Strategic Interactions between Fiscal and Monetary Policies in a Monetary Union

Strategic Interactions between Fiscal and Monetary Policies in a Monetary Union Strategic Interactions between Fiscal and Monetary Policies in a Monetary Union Reinhard Neck Doris A. Behrens Preliminary Draft, not to be quoted January 2003 Corresponding Author s Address: Reinhard

More information

Solution to Tutorial 9

Solution to Tutorial 9 Solution to Tutorial 9 2012/2013 Semester I MA4264 Game Theory Tutor: Xiang Sun November 2, 2012 Exercise 1. We consider a game between two software developers, who sell operating systems (OS) for personal

More information

Robust control and applications in economic theory

Robust control and applications in economic theory Robust control and applications in economic theory In honour of Professor Emeritus Grigoris Kalogeropoulos on the occasion of his retirement A. N. Yannacopoulos Department of Statistics AUEB 24 May 2013

More information

Competition between Virtual Operators in a Two-sided Telecommunication Market

Competition between Virtual Operators in a Two-sided Telecommunication Market Competition between Virtual Operators in a Two-sided Telecommunication Market Julia V. Chirkova Jaimie W. Lien Vladimir V. Mazalov Jie Zheng July 30, 017 Abstract Consider a market where two large companies

More information

Population Games and Evolutionary Dynamics

Population Games and Evolutionary Dynamics Population Games and Evolutionary Dynamics William H. Sandholm The MIT Press Cambridge, Massachusetts London, England in Brief Series Foreword Preface xvii xix 1 Introduction 1 1 Population Games 2 Population

More information

Genetic algorithm for closed-loop equilibrium of high-order linear quadratic dynamic games

Genetic algorithm for closed-loop equilibrium of high-order linear quadratic dynamic games Mathematics and Computers in Simulation 53 (2000) 39 47 Genetic algorithm for closed-loop equilibrium of high-order linear quadratic dynamic games Süheyla Özyıldırım Faculty of Business Administration,

More information

A dynamic model of mobile source air pollution and its properties

A dynamic model of mobile source air pollution and its properties Environmental Health Risk IV 4 A dynamic model of mobile source air pollution and its properties V. Rumchev & L. Caccetta Department of Mathematics and Statistics, Curtin University of Technology, Australia

More information

LOCALLY POSITIVE NONLINEAR SYSTEMS

LOCALLY POSITIVE NONLINEAR SYSTEMS Int. J. Appl. Math. Comput. Sci. 3 Vol. 3 No. 4 55 59 LOCALLY POSITIVE NONLINEAR SYSTEMS TADEUSZ KACZOREK Institute of Control Industrial Electronics Warsaw University of Technology ul. Koszykowa 75 66

More information

EE C128 / ME C134 Feedback Control Systems

EE C128 / ME C134 Feedback Control Systems EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of

More information

Lecture December 2009 Fall 2009 Scribe: R. Ring In this lecture we will talk about

Lecture December 2009 Fall 2009 Scribe: R. Ring In this lecture we will talk about 0368.4170: Cryptography and Game Theory Ran Canetti and Alon Rosen Lecture 7 02 December 2009 Fall 2009 Scribe: R. Ring In this lecture we will talk about Two-Player zero-sum games (min-max theorem) Mixed

More information

Microeconomics for Business Practice Session 3 - Solutions

Microeconomics for Business Practice Session 3 - Solutions Microeconomics for Business Practice Session - Solutions Instructor: Eloisa Campioni TA: Ugo Zannini University of Rome Tor Vergata April 8, 016 Exercise 1 Show that there are no mixed-strategy Nash equilibria

More information

Exact and Approximate Equilibria for Optimal Group Network Formation

Exact and Approximate Equilibria for Optimal Group Network Formation Exact and Approximate Equilibria for Optimal Group Network Formation Elliot Anshelevich and Bugra Caskurlu Computer Science Department, RPI, 110 8th Street, Troy, NY 12180 {eanshel,caskub}@cs.rpi.edu Abstract.

More information

A technical appendix for multihoming and compatibility

A technical appendix for multihoming and compatibility A technical appendix for multihoming and compatibility Toker Doganoglu and Julian Wright July 19, 2005 We would like to thank two anonymous referees and our editor, Simon Anderson, for their very helpful

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016 ACM/CMS 17 Linear Analysis & Applications Fall 216 Assignment 4: Linear ODEs and Control Theory Due: 5th December 216 Introduction Systems of ordinary differential equations (ODEs) can be used to describe

More information

CS181 Midterm 2 Practice Solutions

CS181 Midterm 2 Practice Solutions CS181 Midterm 2 Practice Solutions 1. Convergence of -Means Consider Lloyd s algorithm for finding a -Means clustering of N data, i.e., minimizing the distortion measure objective function J({r n } N n=1,

More information

General Examination in Macroeconomic Theory SPRING 2013

General Examination in Macroeconomic Theory SPRING 2013 HARVARD UNIVERSITY DEPARTMENT OF ECONOMICS General Examination in Macroeconomic Theory SPRING 203 You have FOUR hours. Answer all questions Part A (Prof. Laibson): 48 minutes Part B (Prof. Aghion): 48

More information

Optimal Control of Nonlinear Econometric. Models with Rational Expectations

Optimal Control of Nonlinear Econometric. Models with Rational Expectations Optimal Control of Nonlinear Econometric Models with Rational Expectations V. Blueschke-Nikolaeva a a Department of Economics, Alpen-Adria-Universität Klagenfurt Universitätsstrasse 65-67, A-9020 Klagenfurt,

More information

Lecturers: Jan Boone (ANR: ) and Clemens Fiedler

Lecturers: Jan Boone (ANR: ) and Clemens Fiedler cover page for a written examination/test Name of subject: Competition Policy and Regulation Subject code: 30L303 Date of examination: 8-06-016 Length of examination: 3 hours Lecturers: Jan Boone (ANR:

More information

Markov Perfect Equilibria in the Ramsey Model

Markov Perfect Equilibria in the Ramsey Model Markov Perfect Equilibria in the Ramsey Model Paul Pichler and Gerhard Sorger This Version: February 2006 Abstract We study the Ramsey (1928) model under the assumption that households act strategically.

More information

Classification of Phase Portraits at Equilibria for u (t) = f( u(t))

Classification of Phase Portraits at Equilibria for u (t) = f( u(t)) Classification of Phase Portraits at Equilibria for u t = f ut Transfer of Local Linearized Phase Portrait Transfer of Local Linearized Stability How to Classify Linear Equilibria Justification of the

More information

Y t = log (employment t )

Y t = log (employment t ) Advanced Macroeconomics, Christiano Econ 416 Homework #7 Due: November 21 1. Consider the linearized equilibrium conditions of the New Keynesian model, on the slide, The Equilibrium Conditions in the handout,

More information

An LQR Controller Design Approach For Pitch Axis Stabilisation Of 3-DOF Helicopter System

An LQR Controller Design Approach For Pitch Axis Stabilisation Of 3-DOF Helicopter System International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1398 An LQR Controller Design Approach For Pitch Axis Stabilisation Of 3-DOF Helicopter System Mrs. M. Bharathi*Golden

More information

Chapter 4 AD AS. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction

Chapter 4 AD AS. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction Chapter 4 AD AS O. Afonso, P. B. Vasconcelos Computational Economics: a concise introduction O. Afonso, P. B. Vasconcelos Computational Economics 1 / 32 Overview 1 Introduction 2 Economic model 3 Numerical

More information

Bounded Rationality Lecture 2. Full (Substantive, Economic) Rationality

Bounded Rationality Lecture 2. Full (Substantive, Economic) Rationality Bounded Rationality Lecture 2 Full (Substantive, Economic) Rationality Mikhail Anufriev EDG, Faculty of Business, University of Technology Sydney (UTS) European University at St.Petersburg Faculty of Economics

More information

1. Type your solutions. This homework is mainly a programming assignment.

1. Type your solutions. This homework is mainly a programming assignment. THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 5243 INTRODUCTION TO CYBER-PHYSICAL SYSTEMS H O M E W O R K S # 6 + 7 Ahmad F. Taha October 22, 2015 READ Homework Instructions: 1. Type your solutions. This homework

More information

Study Unit 3 : Linear algebra

Study Unit 3 : Linear algebra 1 Study Unit 3 : Linear algebra Chapter 3 : Sections 3.1, 3.2.1, 3.2.5, 3.3 Study guide C.2, C.3 and C.4 Chapter 9 : Section 9.1 1. Two equations in two unknowns Algebraically Method 1: Elimination Step

More information