Two-Way and Multiple-Access Energy Harvesting Systems with Energy Cooperation

Size: px
Start display at page:

Download "Two-Way and Multiple-Access Energy Harvesting Systems with Energy Cooperation"

Transcription

1 Two-Way and Multple-Access Energy Harvestng Systems wth Energy Cooperaton Berk Gurakan, Omur Ozel, Jng Yang 2, and Sennur Ulukus Department of Electrcal and Computer Engneerng, Unversty of Maryland, College Park, MD Department of Electrcal Engneerng, Unversty of Arkansas, Fayettevlle, AR 7270 Abstract We study the capacty regons of two-way and multple-access harvestng communcaton systems wth one-way wreless transfer. In these systems, requred for data transmsson s harvested by the users from nature throughout the communcaton duraton, and there s a separate unt that enables transfer from the frst user to the second user wth an effcency of. Energy harvests are known by the transmtters a pror. We frst nvestgate the capacty regon of the harvestng Gaussan two-way channel (TWC wth one-way transfer. We show that the boundary of the capacty regon s acheved by a generalzed two-dmensonal drectonal water-fllng algorthm. Then, we study the capacty regon of the harvestng Gaussan multple access channel (MAC wth one-way transfer. We show that f the prorty of the frst user s hgher, then transfer s not needed. In addton, f the prorty of the second user s suffcently hgh, then the frst user must transfer all of ts to the second user. I. INTRODUCTION We study the capacty regons of the Gaussan two-way channel (TWC and the Gaussan two-user multple access channel (MAC wth one-way transfer. In both scenaros, there are two users powered by harvestng devces communcatng messages to each other or to an access pont. We model these scenaros as two users havng exogenous arrval processes that recharge ther batteres throughout the communcaton duraton. Addtonally, oneway transfer s possble: The frst user can transmt a porton of ts to the second user through a separate wreless transfer unt subject to an neffcency (.e., loss durng the transfer. Wreless transfer enables a new form of cooperaton whch we call cooperaton; see also []. In contrast to the usual noton of cooperaton, whch s at the sgnal level [2], cooperaton s at the battery level. In ths paper, we study optmal management polces for the users n systems wth cooperaton. Assumng that the users know the realzatons of the arrval processes n advance, as n the exstng lterature [], [3] [4], we characterze the correspondng capacty regons. We frst consder the Gaussan TWC wth transfer. We show that the boundary of the capacty regon s obtaned by a generalzed two-dmensonal drectonal water-fllng Ths work was supported by NSF Grants CNS , CCF , CCF and CNS Fg.. E User δ Ē User 2 TWC wth one-way transfer. algorthm. Ths algorthm optmzes the levels n two dmensons, namely the tme and user dmensons, subject to causalty constrants. We then study the Gaussan MAC wth transfer. We show that f the frst user has a hgher prorty, then transfer s not needed and the boundary s acheved by the generalzed backward drectonal water-fllng algorthm gven n [9]. Moreover, we show that f the second user has a suffcently hgh prorty, then transferrng all of the of the frst user to the second user s optmal. In between these two extremes, some non-zero porton of the frst user s s transferred to the second user. II. TWC WITH ONE-WAY ENERGY TRANSFER We consder a Gaussan TWC as shown n Fg.. The two s at the nodes are the data and s. The energes that arrve at the nodes are saved n the correspondng s. The s of both users always carry some data packets. The physcal layer s a memoryless Gaussan TWC [5] where the channel nputs and outputs are x, x 2 and y, y 2, respectvely. The nput-output relatons are y = x + x 2 + n and y 2 = x + x 2 + n 2 where n and n 2 are ndependent Gaussan noses wth zero-mean and untvarance. We assume that the tme s slotted and there are a total of T equal length slots. In slot t, the frst and second users harvest n amounts E t and Ēt, respectvely. There s a separate one-way wreless transfer unt from the frst user to the second user wth effcency 0 : When the frst user transfers δ amount of to the second user, δ amount of exts the frst user s and δ amount of enters the second user s n the same slot. The power polcy of user

2 s composed of the sequences P,δ, and the power polcy of user 2 s the sequence P. For both users, the that has not arrved yet cannot be used for data transmsson or transfer. In addton, transfer amounts cannot be larger than the harvested. These constrants yeld the followng set F of feasble power control and transfer polces: F = (δ, P, P : P P δ (E δ, k (Ē +δ, k } E, k For the Gaussan TWC wth ndvdual power constrants P and P 2, rate pars (R,R 2 wth R 2 log(+p,r 2 2 log(+p 2 are achevable [5]. For a fxed transfer vector δ, and feasble power control polces P and P, the set of achevable rates s: C δ (P, P = (R,R 2 : R R 2 2 log(+p 2 log(+ P } The notaton shows the dependence of the regon on the transfer vector δ. Ths regon s shown n Fg. 2 for dfferent values of δ. Each of these regons are rectangles of the form R C where C s the mum throughput acheved for user found by mzng (2 constraned to the feasblty constrants F. As δ s ncreased, s transferred from user to user 2 therefore C decreases whle C 2 ncreases. By takng the unon of the regons over all possble transfer vectors and power polces for the users, we obtan the capacty regon of the Gaussan TWC as: C(E, Ē = C δ (P, P (3 (δ,p, P F III. CAPACITY REGION OF THE GAUSSIAN TWC In ths secton, we characterze the capacty regon as well as the optmal power allocaton and transfer polces. We start by notng that the capacty regon s convex. Lemma C(E, Ē s a convex regon. Snce C(E, Ē s convex, each boundary pont can be found by solvng the followng weghted rate mzaton problem: P,P,δ θ 2 log(+p +θ 2 2 log(+ P ( (2 s.t. (δ, P, P F (4 The problem n (4 s a convex optmzaton problem as the objectve functon s concave and the feasble set s a convex R Fg. 2. θr 2 3 R 2 Capacty regon of the Gaussan TWC. set [6]. We wrte the Lagrangan functon for (4 as L = θ log(+p +θ 2 log(+ P + k( P (E δ k=µ + k( P (Ē +δ k=η + k( δ E ρ k δ k (5 k=γ k= The Lagrange multplerρ k s due to the constrantδ k 0. We exclude the non-negatvty constrants for P and P as P and P are always non-zero n the optmal polcy for θ,θ 2 > 0. Smlarly, we elmnate the constrants k δ k E and the multplers γ k n the followng analyss snce these constrants can never be satsfed wth equalty n the optmal polcy for the Gaussan TWC for θ,θ 2 > 0, as that would requre P = 0 for some. However, we note that these constrants and the multplers γ k play an mportant role for the analyss of the capacty regon of the MAC and hence we renstate these constrants when necessary. The KKT condtons for the case of TWC are: θ + µ k = 0, (6 +P θ 2 + P + η k = 0, (7 µ k η k ρ = 0, (8 wth the addtonal complementary slackness condtons as: µ k ( P (E δ η k ( P (Ē +δ = 0, k (9 = 0, k (0 ρ k δ k = 0, k (

3 From (6, (7 and (8 we get: P = θ µ, (2 k θ 2 P = η, k (3 ρ = µ k η k, (4 We wll gve the soluton for general θ,θ 2 > 0 n the sequel. Before that, we note that n the extreme case when θ 2 = 0, the problem reduces to mzng the frst user s throughput only and hence any transfer s strctly suboptmal,.e., δ = 0 s optmal. Ths corresponds to pont n Fg. 2. Smlarly, when θ = 0, the problem reduces to mzng the second user s throughput only and the frst user must transfer all of ts to the second user,.e., δ = E s optmal. Ths corresponds to pont 3 n Fg. 2. When θ,θ 2 > 0, we obtan the ponts between ponts and 3 n Fg. 2. In ths case, for a gven transfer profle δ,...,δ T, the optmzaton problem can be separated nto two optmzaton problems, each only n terms of the power control polcy of the correspondng user. Lemma 2 The optmal power sequences P and P are monotoncally ncreasng sequences:p+ P, P + P. Next, we provde the necessary optmalty condton for a non-zero transfer. Lemma 3 For the optmal power sequences P, P and transfer sequence δ, f δ 0 for a slot, then, +P + P = θ θ 2 Proof: From (2-(4 we have +P + P = θ η k θ 2 ( η k +ρ (5 (6 If there s a non-zero transfer, δ 0, we have from (, ρ = 0. Therefore, (5 must be satsfed f δ 0. In order to devse an algorthmc soluton, we apply a change of varable P = P and re-wrte the optmzaton problem n terms of P, P,δ as follows: P,P,δ s.t. θ 2 log(+p +θ 2 2 log(+ P P P δ (E δ, k (Ē +δ, k E, k (7 The optmal power allocaton for ths problem s: where ν and ν n slot are defned by ν = P = θ ν, (8 P = θ 2 ν, (9 µ k and ν = η k (20 The power level expressons n (8-(9 lead to a drectonal water-fllng nterpretaton [5]. In partcular, we note that has to be jontly allocated n tme and user dmensons together. Ths calls for a two-dmensonal drectonal waterfllng algorthm where s allowed to flow n two dmensons, from left to rght (n tme and from up to down (among users. We utlze rght permeable taps to account for whch wll be used n the future and down permeable taps to account for that wll be transferred from user to user 2. We see from the KKT optmalty condtons that ν = ν n slots where there s non-zero transfer. We note that n the orgnal problem, ths mples that f some s transferred, then the power levels n that slot need to satsfy (5. The base levels for users and 2 are and, respectvely. Moreover, to facltate the water flow nterpretaton, we scale the arrvals of user 2 by as seen n (7. If the resultng water levels are hgher for user or not monotoncally ncreasng n tme for both users, then water has to flow untl the levels are balanced. Whle fndng the balanced water levels, the two dmensons of the water flow (.e., n tme and among users are coupled and therefore t s not easy to determne beforehand whch taps wll be open or closed n the optmal soluton. In partcular, the water flow of user 2 from tme slot to tme slot + j, j > 0, may become redundant f some s transferred from user. To crcumvent ths dffculty, we let each tap (rght/down permeable have a meter measurng the water that has already passed through t and we allow that tap to let the water flow back f an update n the allocaton necesstates t. Ths way, we keep track of the source of the and whether t s transferred to future tme slots or to the other user. Frst, we fll nto the slots wth all taps closed. Then, we open only the rght permeable taps and perform drectonal water-fllng for both users ndvdually [5]. Then, we open the down taps one by one n a backward fashon. If water flows down through a tap, the amount s measured by the meter. Water levels n the slots connected by the bdrectonal horzontal taps need to be equal. Whenever water flows down through a down permeable tap, the water levels must satsfy the proportonalty relatonshp n (5. When the water levels are properly balanced, the optmal soluton s obtaned. IV. MAC WITH ONE-WAY ENERGY TRANSFER In ths secton, we consder the MAC scenaro as shown n Fg. 3. In MAC, the receved sgnal s y = x +x 2 +n where x and x 2 are sgnals of user and user 2, respectvely, and n s a Gaussan nose wth zero-mean and unt-varance. For the

4 E δ Ē R 2 User User 2 3 Recever < = 4 4 R 2 Fg. 3. MAC wth one-way transfer. Fg. 4. Capacty regon of the Gaussan MAC. Gaussan two-user MAC wth ndvdual power constrants P and P 2, rate pars (R,R 2 wth R 2 log(+p,r 2 2 log(+p 2, R +R 2 2 log(+p +P 2 are achevable [7]. For a fxed transfer vector δ, and feasble power control polces P and P, the set of achevable rates s a pentagon defned as [9]: C δ (P, P = (R,R 2 :R R 2 R +R 2 2 log(+p 2 log(+ P 2 log(+ P } +P (2 For each feasble (P, P, δ the regon s a pentagon. The capacty regon of the Gaussan MAC wth transfer s the unon over all feasble power allocatons and transfer profles: C(E, Ē = C δ (P, P (22 (δ,p, P F where F s gven n (. Ths regon s shown n Fg. 4. V. CAPACITY REGION OF THE GAUSSIAN MAC In ths secton, we characterze the capacty regon of the Gaussan MAC wth one-way transfer. Frst, we note that the capacty regon s convex. Lemma 4 C(E, Ē s a convex regon. Snce the regon s convex, each boundary pont s a soluton to R C M θr [8] for some θ = [θ,θ 2 ]. We examne two cases separately, θ θ 2 and θ < θ 2. A. θ θ 2 We show that when θ θ 2, no transfer from user to user 2 s needed. Note that as θ θ 2, the boundary ponts between, 2 and 3 n Fg. 4 are found by solvng the followng problem: P,P, δ (θ θ 2 2 log(+p +θ 2 2 log(+ P +P s.t. (δ, P, P F (23 The problem n (23 s a convex optmzaton problem and the correspondng KKT condtons are: θ θ 2 θ 2 +P +P + P + µ k = 0, (24 θ 2 +P + P + η k = 0, (25 µ k η k + γ k ρ = 0, (26 Snce θ θ 2, from (24-(25, we have µ k η k, whch s satsfed wth equalty ff θ = θ 2. Ths together wth (26 mples that ρ γ k 0, whch s satsfed wth equalty ff θ = θ 2 and =. Therefore, unless we have exactlyθ = θ 2 and =, then we must haveρ > 0 for all. Ths together wth the complementary slackness condtons n ( mples that we must have δ = 0 for all,.e., no transfer s needed. However, when θ = θ 2 and addtonally f =, then there may exst multple dfferent optmal transfer profles, ncludng the one wth no transfer. Snce transfer s not needed, optmal power control polces for the two users are the same as those n the harvestng MAC wth no transfer and can be found by the generalzed backward drectonal water-fllng algorthm descrbed n [9]. That s, the capacty regon boundary from pont to pont 3 n Fg. 4 s found by the algorthm n [9]. Specfcally, for θ = θ 2, we have η k = µ k for all k and the sum-rate optmal power polces are obtaned by applyng sngle-user drectonal water-fllng algorthm to the sum of the profles of the users [9]. B. θ < θ 2 Here, we consder the remanng parts of the boundary, namely the ponts from pont 3 to pont 4 n Fg. 4. In ths

5 case, we need to solve the followng optmzaton problem: P,P,δ (θ 2 θ log(+ P +θ log(+ P +P s.t. (δ, P, P F (27 whch s a convex optmzaton problem and the correspondng KKT condtons are: θ +P + P + µ k = 0, (28 θ 2 θ θ + P +P + P + µ k η k + η k = 0, (29 γ k ρ = 0, (30 We do not have an analytcal closed form soluton for (28- (30. Snce (27 s a convex optmzaton problem, standard numercal methods for convex optmzaton may be employed. We fnd that the soluton of (27 has a smple form n some specal cases, whch we nvestgate next. When =, we fnd that the optmal soluton of (27 requres all the of user transferred to user 2. To verfy ths fact, we note from (28-(29 that η T > µ T, snce θ 2 > θ. Combnng ths wth (30, we obtan γ T ρ T > 0. Note that f δ < E, then γ T = 0 and hence ρ T < 0, whch s not possble. Thus, n the optmal soluton, we must have δ = E. Therefore, user should not transmt any data, and nstead should transfer all of ts to user 2 by the end of T slots. Ths polcy corresponds to pont4n Fg. 4. On the other hand, sum-rate optmal pont, pont 3, acheves the same throughput as pont 4. Ths mples that when =, ponts 2, 3 and 4 n Fg. 4 le on the 45 o lne. In partcular, the optmal throughput of user 2, whch s obtaned by sngleuser throughput mzaton subject to harvested energes of user 2 plus the harvested energes of user, concdes wth the optmal sum-throughput. When <, ponts 2, 3 and 4 n Fg. 4 are not on the same lne. However, we observe that when θ2 θ s suffcently large, user transfers all of ts to user 2. In order to verfy ths clam, we note that, f user transfers some but not all of ts at the end of T slots, then γ T = 0. In ths case, from (28-(30 and as ρ T 0, we have + P T + P T +P T (θ 2 θ (θ (3 + Snce P T + P T+P T <, we conclude that f (θ2θ (θ, then (3 cannot be satsfed whch forces all of the of user to be transferred to user 2 so thatγ T > 0. Note that (θ2θ (θ s equvalent to θ2 θ θ2. Hence, f θ, n the optmal soluton, user transfers all of ts to user 2. When θ2 θ, some non-zero porton of the frst user s may need to be transferred to the second user n the optmal soluton. VI. CONCLUSIONS In ths paper, we consdered the Gaussan TWC and the Gaussan two-user MAC under harvestng and one-way wreless transfer condtons. For the Gaussan TWC, we showed that a generalzed two-dmensonal drectonal water-fllng algorthm, whch dstrbutes the overall harvested optmally over the tme and user dmensons subject to causalty constrants acheves the boundary of the capacty regon. For the Gaussan two-user MAC, wth transfer from the frst user to the second user, we showed that, f the frst user has hgher prorty over the second user, then transfer s not needed. In addton, when the second user s prorty s suffcently hgh, the frst user must transfer all of ts to the second user. REFERENCES [] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus, Energy cooperaton n harvestng wreless communcatons, n IEEE ISIT, July 202. [2] A. Sendonars, E. Erkp, and B. Aazhang, User cooperaton dversty. Part I. System descrpton, IEEE Trans. Comm., vol. 5, pp , November [3] J. Yang and S. Ulukus, Optmal packet schedulng n an harvestng communcaton system, IEEE Trans. Comm., vol. 60, pp , January 202. [4] K. Tutuncuoglu and A. Yener, Optmum transmsson polces for battery lmted harvestng nodes, IEEE Trans. Wreless Comm., vol., pp , March 202. [5] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, Transmsson wth harvestng nodes n fadng wreless channels: Optmal polces, IEEE Jour. on Selected Areas n Commun., vol. 29, pp , September 20. [6] J. Yang, O. Ozel, and S. Ulukus, Broadcastng wth an harvestng rechargeable transmtter, IEEE Trans. Wreless Comm., vol., pp , February 202. [7] M. A. Antepl, E. Uysal-Bykoglu, and H. Erkal, Optmal packet schedulng on an harvestng broadcast lnk, IEEE Jour. on Selected Areas n Commun., vol. 29, pp , September 20. [8] O. Ozel, J. Yang, and S. Ulukus, Optmal broadcast schedulng for an harvestng rechargeable transmtter wth a fnte capacty battery, IEEE Trans. Wreless Comm., vol., pp , June 202. [9] J. Yang and S. Ulukus, Optmal packet schedulng n a multple access channel wth harvestng transmtters, Journal of Communcatons and Networks, vol. 4, pp , Aprl 202. [0] K. Tutuncuoglu and A. Yener, Sum-rate optmal power polces for harvestng transmtters n an nterference channel, Journal of Communcatons and Networks, vol. 4, pp. 5 6, Aprl 202. [] C. Huang, R. Zhang, and S. Cu, Throughput mzaton for the Gaussan relay channel wth harvestng constrants, IEEE Jour. on Selected Areas n Commun., submtted, September 20. Avalable at [arxv: ]. [2] D. Gunduz and B. Devllers, Two-hop communcaton wth harvestng, n IEEE CAMSAP, December 20. [3] K. Tutuncuoglu and A. Yener, Communcatng usng an harvestng transmtter: Optmum polces under storage losses, IEEE Trans. Wreless Comm., submtted August 202, avalable at [arxv: ]. [4] O. Orhan, D. Gunduz, and E. Erkp, Throughput mzaton for an harvestng communcaton system wth processng cost, n IEEE ITW, September 202. [5] T. S. Han, A general codng scheme for the two-way channel, IEEE Trans. Inform. Theory, vol. 30, pp , January 984. [6] S. Boyd and L. Vandenberghe, Convex Optmzaton. Unted Kngdom: Cambrdge Unversty Press, [7] T. Cover and J. Thomas, Elements of Informaton Theory. Wley Seres n Telecommuncatons and Sgnal Processng, John Wley & Sons, [8] D. Tse and S. Hanly, Multaccess fadng channels - Part I: Polymatrod structure, optmal resource allocaton and throughput capactes, IEEE Trans. Inf. Theory, vol. 44, pp , November 998.

4884 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 12, DECEMBER Energy Cooperation in Energy Harvesting Communications

4884 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 12, DECEMBER Energy Cooperation in Energy Harvesting Communications 4884 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 6, NO., DECEMBER 3 Energy Cooperaton n Energy Harvestng Communcatons Ber Guraan, Student Member, IEEE, Omur Ozel, Student Member, IEEE, Jng Yang, Member,

More information

Explicit and Implicit Temperature Constraints in Energy Harvesting Communications

Explicit and Implicit Temperature Constraints in Energy Harvesting Communications Explct and Implct Temperature Constrants n Energy Harvestng Communcatons Abdulrahman Baknna, Omur Ozel 2, and Sennur Ulukus Department of Electrcal and Computer Engneerng, Unversty of Maryland, College

More information

ECE559VV Project Report

ECE559VV Project Report ECE559VV Project Report (Supplementary Notes Loc Xuan Bu I. MAX SUM-RATE SCHEDULING: THE UPLINK CASE We have seen (n the presentaton that, for downlnk (broadcast channels, the strategy maxmzng the sum-rate

More information

x = x 1 + :::+ x K and the nput covarance matrces are of the form ± = E[x x y ]. 3.2 Dualty Next, we ntroduce the concept of dualty wth the followng t

x = x 1 + :::+ x K and the nput covarance matrces are of the form ± = E[x x y ]. 3.2 Dualty Next, we ntroduce the concept of dualty wth the followng t Sum Power Iteratve Water-fllng for Mult-Antenna Gaussan Broadcast Channels N. Jndal, S. Jafar, S. Vshwanath and A. Goldsmth Dept. of Electrcal Engg. Stanford Unversty, CA, 94305 emal: njndal,syed,srram,andrea@wsl.stanford.edu

More information

Energy Harvesting Multiple Access Channel with Peak Temperature Constraints

Energy Harvesting Multiple Access Channel with Peak Temperature Constraints Energy Harvesting Multiple Access Channel with Peak Temperature Constraints Abdulrahman Baknina, Omur Ozel 2, and Sennur Ulukus Department of Electrical and Computer Engineering, University of Maryland,

More information

Power Allocation/Beamforming for DF MIMO Two-Way Relaying: Relay and Network Optimization

Power Allocation/Beamforming for DF MIMO Two-Way Relaying: Relay and Network Optimization Power Allocaton/Beamformng for DF MIMO Two-Way Relayng: Relay and Network Optmzaton Je Gao, Janshu Zhang, Sergy A. Vorobyov, Ha Jang, and Martn Haardt Dept. of Electrcal & Computer Engneerng, Unversty

More information

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 3, MARCH

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 3, MARCH IEEE JOURAL O SELECTED AREAS I COMMUICATIOS, VOL. 33, O. 3, MARCH 205 467 Optmum Polces for an Energy Harvestng Transmtter Under Energy Storage Losses Kaya Tutuncuoglu, Student Member, IEEE, Ayln Yener,

More information

State Amplification and State Masking for the Binary Energy Harvesting Channel

State Amplification and State Masking for the Binary Energy Harvesting Channel State Amplfcaton and State Maskng for the Bnary Energy Harvestng Channel Kaya Tutuncuoglu, Omur Ozel 2, Ayln Yener, and Sennur Ulukus 2 Department of Electrcal Engneerng, The Pennsylvana State Unversty,

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

University of Alberta. Library Release Form. Title of Thesis: Joint Bandwidth and Power Allocation in Wireless Communication Networks

University of Alberta. Library Release Form. Title of Thesis: Joint Bandwidth and Power Allocation in Wireless Communication Networks Unversty of Alberta Lbrary Release Form Name of Author: Xaowen Gong Ttle of Thess: Jont Bandwdth and Power Allocaton n Wreless Communcaton Networks Degree: Master of Scence Year ths Degree Granted: 2010

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling Real-Tme Systems Multprocessor schedulng Specfcaton Implementaton Verfcaton Multprocessor schedulng -- -- Global schedulng How are tasks assgned to processors? Statc assgnment The processor(s) used for

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

Externalities in wireless communication: A public goods solution approach to power allocation. by Shrutivandana Sharma

Externalities in wireless communication: A public goods solution approach to power allocation. by Shrutivandana Sharma Externaltes n wreless communcaton: A publc goods soluton approach to power allocaton by Shrutvandana Sharma SI 786 Tuesday, Feb 2, 2006 Outlne Externaltes: Introducton Plannng wth externaltes Power allocaton:

More information

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business Amr s Supply Chan Model by S. Ashtab a,, R.J. Caron b E. Selvarajah c a Department of Industral Manufacturng System Engneerng b Department of Mathematcs Statstcs c Odette School of Busness Unversty of

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

An Upper Bound on SINR Threshold for Call Admission Control in Multiple-Class CDMA Systems with Imperfect Power-Control

An Upper Bound on SINR Threshold for Call Admission Control in Multiple-Class CDMA Systems with Imperfect Power-Control An Upper Bound on SINR Threshold for Call Admsson Control n Multple-Class CDMA Systems wth Imperfect ower-control Mahmoud El-Sayes MacDonald, Dettwler and Assocates td. (MDA) Toronto, Canada melsayes@hotmal.com

More information

Energy-Efficient Power Allocation for M2M Communications with Energy Harvesting Transmitter

Energy-Efficient Power Allocation for M2M Communications with Energy Harvesting Transmitter nergy-ffcent ower Allocaton for M2M Communcatons wth nergy Harvestng Transmtter Derrck Wng Kwan Ng and Robert Schober Char of Dgtal Communcatons, The Unverstät rlangen-nürnberg Abstract In ths paper, power

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Downlink Throughput Maximization: TDMA versus CDMA

Downlink Throughput Maximization: TDMA versus CDMA 00 Conference on Informaton Scences and Systems, The Johns Hopkns Unversty, March, 00 Downlnk Throughput Maxmzaton: TDMA versus CDMA Changyoon Oh and Ayln Yener Department of Electrcal Engneerng The Pennsylvana

More information

Joint Scheduling and Resource Allocation in CDMA Systems

Joint Scheduling and Resource Allocation in CDMA Systems TO APPEAR IEEE TRANSACTIONS ON INFORMATION THEORY Jont Schedulng and Resource Allocaton n CDMA Systems Vjay G. Subramanan, Randall A. Berry, and Rajeev Agrawal Abstract In ths paper, the schedulng and

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals Smultaneous Optmzaton of Berth Allocaton, Quay Crane Assgnment and Quay Crane Schedulng Problems n Contaner Termnals Necat Aras, Yavuz Türkoğulları, Z. Caner Taşkın, Kuban Altınel Abstract In ths work,

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Joint Scheduling and Resource Allocation in CDMA Systems

Joint Scheduling and Resource Allocation in CDMA Systems TECHNICAL REPORT - JUNE 2009 1 Jont Schedulng and Resource Allocaton n CDMA Systems Vjay G. Subramanan, Randall A. Berry, and Rajeev Agrawal Expanded Techncal Report: A shorter verson of ths paper wll

More information

Joint Scheduling and Resource Allocation in CDMA Systems

Joint Scheduling and Resource Allocation in CDMA Systems ACCEPTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 1 Jont Schedulng and Resource Allocaton n CDMA Systems Vjay G. Subramanan, Randall A. Berry, and Rajeev Agrawal Abstract We consder schedulng and resource

More information

Lagrange Multipliers Kernel Trick

Lagrange Multipliers Kernel Trick Lagrange Multplers Kernel Trck Ncholas Ruozz Unversty of Texas at Dallas Based roughly on the sldes of Davd Sontag General Optmzaton A mathematcal detour, we ll come back to SVMs soon! subject to: f x

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Error Probability for M Signals

Error Probability for M Signals Chapter 3 rror Probablty for M Sgnals In ths chapter we dscuss the error probablty n decdng whch of M sgnals was transmtted over an arbtrary channel. We assume the sgnals are represented by a set of orthonormal

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

Pricing and Resource Allocation Game Theoretic Models

Pricing and Resource Allocation Game Theoretic Models Prcng and Resource Allocaton Game Theoretc Models Zhy Huang Changbn Lu Q Zhang Computer and Informaton Scence December 8, 2009 Z. Huang, C. Lu, and Q. Zhang (CIS) Game Theoretc Models December 8, 2009

More information

The Two-User Gaussian Fading Broadcast Channel

The Two-User Gaussian Fading Broadcast Channel The Two-User Gaussan Fadng Broadcast Channel Amn Jafaran Lab of Informatcs, Networks & Communcatons LINC Department of Electrcal & Computer Engneerng Unversty of Texas at Austn Austn, TX 787, USA Emal:

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006) ECE 534: Elements of Informaton Theory Solutons to Mdterm Eam (Sprng 6) Problem [ pts.] A dscrete memoryless source has an alphabet of three letters,, =,, 3, wth probabltes.4,.4, and., respectvely. (a)

More information

Joint Scheduling and Resource Allocation in CDMA Systems

Joint Scheduling and Resource Allocation in CDMA Systems SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 1 Jont Schedulng and Resource Allocaton n CDMA Systems Vjay Subramanan, Randall A. Berry, and Rajeev Agrawal Abstract We consder schedulng and resource

More information

Arizona State University

Arizona State University SCHEDULING AND POWER ALLOCATION TO OPTIMIZE SERVICE AND QUEUE-WAITING TIMES IN COGNITIVE RADIO UPLINKS By arxv:1601.00608v1 [cs.it] 4 Jan 2016 Ahmed Emad Ewasha Commttee: Dr. Chan Tepedelenloğlu, Char

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Cognitive Access Algorithms For Multiple Access Channels

Cognitive Access Algorithms For Multiple Access Channels 203 IEEE 4th Workshop on Sgnal Processng Advances n Wreless Communcatons SPAWC) Cogntve Access Algorthms For Multple Access Channels Ychuan Hu and Alejandro Rbero, Department of Electrcal and Systems Engneerng,

More information

A Lower Bound on SINR Threshold for Call Admission Control in Multiple-Class CDMA Systems with Imperfect Power-Control

A Lower Bound on SINR Threshold for Call Admission Control in Multiple-Class CDMA Systems with Imperfect Power-Control A ower Bound on SIR Threshold for Call Admsson Control n Multple-Class CDMA Systems w Imperfect ower-control Mohamed H. Ahmed Faculty of Engneerng and Appled Scence Memoral Unversty of ewfoundland St.

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

An Analytical Model for Interference Alignment in Multi-hop MIMO Networks

An Analytical Model for Interference Alignment in Multi-hop MIMO Networks 1 An Analytcal Model for Interference Algnment n Mult-hop MIMO Networks Huacheng Zeng, Student Member, IEEE, Y Sh, Senor Member, IEEE, Y. Thomas Hou, Fellow, IEEE, Wenng Lou, Fellow, IEEE, Sastry Kompella,

More information

Fundamental loop-current method using virtual voltage sources technique for special cases

Fundamental loop-current method using virtual voltage sources technique for special cases Fundamental loop-current method usng vrtual voltage sources technque for specal cases George E. Chatzaraks, 1 Marna D. Tortorel 1 and Anastasos D. Tzolas 1 Electrcal and Electroncs Engneerng Departments,

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

PROBLEM SET 7 GENERAL EQUILIBRIUM

PROBLEM SET 7 GENERAL EQUILIBRIUM PROBLEM SET 7 GENERAL EQUILIBRIUM Queston a Defnton: An Arrow-Debreu Compettve Equlbrum s a vector of prces {p t } and allocatons {c t, c 2 t } whch satsfes ( Gven {p t }, c t maxmzes βt ln c t subject

More information

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem.

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem. Lecture 14 (03/27/18). Channels. Decodng. Prevew of the Capacty Theorem. A. Barg The concept of a communcaton channel n nformaton theory s an abstracton for transmttng dgtal (and analog) nformaton from

More information

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium?

Welfare Properties of General Equilibrium. What can be said about optimality properties of resource allocation implied by general equilibrium? APPLIED WELFARE ECONOMICS AND POLICY ANALYSIS Welfare Propertes of General Equlbrum What can be sad about optmalty propertes of resource allocaton mpled by general equlbrum? Any crteron used to compare

More information

Secret Communication using Artificial Noise

Secret Communication using Artificial Noise Secret Communcaton usng Artfcal Nose Roht Neg, Satashu Goel C Department, Carnege Mellon Unversty, PA 151, USA {neg,satashug}@ece.cmu.edu Abstract The problem of secret communcaton between two nodes over

More information

On Network Coding of Independent and Dependent Sources in Line Networks

On Network Coding of Independent and Dependent Sources in Line Networks On Network Codng of Independent and Dependent Sources n Lne Networks Mayank Baksh, Mchelle Effros, WeHsn Gu, Ralf Koetter Department of Electrcal Engneerng Department of Electrcal Engneerng Calforna Insttute

More information

Distributed Power Control for Interference-Limited Cooperative Relay Networks

Distributed Power Control for Interference-Limited Cooperative Relay Networks Ths full text paper was peer revewed at the drecton of IEEE Communcatons Socety subject matter experts for publcaton n the IEEE ICC 2009 proceedngs Dstrbuted Power Control for Interference-Lmted Cooperatve

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

On Spatial Capacity of Wireless Ad Hoc Networks with Threshold Based Scheduling

On Spatial Capacity of Wireless Ad Hoc Networks with Threshold Based Scheduling On Spatal Capacty of Wreless Ad Hoc Networks wth Threshold Based Schedulng Yue Lng Che, Ru Zhang, Y Gong, and Lngje Duan Abstract arxv:49.2592v [cs.it] 9 Sep 24 Ths paper studes spatal capacty n a stochastc

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem Appled Mathematcal Scences Vol 5 0 no 65 3 33 Interactve B-Level Mult-Objectve Integer Non-lnear Programmng Problem O E Emam Department of Informaton Systems aculty of Computer Scence and nformaton Helwan

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

Throughput Capacities and Optimal Resource Allocation in Multiaccess Fading Channels

Throughput Capacities and Optimal Resource Allocation in Multiaccess Fading Channels Trougput Capactes and Optmal esource Allocaton n ultaccess Fadng Cannels Hao Zou arc 7, 003 Unversty of Notre Dame Abstract oble wreless envronment would ntroduce specal penomena suc as multpat fadng wc

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Rate Maximization in Wireless Powered Communication Systems with Non-Ideal Circuit Power Consumption

Rate Maximization in Wireless Powered Communication Systems with Non-Ideal Circuit Power Consumption krotalasna revja Decembar 06 Rate axmzaton n reless Powered Communcaton Systems wth Non-Ideal Crcut Power Consumpton Ivana Nkoloska, Zoran Hadz-Velkov, Hrstna Chngoska Abstract The key concern n battery-powered

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mt.edu 6.854J / 18.415J Advanced Algorthms Fall 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 18.415/6.854 Advanced Algorthms

More information

Energy Efficient Resource Allocation for Quantity of Information Delivery in Parallel Channels

Energy Efficient Resource Allocation for Quantity of Information Delivery in Parallel Channels TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES Trans. Emergng Tel. Tech. 0000; 00: 6 RESEARCH ARTICLE Energy Effcent Resource Allocaton for Quantty of Informaton Delvery n Parallel Channels Jean-Yves

More information

Rate-Memory Trade-off for the Two-User Broadcast Caching Network with Correlated Sources

Rate-Memory Trade-off for the Two-User Broadcast Caching Network with Correlated Sources Rate-Memory Trade-off for the Two-User Broadcast Cachng Network wth Correlated Sources Parsa Hassanzadeh, Antona M. Tulno, Jame Llorca, Elza Erkp arxv:705.0466v [cs.it] May 07 Abstract Ths paper studes

More information

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan.

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan. THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY Wllam A. Pearlman 2002 References: S. Armoto - IEEE Trans. Inform. Thy., Jan. 1972 R. Blahut - IEEE Trans. Inform. Thy., July 1972 Recall

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Closed form solutions for water-filling problems in optimization and game frameworks

Closed form solutions for water-filling problems in optimization and game frameworks Closed form solutons for water-fllng problems n optmzaton and game frameworks Etan Altman INRIA BP93 24 route des Lucoles 692 Sopha Antpols FRANCE altman@sopha.nra.fr Konstantn Avrachenkov INRIA BP93 24

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Lecture 14: Bandits with Budget Constraints

Lecture 14: Bandits with Budget Constraints IEOR 8100-001: Learnng and Optmzaton for Sequental Decson Makng 03/07/16 Lecture 14: andts wth udget Constrants Instructor: Shpra Agrawal Scrbed by: Zhpeng Lu 1 Problem defnton In the regular Mult-armed

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

Online Scheduling for Energy Harvesting Broadcast Channels with Finite Battery

Online Scheduling for Energy Harvesting Broadcast Channels with Finite Battery Online Scheduling for Energy Harvesting Broadcast Channels with Finite Battery Abdulrahman Baknina Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park,

More information

Online Appendix. t=1 (p t w)q t. Then the first order condition shows that

Online Appendix. t=1 (p t w)q t. Then the first order condition shows that Artcle forthcomng to ; manuscrpt no (Please, provde the manuscrpt number!) 1 Onlne Appendx Appendx E: Proofs Proof of Proposton 1 Frst we derve the equlbrum when the manufacturer does not vertcally ntegrate

More information

f(x,y) = (4(x 2 4)x,2y) = 0 H(x,y) =

f(x,y) = (4(x 2 4)x,2y) = 0 H(x,y) = Problem Set 3: Unconstraned mzaton n R N. () Fnd all crtcal ponts of f(x,y) (x 4) +y and show whch are ma and whch are mnma. () Fnd all crtcal ponts of f(x,y) (y x ) x and show whch are ma and whch are

More information

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud Resource Allocaton wth a Budget Constrant for Computng Independent Tasks n the Cloud Wemng Sh and Bo Hong School of Electrcal and Computer Engneerng Georga Insttute of Technology, USA 2nd IEEE Internatonal

More information

Distributed Non-Autonomous Power Control through Distributed Convex Optimization

Distributed Non-Autonomous Power Control through Distributed Convex Optimization Dstrbuted Non-Autonomous Power Control through Dstrbuted Convex Optmzaton S. Sundhar Ram and V. V. Veeravall ECE Department and Coordnated Scence Lab Unversty of Illnos at Urbana-Champagn Emal: {ssrnv5,vvv}@llnos.edu

More information

Lecture 4: November 17, Part 1 Single Buffer Management

Lecture 4: November 17, Part 1 Single Buffer Management Lecturer: Ad Rosén Algorthms for the anagement of Networs Fall 2003-2004 Lecture 4: November 7, 2003 Scrbe: Guy Grebla Part Sngle Buffer anagement In the prevous lecture we taled about the Combned Input

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

An Interactive Optimisation Tool for Allocation Problems

An Interactive Optimisation Tool for Allocation Problems An Interactve Optmsaton ool for Allocaton Problems Fredr Bonäs, Joam Westerlund and apo Westerlund Process Desgn Laboratory, Faculty of echnology, Åbo Aadem Unversty, uru 20500, Fnland hs paper presents

More information

Optimal Resource Allocation in Full-Duplex Wireless-Powered Communication Network

Optimal Resource Allocation in Full-Duplex Wireless-Powered Communication Network 1 Optmal Resource Allocaton n Full-Duplex Wreless-owered Communcaton Network Hyungsk Ju and Ru Zhang, Member, IEEE arxv:143.58v3 [cs.it] 15 Sep 14 Abstract Ths paper studes optmal resource allocaton n

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India February 2008

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India February 2008 Game Theory Lecture Notes By Y. Narahar Department of Computer Scence and Automaton Indan Insttute of Scence Bangalore, Inda February 2008 Chapter 10: Two Person Zero Sum Games Note: Ths s a only a draft

More information

Perfect Competition and the Nash Bargaining Solution

Perfect Competition and the Nash Bargaining Solution Perfect Competton and the Nash Barganng Soluton Renhard John Department of Economcs Unversty of Bonn Adenauerallee 24-42 53113 Bonn, Germany emal: rohn@un-bonn.de May 2005 Abstract For a lnear exchange

More information