SUSY at TeV energy scale

Size: px
Start display at page:

Download "SUSY at TeV energy scale"

Transcription

1 SUSY at TeV energy scale Masato JlMBO Theoretical Physics Laboratory, School of Health Science, Fujita Health University, Toyoake, Aichi , Japan ABSTRACT A guide to prospective studies for SUSY particle search is given within the minimal supersymmetric standard model. 1. INTRODUCTION The hypothesis that supersymmetry (SUSY) is a symmetry of a more fundamental theory than the standard model has fasinated many physicists [1, 2, 3]. As a consequence of SUSY theory, new particles called SUSY particles emarge with spin differing from the corresponding usual particles by half a unit. The search for SUSY particles is a crucial part of the present high-energy physics [4, 5, 6]. Such particles, however, have not yet been discovered. Thus we hope wc will get a glance at the SUSY world at TeV e + e~ colliders such as CLIC, NLC and JLC [7]. In this talk we shall discuss the methodology on the SUSY particle search within the minimal supersymmetric standard model (MSSM). In section 2 we briefly review the theoretical feature of MSSM. In section 3 and 4 experimental lower bounds and theoretical upper bounds on masses of SUSY particles are summarized. We give the way to search for SUSY particles through pair production and associated production in section 5 and 6. Finally we discuss various possibilities at TeV energy scale in section

2 2. MSSM A SUSY standard model with soft global SUSY-breaking terms is obtained from a SUSY GUT coupled with N = 1 supergravity which is broken in the hidden sector [1]. It has important properties as follows. i) Gauge couplings and Yukawa couplings are fixed to those of the standard model. ii) Masses and mixings of the SUSY particles are quite arbitrary. To specify MSSM we adopt the following assumptions here: 1) Minimal particle contents J The gauge group is SU(Z) C x SU(2) L x U(l) Y - [ The "matters" are quarks, leptons and two Higgs doublets. 2) Universality A universal mass exists for all the scalars ^1 > at GUT energy scale. A universal mass exists for all the gauginos J 3) R-parity unbroken R usual) = + usual) R SUSY) = - SUSY) i.e., the lightest SUSY particle (LSP) is stable. The mass terms in the lagrangian for gaugino-higgsino fields are L m = - l -M 3 \\ a - l -xm (0) X ~ (?M< C >V + h.c.), where A, \ a n d 4> denote gluino, neutralino and chargino fields, respectively. We are concerned with the last two because we have interest in e + e~ collisions mainly. Their expressions are as follows: f X l\ 1 'w+ + (w-) c h+ + (h-) c -186-

3 and AfW I M\ 0 -Mzc/?sin0w Mzs/?sin0 w \ 0 Mi Mzc/3cos9yv -Mzsflcosdyj -MzcfismByj Mzcj3cos8w 0 /J.R \ Mzsf3sh\9w Mzs(3cos6w MR 0 / M { c )_( * Ww0) \s/2m w cp fi K J where cf3 and sf3 mean cos0 and sin/?,.respectively. The gaugino masses Mi's are related to the universal mass M at GUT energy Mx as ai(mx) The renormalized mass parameter fir is in the coupling between the two Higgs fields, and related to the top quark mass M t or the Yukawa coupling constant h t [2] as MR = Znn,. C{l-2KM l iyi* yjlhtjgmw The parameter j3 is related to the vacuum expectation values of the two Higgs fields as (#2 ) "2 tan 3 = j - ^ - =. The physical masses of gauginos and higgsinos are determined by the diagonali?,ation of the mass matrices above. Those are obtained numerically, and expressed by contour plots on the (M, pi) plane as in Ref. [3] (hereafter we use the symbol H instead of /*R). We assume that the lightest neutralino is LSP

4 3. EXPERIMENTAL LOWER BOUNDS The search for SUSY particles is now in process on the Z pole in e + e~ collisions at LEP [4, 5, 6]. There has not been any signal confirmed, but exist excluded regions for several processes of SUSY particle production. For example, excluded regions obtained from neutralino search [5] are shown in Fig. 1. MM,mm ±~] Fig. 1. Excluded regions in the (M,/i) plane (from Ref. [5]). The region A and B is excluded by search for Z * xlxh a n c ' ^ ~* X2X2 (,\ : the lightest neutralino; x : ^e next-to-lightest neutralino), respectively. The region C is not examined because the lighter chargino xf ' s lighter than X there. The doted contour and the dashed one denote the boundary of the domain kinematically accessible in Z decays into neutralinos with and without the invisible mode Z» X?X?i respectively. The mass limits obtained for selectron search and chargino search [6] are shown in Fig. 2 and Fig. 3, respectively. The domain above the diagonal correspond to the stable case. The former limits are derived with two assumptions, Mj = Mj or Mj -C Mj. At TeV energy scale, however, the magnitude of the mass diference between /L and /^ becomes important. The latter limits are derived for pure higgsino and pure wino. For general charginos, the excluded regions in the (M, ft) plane are obtained by search for xf [6]

5 MJ*(GeV/c 2 ) Fig. 3. Mass limits for pure higgsino and pure wino (from Ref. [6]). 4. THEORETICAL UPPER BOUNDS Here we summarize an attempt to obtain upper bounds for masses of SUSY particles theoretically proposed by Barbieri and Giudice [8]. First we consider the potential along the neutral components of the Higgs fields: V(H x,h 2 ) = 9 ~^(\H l \ 2 -\H 2 \ 2? + ml\h l \ 2 +ml\h 2 \ 2 -ml(h l Hi+h.c.). o The quartic term maintains its form from high to down energy, except for the usual renormalization of the gauge coupling constants themselves. The quadratic -189-

6 terms, however, get heavily renormalized from the original ones, and acquire the form: ' m\ = -am 2 - bamm + cm 2 - da 2 m 2 + Cfi 2 < m\ = m 2 + e/«2 + f M 2, m\ = gfim + hb\im + kaftm where m, M, fi, A and B are the original parameters. The dimensionless renormalization group coefficients (a, 6, c, etc.) are functions of the gauge and of the top Yukawa couplings. The breaking of the electroweak group SU{2)\ J x U{l)y following conditions are simultaneously satisfied: takes place when the m\ + m 2 > 2\ml\ m\m\ < m\ This occurs in the direction v v (H\) 7=cos(3 = v\, (Hi) j= sin/3 = v? v2 v2 2_ S(m\ - ml tan/?) r 4A/J " -(<7»+j«)(tan l /?-l) i = (7+7 2 )J ' s i n 2 0 = _*»!_ mj + mj Considering the various conditions, ir/4 < /? < TT/2. The crucial equation is for the squared Z -mass, M 2 _ 2(ro 2 - ml tan /?) ~ (ta 2 /?-l) z This allows us to express M as a function of the five parameters, ai = (fi,m,m,a,b) (i = 1,...,5), and of the top Yukawa coupling h t, that is, Ml = Mf(a,;A,). Keeping the Z -mass fixed at its physical value, we can avoid the fine tuning

7 among a; by requiring for every a;, I a, flmf(ai;m A The upper bounds for A = 10 on the masses of SUSY particles are shown in Ref. [8]. Their applications for the discovery limits at the future colliders are shown in Ref. [3] and Ref. [9]. 5. PAIR PRODUCTION Pair production of SUSY particles in e + e~ has been considered by many authors [1], The detailed analysis, however, has been performed recently by Bear el al. with various values for mixing angles and parameters of MSSM [10] Their calculations are for pair production at vs = 2 TeV, the energy proposed for CMC at CERN [7]. Thus we would not repeat these calculations in details, but we will have to start similar calculations for JLC in the energy range between 500 GeV and 2 TeV. For the purpose above, we give a catalogue on pair production of SUSY particles. Far from the Z pole, amplitudes of annihilation processes become smaller at TeV or sub-tev energies. Thus the large cross sections are expected only for the pair production of selectron, chargino and neutralino. The signal which will be first obtained is determined by the mass hierarchy of SUSY particles. When the next-to-lightest SUSY particle (NLSP) is not so heavier than LSP, clear signals are expected due to the direct decay, NLSP > LSP + (a light usual particle). CATALOGUE OF PAIR PRODUCTION Sleptons or squarks I. Selectron - LL(RR) L(R) e L(R) + e + '" e L(R) -191-

8 n. Selectron - LR(RL),-- e l.(r) oc M^o ^e R(L) HI. Charged slepton (or squark) tim 'L(R) W Z "\ r K k(r) (*" IV. Sneutrino >/ Ch argin os Neutralinos 6. ASSOCIATED PRODUCTION Associated production of SUSY particles with a usual particle becomes important when the beam energy is less than the mass of NLSP. There are several kinds of interesting one, which are considered by our study groups [11, , 14]

9 We know that two categories of associated production exist when the direct decay is the main decay mode: Type I. Single selectron [11, 12] The event topology is quite different than that of usual particle production. Thus the signal can be easily separated. Type H. Single W + SUSY particles [13, 14] There exist the production process of usual particles with similar event topology. Thus detailed studies are necessary on various distributions of the detectable particles. In both cases we have found that polarized e 1 information on the masses of SUSY particles. beams are useful to obtain the r- My= 100 GeV a, Mg [GeV] Fig. 4. The total cross section for the single selectron production at y/s = 2 TeV. Recently, we have proposed analytical cross section formulae for the single selectron production by using the equivalent photon approximation (EPA) and -193~

10 by keeping the mass of photino [11]. In TeV energy region, the one-photon exchange diagrams dominate, so the EPA works well. Furthermore, our formulae can be easily applied to the selectron production with the general neutralino, and to several processes of associated production. We show an example calculation based on our formulae as in Fig DISCUSSION We have surveyed a field of study on the search for SUSY particle within MSSM. We, however, have not yet mentioned one of the most crucial points. As shown in Ref. [15], there is another possibility in the decay of SUSY particles than the direct decay, i.e., the cascade decay. For example, the decays ofselectron are 'X (direct decay), e and (cascade decay) The missing transverse momentum JP? of the cascade decay is lower than that of the direct decay. Thus we need more detailed studies on various distributions of the detectable particles. ACKNOWLEDGEMENTS I am grateful to Dr. S. Kawabata for provide a good opportunity for me. I thank Dr. M. Peskin for discussions at RIFP in Kyoto and at KEK in Tsukuba. Special thanks are due to Dr. A. Bartl for appriciation of a copy of transparencies used in my talk, for hospitality during visit, to Institut fiir Theoretische Physik der Universitat Wien and for acceptance of our offer for him to present a talk at the JPS meeting held March in 1991 in Tokyo

11 REFERENCES [1] H.P. Nilles, Phys. Rep. 110 (1984), 1; H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985), 75. M. Chen, C. Dionisi, M. Martinez and X. Tata, Phys. Rep. 159 (1988), 201. [2] R. Barbieri, jr;v. Nuovo Cimento 11 (1988). [3] R. Barbieri ci a!., Z PHYSICS AT LEP 1, CERN Report CERN (1989) Vol. 2, p.121. [4] C. Dionisi, in Proceedings of XVII International Meeting on Fundamental Physics, PHYSICS AT LEP, Lekeitio, April 23-29, 1989, edited by M.A.- Benftez and M. Cerrada, (World Scientific, Singapore, 1990), p.71. [5] ALEPH Collaboration, D. Decamp ei a/., Phys. Lett. 244B (1990), 541. [6] DELPHI Collaboration, P. Abreu ei at., Phys. Lett. 247B (1990), 157. [7] Proceedings of the workshop on Physics at Future Accelerators, La Thuile and CERN, January 1987, edited by J.H. Mulvey, CERN Report CERN (1987); C. Aim ei til, SLAC-Report-329 (1988); Proceedings of the First Workshop on Japan Linear Collider (JLC), KEK, October 24-25, 1989, edited by S. Kawabata, KEK Report 90-2 (1990). [8] R. Barbieri and G. Giudice, Nucl. Phys. B296 (1988), 75; [9] T. Kon and M. Jimbo, in Proceedings of the First Workshop on Japan Linear Collider (JLC), KEK, October 24-25, 1989, edited by S. Kawabata, KEK Report 90-2 (1990), p.280. [10] II. Baer, A. Bart], D. Karatas, W. Majerotto and X. Tata, Preprint MAD/ PH/422 (1988). [11] M. Jimbo and M. Katuya, Preprint FHUP-90-1/SH-CSL (1990); in Proceedings of KEK Summer Institute on High Energy Phenomenology, KEK, August 21-25, 1990, edited by K. Hagiwara and K. Hikasa, KEK Report (to be published)

12 [12] M. Jimbo, Prog. Thcor. Phys. 79 (1988), 899, and references (.herein. [13] M. Jimbo, Evrophys. Lett. 11 (1990), 701; in Proceedings of the Third Meeting on Physics at TcV Energy Scale, KEK, September 28-30, 1989, edited by K. Hidaka and CS. Lim, KEK Report 90-9 (1990), p.129. [14] M. Jimbo, M. Aida and M. Koike, Preprint RUP-89-3 (1989) (to be revised). [15] D.L. Burke, in Proceedings of Summer Inslitute on Particle Physics, SUPERSYMMETRY, Stanford, July 29-AiiRust. 9, 1985, edited by E.G. Brennan, SLAC-Report-296 (1980), p.45; R.M. Barnet, ibid., p

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea Fig. from B. Greene, 00 Kaluza-Klein Theories - basic idea mued mass spectrum Figure 3.2: (Taken from [46]). The full spectrum of the UED model at the first KK level,

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC 15.01.2010 Marek Olechowski Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Early supersymmetry discovery potential of the LHC Phenomenology

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

Full electroweak one loop corrections to

Full electroweak one loop corrections to Full electroweak one loop corrections to f i fj Christian Weber, Helmut Eberl, and Walter Majerotto Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften A 1050 Vienna, Austria

More information

arxiv:hep-ph/ v1 15 Apr 1995

arxiv:hep-ph/ v1 15 Apr 1995 RUP-5-95 ITP-SU-95/01 arxiv:hep-ph/9504309v1 15 Apr 1995 Polarization Effects in Chargino Production at High Energy γγ Colliders Masayuki Koike Department of Physics, Rikkyo University, Tokyo 171, Japan

More information

Detecting Higgs Bosons within Supersymmetric Models

Detecting Higgs Bosons within Supersymmetric Models Detecting Higgs Bosons within Supersymmetric Models Yili Wang University of Oklahoma C. Kao and Y. Wang, Phys. Lett. B 635, 3 (26) 1 Outlook of the Talk MSSM has two Higgs doulets. After symmetry reaking,

More information

arxiv:hep-ph/ v1 4 Apr 1997

arxiv:hep-ph/ v1 4 Apr 1997 DO-TH 97/07 April 997 arxiv:hep-ph/9704232v 4 Apr 997 Dark matter constraints on the parameter space and particle spectra in the nonminimal SUSY standard model A. Stephan Universität Dortmund, Institut

More information

arxiv:hep-ph/ v2 23 Jan 1996

arxiv:hep-ph/ v2 23 Jan 1996 February 7, 2008 MIT-CTP-2464 hep-ph/9509212 Challenging weak-scale supersymmetry at colliders Greg W. Anderson and Diego J. Castaño arxiv:hep-ph/9509212v2 23 Jan 1996 Center for Theoretical Physics, Laboratory

More information

sin(2θ ) t 1 χ o o o

sin(2θ ) t 1 χ o o o Production of Supersymmetric Particles at High-Energy Colliders Tilman Plehn { Search for the MSSM { Production of Neutralinos/Charginos { Stop Mixing { Production of Stops { R Parity violating Squarks

More information

arxiv:hep-ph/ v1 23 Jun 1995

arxiv:hep-ph/ v1 23 Jun 1995 hep-ph/9506408 MPI-PhT/95-56 June 1995 SUPERSYMMETRY AT PRESENT AND FUTURE COLLIDERS Ralf Hempfling Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 Munich, Germany E-mail

More information

Supersymmetry and other theories of Dark Matter Candidates

Supersymmetry and other theories of Dark Matter Candidates Supersymmetry and other theories of Dark Matter Candidates Ellie Lockner 798G Presentation 3/1/07 798G 3/1/07 1 Overview Why bother with a new theory? Why is Supersymmetry a good solution? Basics of Supersymmetry

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia . Introduction to SUSY Giacomo Polesello INFN, Sezione di Pavia Why physics beyond the Standard Model? Gravity is not yet incorporated in the Standard Model Hierarchy/Naturalness problem Standard Model

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

Sneutrino dark matter and its LHC phenomenology

Sneutrino dark matter and its LHC phenomenology Sneutrino dark matter and its LHC phenomenology Chiara Arina Physics challenges in the face of LHC-14 workshop @ IFT 1 September 23 th 2014 Bolshoi simulation, NASA Sneutrino dark matter in the MSSM? Left-handed

More information

Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson

Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson Complementarity of the CERN LEP collider, the Fermilab Tevatron, and the CERN LHC in the search for a light MSSM Higgs boson M. Carena* Theory Division, CERN, 1211 Geneva 23, Switzerland S. Mrenna Physics

More information

SPYTHIA, A Supersymmetric Extension of PYTHIA 5.7 S. Mrenna 1. High Energy Physics Division Argonne National Laboratory Argonne, IL 60439

SPYTHIA, A Supersymmetric Extension of PYTHIA 5.7 S. Mrenna 1. High Energy Physics Division Argonne National Laboratory Argonne, IL 60439 ANL HEP PR 96 63 SPYTHIA, A Supersymmetric Extension of PYTHIA 5.7 S. Mrenna 1 High Energy Physics Division Argonne National Laboratory Argonne, IL 60439 Abstract SPYTHIA is an event level Monte Carlo

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Probing SUSY Contributions to Muon g-2 at LHC and ILC Probing SUSY Contributions to Muon g-2 at LHC and ILC Motoi Endo (Tokyo) Based on papers in collaborations with ME, Hamaguchi, Iwamoto, Yoshinaga ME, Hamaguchi, Kitahara, Yoshinaga ME, Hamaguchi, Iwamoto,

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Chapter 2 Theoretical Framework and Motivation

Chapter 2 Theoretical Framework and Motivation Chapter 2 Theoretical Framework and Motivation The Standard Model is currently the most precise theoretical framework to describe the sub-atomic particles and their behavior, and a large number of precision

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking Carlos E.M. Wagner EFI and KICP, University of Chicago HEP Division, Argonne National Lab. Work done in collaboration with

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

Discovery potential for SUGRA/SUSY at CMS

Discovery potential for SUGRA/SUSY at CMS Discovery potential for SUGRA/SUSY at CMS Stefano Villa, Université de Lausanne, April 14, 2003 (Based on talk given at SUGRA20, Boston, March 17-21, 2003) Many thanks to: Massimiliano Chiorboli, Filip

More information

Supersymmetry and a Candidate for Dark Matter

Supersymmetry and a Candidate for Dark Matter Supersymmetry and a Candidate for Dark Matter Elizabeth Lockner Department of Physics, University of Maryland College Park, MD 20742 April 20, 2007. The Standard Model has been a powerful tool in understanding

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

Searching for sneutrinos at the bottom of the MSSM spectrum

Searching for sneutrinos at the bottom of the MSSM spectrum Searching for sneutrinos at the bottom of the MSSM spectrum Arindam Chatterjee Harish-Chandra Research Insitute, Allahabad In collaboration with Narendra Sahu; Nabarun Chakraborty, Biswarup Mukhopadhyay

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

arxiv:hep-ph/ v1 15 Mar 1994

arxiv:hep-ph/ v1 15 Mar 1994 ITP-SU-94/01 March, 1994 Signatures of Scalar Top with R-parity Breaking Coupling at HERA arxiv:hep-ph/9403288v1 15 Mar 1994 Tadashi Kon Faculty of Engineering, Seikei University Tokyo, 180, Japan Tetsuro

More information

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09 The first year of the LHC and Theory G.G.Ross, Krakow, December 09 The LHC a discovery machine The gauge sector : new gauge bosons? The maber sector : new quarks and leptons? The scalar sector : the hierarchy

More information

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah

Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah Minimal Supersymmetric Standard Model (MSSM). Nausheen R. Shah June 8, 2003 1 Introduction Even though the Standard Model has had years of experimental success, it has been known for a long time that it

More information

Searches for Supersymmetry at ATLAS

Searches for Supersymmetry at ATLAS Searches for Supersymmetry at ATLAS Renaud Brunelière Uni. Freiburg On behalf of the ATLAS Collaboration pp b b X candidate 2 b-tagged jets pt 52 GeV and 96 GeV E T 205 GeV, M CT (bb) 20 GeV Searches for

More information

Lectures on Supersymmetry III

Lectures on Supersymmetry III Lectures on Supersymmetry III Carlos E.M. Wagner HEP Division, Argonne National Laboratory Enrico Fermi Institute, University of Chicago Ecole de Physique de Les Houches, France, August 2 5, 2005. PASI

More information

Whither SUSY? G. Ross, Birmingham, January 2013

Whither SUSY? G. Ross, Birmingham, January 2013 Whither SUSY? G. Ross, Birmingham, January 2013 whither Archaic or poetic adv 1. to what place? 2. to what end or purpose? conj to whatever place, purpose, etc. [Old English hwider, hwæder; related to

More information

Phenomenology of nonuniversal gaugino masses in supersymmetric grand unified theories

Phenomenology of nonuniversal gaugino masses in supersymmetric grand unified theories PHYSICAL REVIEW D 7, 3 () Phenomenology of nonuniversal gaugino masses in supersymmetric grand unified theories Katri Huitu,,, * Jari Laamanen,,, Pran N. Pandita, 3, and Sourov Roy,x High Energy Physics

More information

Positron Fraction from Dark Matter Annihilation in the CMSSM

Positron Fraction from Dark Matter Annihilation in the CMSSM Positron Fraction from Dark Matter Annihilation in the CMSSM W. de Boer a iekp]institut für Experimentelle Kernphysik, Universität Karlsruhe (TH), P.O. Box 6980, 7628 Karlsruhe, GermanyC. Sander b, M.Horn

More information

Searches for Physics Beyond the Standard Model at the Tevatron

Searches for Physics Beyond the Standard Model at the Tevatron FERMILAB-CONF-10-704-E-PPD Proceedings of the XXX. Physics in Collision Searches for Physics Beyond the Standard Model at the Tevatron Chris Hays 1 for the CDF and D0 Collaborations (1) Oxford University,

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

arxiv:hep-ph/ v1 20 Mar 2000

arxiv:hep-ph/ v1 20 Mar 2000 CERN-TH/2000-084 FERMILAB-Pub-00/013-T HIP-1999-76/TH KUNS-1650 arxiv:hep-ph/0003187v1 20 Mar 2000 RG-invariant Sum Rule in a Generalization of Anomaly Mediated SUSY Breaking Models Marcela Carena (a,b),

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Is SUSY still alive? Dmitri Kazakov JINR

Is SUSY still alive? Dmitri Kazakov JINR 2 1 0 2 The l o o h c S n a e p o r Eu y g r e n E h g i of H s c i s y PAnhjou, France 2 1 0 2 e n 6 19 Ju Is SUSY still alive? Dmitri Kazakov JINR 1 1 Why do we love SUSY? Unifying various spins SUSY

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

arxiv:hep-ph/ v2 6 Oct 1998

arxiv:hep-ph/ v2 6 Oct 1998 hep-ph/983426 HEPHY PUB 686 UWThPh 1998 8 arxiv:hep-ph/983426v2 6 Oct 1998 CP Violation in e + e t t: Energy Asymmetries and Optimal Observables of b and b Quarks A. Bartl Institut für Theoretische Physik,

More information

Dark Matter Searches and Fine-Tuning in Supersymmetry. Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011

Dark Matter Searches and Fine-Tuning in Supersymmetry. Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011 Dark Matter Searches and Fine-Tuning in Supersymmetry Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011 Bibliography Primary reference: MP, Shakya, arxiv:1107.5048 [hep-ph]

More information

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004 Searches at LEP Moriond Electroweak 2004 Ivo van Vulpen CERN On behalf of the LEP collaborations LEP and the LEP data LEP: e + e - collider at s m Z (LEP1) and s = 130-209 GeV (LEP2) Most results (95%

More information

Supersymmetry at the LHC

Supersymmetry at the LHC Supersymmetry at the LHC What is supersymmetry? Present data & SUSY SUSY at the LHC C. Balázs, L. Cooper, D. Carter, D. Kahawala C. Balázs, Monash U. Melbourne SUSY@LHC.nb Seattle, 23 Sep 2008 page 1/25

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

Split SUSY at LHC and a 100 TeV collider

Split SUSY at LHC and a 100 TeV collider Split SUSY at LHC and a 100 TeV collider Thomas Grégoire With Hugues Beauchesne and Kevin Earl 1503.03099 GGI - 2015 Status of Supersymmetry stop searches gluino searches m t & 700GeV m g & 1.4TeV What

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Search for Supersymmetry at LHC

Search for Supersymmetry at LHC Horváth Dezső: SUSY Search at LHC PBAR-11, Matsue, 2011.11.29 p. 1/40 Search for Supersymmetry at LHC PBAR-11, Matsue, 2011.11.29 Dezső Horváth KFKI Research Institute for Particle and Nuclear Physics,

More information

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM USING LEP DATA Elizabeth Locci SPP/DAPNIA Saclay Representing LEP Collaborations 1 Outline LEP performance Theoretical framework Search for neutral Higgs

More information

arxiv:hep-ph/ v1 11 Jan 2001

arxiv:hep-ph/ v1 11 Jan 2001 IFT/00-36 hep-ph/0101111 Phenomenology of the Chargino and Neutralino Systems arxiv:hep-ph/0101111v1 11 Jan 2001 J. Kalinowski Instytut Fizyki Teoretycznej, Uniwersytet arszawski Hoża 69, 00681 arsaw,

More information

General Gauge Mediation Phenomenology

General Gauge Mediation Phenomenology Pre-Strings 2011 @ NORDITA Stockholm May 30 th 2011 General Gauge Mediation Phenomenology Valya Khoze (IPPP Durham University) with Steve Abel, Matt Dolan, David Grellscheid, Joerg Jaeckel, Peter Richardson,

More information

Where is SUSY? Institut für Experimentelle Kernphysik

Where is SUSY?   Institut für Experimentelle Kernphysik Where is SUSY? Institut ür Experimentelle Kernphysik KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschat www.kit.edu I supersymmetric particles exist,

More information

Yukawa and Gauge-Yukawa Unification

Yukawa and Gauge-Yukawa Unification Miami 2010, Florida Bartol Research Institute Department Physics and Astronomy University of Delaware, USA in collaboration with Ilia Gogoladze, Rizwan Khalid, Shabbar Raza, Adeel Ajaib, Tong Li and Kai

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Whither SUSY? G. Ross, RAL, January 2013

Whither SUSY? G. Ross, RAL, January 2013 Whither SUSY? G. Ross, RAL, January 2013 whither Archaic or poetic adv 1. to what place? 2. to what end or purpose? conj to whatever place, purpose, etc. [Old English hwider, hwæder; related to Gothic

More information

Dark matter and IceCube neutrinos

Dark matter and IceCube neutrinos IL NUOVO CIMENTO 38 C (2015) 31 DOI 10.1393/ncc/i2015-15031-4 Colloquia: IFAE 2014 Dark matter and IceCube neutrinos R. Biondi Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L Aquila,

More information

arxiv:hep-ph/ v2 2 May 1997

arxiv:hep-ph/ v2 2 May 1997 PSEUDOSCALAR NEUTRAL HIGGS BOSON PRODUCTION IN POLARIZED γe COLLISIONS arxiv:hep-ph/961058v May 1997 M. SAVCI Physics Department, Middle East Technical University 06531 Ankara, Turkey Abstract We investigate

More information

CMS Search for Supersymmetry at the LHC

CMS Search for Supersymmetry at the LHC CMS Search for Supersymmetry at the LHC [Credits] Images of Baryon Acoustic Bscillations with Cosmic Microwave Background by E.M. Huff, the SDSS-III team, and the South Pole Telescope team. Graphic by

More information

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration arxiv:1712.10165v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration Institute of Experimental and Applied Physics, Czech Technical University in Prague, Czech Republic

More information

The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses

The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses 20/11/2013@ PASCOS 2013, Taipei Taiwan The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses Hajime Otsuka (Waseda University) with H. Abe and J. Kawamura PTEP 2013 (2013) 013B02, arxiv

More information

arxiv:hep-ex/ v1 30 Sep 1997

arxiv:hep-ex/ v1 30 Sep 1997 CMS CR 997/0 SEARCHES FOR SUSY AT LHC arxiv:hep-ex/970903v 30 Sep 997 For the CMS Collaboration Avtandyl Kharchilava Institute of Physics, Georgian Academy of Sciences, Tbilisi ABSTRACT One of the main

More information

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination University of Bonn Outlook: supersymmetry: overview and signal LHC and ATLAS invariant mass distribution

More information

Hunting for the top partner in the littlest Higgs model with T parity at the CERN LHC

Hunting for the top partner in the littlest Higgs model with T parity at the CERN LHC PHYSICAL REVIEW D 75, 556 (27) Hunting for the top partner in the littlest Higgs model with T parity at the CERN LHC Shigeki Matsumoto,* Mihoko M. Nojiri, and Daisuke Nomura Theory Group, KEK, 1-1 Oho,

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

SUSY Phenomenology a

SUSY Phenomenology a KEK-TH-606 November 1998 SUSY Phenomenology a Yasuhiro Okada KEK, Oho 1-1, Tsukuba, 305-0801 Japan Three topics on phenomenology in supersymmetric models are reviewed, namely, the Higgs sector in the supersymmetric

More information

Lectures on Supersymmetry I

Lectures on Supersymmetry I I Carlos E.M. Wagner HEP Division, Argonne National Laboratory Enrico Fermi Institute, University of Chicago Ecole de Physique de Les Houches, France, August 5, 005. PASI 006, Puerto Vallarta, Mexico,

More information

Revisiting gravitino dark matter in thermal leptogenesis

Revisiting gravitino dark matter in thermal leptogenesis Revisiting gravitino dark matter in thermal leptogenesis Motoo Suzuki Institute for Cosmic Ray Research (ICRR) The University of Tokyo arxiv:1609.06834 JHEP1702(2017)063 In collaboration with Masahiro

More information

Dark Matter Implications for SUSY

Dark Matter Implications for SUSY Dark Matter Implications for SUSY Sven Heinemeyer, IFCA (CSIC, Santander) Madrid, /. Introduction and motivation. The main idea 3. Some results 4. Future plans Sven Heinemeyer, First MultiDark workshop,

More information

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation SUSY2014 @ Manchester University arxiv:1405.0779 (to be appeared in JHEP ) Junichiro Kawamura and Hiroyuki Abe Waseda Univ,

More information

Abdelhak DJOUADI (LPT Orsay/Next Southampton)

Abdelhak DJOUADI (LPT Orsay/Next Southampton) SUSY@ILC Abdelhak DJOUADI (LPT Orsay/Next Southampton) 1. Probing SUSY 2. Precision SUSY measurements at the ILC 3. Determining the SUSY Lagrangian 4. Summary From the physics chapter of the ILC Reference

More information

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS Supersymmetry IV Hitoshi Murayama (Berkeley) PiTP 05, IAS Plan Mon: Non-technical Overview what SUSY is supposed to give us Tue: From formalism to the MSSM Global SUSY formalism, Feynman rules, soft SUSY

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

(Extra)Ordinary Gauge Mediation

(Extra)Ordinary Gauge Mediation (Extra)Ordinary Gauge Mediation David Shih IAS Based on: Clifford Cheung, Liam Fitzpatrick, DS, hep-ph/0710.3585 DS, hep-th/0703196 The LHC is coming... What will we see? The MSSM The MSSM is still the

More information

Szuperszimmetria keresése az LHC-nál

Szuperszimmetria keresése az LHC-nál Horváth Dezső: Szuperszimmetria keresése Debrecen, 2011.06.16 1. fólia p. 1/37 Szuperszimmetria keresése az LHC-nál ATOMKI-szeminárium, Debrecen, 2011.06.16 Horváth Dezső MTA KFKI RMKI, Budapest és MTA

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

Probing the Connection Between Supersymmetry and Dark Matter

Probing the Connection Between Supersymmetry and Dark Matter Probing the Connection Between Supersymmetry and Dark Matter Bhaskar Dutta Texas A&M University Physics Colloquium, OSU, March 30, 2006 March 30, 2006 Probing the Connection Between SUSY and Dark Matter

More information

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK & SUSY Direct Search at ILC Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK Contents The ILC has access to new physics via: Precision Higgs measurements Precision top measurements

More information

arxiv:hep-ph/ v1 31 May 1997

arxiv:hep-ph/ v1 31 May 1997 DESY 97-097 IFT 4/97 arxiv:hep-ph/9706203v1 31 May 1997 New Physics at HERA: Implications for e + e Scattering at LEP2 J. Kalinowski Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg and Institute

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Massive Doublet Leptons

Massive Doublet Leptons SLAC-PUB-7799 April 1998 Massive Doublet Leptons Scott Thomas a and James D. Wells b (a) Physics Department, Stanford University, Stanford, CA 94305 (b) Stanford Linear Accelerator Center, Stanford University,

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Spontaneous CP violation and Higgs spectra

Spontaneous CP violation and Higgs spectra PROCEEDINGS Spontaneous CP violation and Higgs spectra CERN-TH, CH-111 Geneva 3 E-mail: ulrich.nierste@cern.ch Abstract: A general theorem relating Higgs spectra to spontaneous CP phases is presented.

More information

The Constrained E 6 SSM

The Constrained E 6 SSM The Constrained E 6 SSM and its signatures at the LHC Work with Moretti and Nevzorov; Howl; Athron, Miller, Moretti, Nevzorov Related work: Demir, Kane, T.Wang; Langacker, Nelson; Morrissey, Wells; Bourjaily;

More information

Physics Beyond the Standard Model. Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare

Physics Beyond the Standard Model. Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare Physics Beyond the Standard Model Marina Cobal Fisica Sperimentale Nucleare e Sub-Nucleare Increasingly General Theories Grand Unified Theories of electroweak and strong interactions Supersymmetry

More information

Supersymmetry Basics. J. Hewett SSI J. Hewett

Supersymmetry Basics. J. Hewett SSI J. Hewett Supersymmetry Basics J. Hewett SSI 2012 J. Hewett Basic SUSY References A Supersymmetry Primer, Steve Martin hep-ph/9709356 Theory and Phenomenology of Sparticles, Manual Drees, Rohini Godbole, Probir

More information