Numerical simulation of polyurethane foaming processes on bubble scale

Size: px
Start display at page:

Download "Numerical simulation of polyurethane foaming processes on bubble scale"

Transcription

1 Numerical simulation of polyurethane foaming processes on bubble scale 7th OpenFOAM Workshop Darmstadt, June 2012 Stephanie Geier and Manfred Piesche Institute of Mechanical Process Engineering University of Stuttgart

2 Outline Motivation Foaming process Modeling approach Phase change modeling Bubble-bubble interaction Examples Conclusion and outlook Stephanie Geier 2

3 Motivation Polyurethane foaming process Mixing of polyol and isocyanate Foaming and mold filling due to reaction progress Local foam structure? Foam properties, e.g. thermal conductivity and impact strength depend on local foam structure Stephanie Geier 3

4 Foaming process Gelling reaction Increasing viscosity (urethane links) Blowing reaction Increasing viscosity (urea links) Density reduction - chemical blowing of the foam (CO 2 ) Evaporation of physical blowing agent Density reduction physical blowing of the foam (e.g. pentanes) Stephanie Geier 4

5 Modeling approach Assumptions and simplifications Foam is a two-phase system Gas bubbles Liquid reacting polymer phase Isothermal Gas and liquid phase are incompressible Constant viscosities Numerical approach Volume-of-fluid (VOF) based on solver interphasechangefoam Stephanie Geier 5

6 Modeling approach- Governing equations Continuity equation u = m g 1 ρ g 1 ρ l (1) Momentum balance ρu t + ρu u = p + ρg + μ u + ςκ α + f (2) Volume fraction balance α t + uα + u r α 1 α = m g ρ l (3) source terms describing phase change additional body forces Stephanie Geier 6

7 Modeling approach Phase change Phenomenological approach Density evolution known from mold filling simulations or experiments ρ foam ρ foam m g t 1 t 1 +Δt t Volumetric gas creation rate accounting for phase change m g = α m g V int Δt (4) V int - total volume of liquid in phase interface cells Stephanie Geier 7

8 Modeling approach Bubble-bubble interaction Repulsive forces between neighboring bubbles expressed through disjoining pressure π [1] π = k π d max d d < d max (5) 0 d d max Conversion to body force f π = π α (6) π π [1] C. Körner et al.: Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming. J. Stat. Phys., 121 (2005), Stephanie Geier 8

9 Modeling approach Determination of disjoining pressure α [1] marker [1] Volume fraction field Bubble marker field π [N/m²] Phase interface region (blue) and region of disjoining pressure (red) Stephanie Geier Disjoining pressure field in phase interface region 9

10 Examples Rising bubble Effect of disjoining pressure implementation No disjoining pressure t = 0 s t = 2,5 s t = 5 s t = 6,25 s t = 6,75 s t = 7 s t = 7,25 s t = 10 s Stephanie Geier 10

11 Examples Rising bubble Effect of disjoining pressure implementation Disjoining pressure included t = 0 s t = 2,5 s t = 5 s t = 6,25 s t = 6,75 s t = 7 s t = 7,25 s t = 10 s Stephanie Geier 11

12 Examples Bubbles in confined geometry ρ foam [kg/m³] Boundary and initial conditions: Solid walls: base and sides repulsive forces 53 bubbles randomly distributed Initial bubble diameter: 16 μm Foam density (from experiments) ,5 5 7,5 1012,51517,5 t [s] ρ g = 2 kg/m³ ρ l = 1100 kg/m³ ρ foam,init = 1095 kg/m³ Stephanie Geier 12

13 Examples Bubbles in confined geometry ρ foam [kg/m³] Bubbles growing in a confined geometry t = 0 s t = 2 s t = 4 s t = 6 s t = 8 s t = 10 s t = 12 s t = 14,25 s Stephanie Geier ,5 5 7, , ,5 t [s] experiment simulation 13

14 Examples Bubbles in confined geometry Deforming and rearranging bubbles t = 9 s t = 9,5 s t = 10 s t = 12 s t = 12,75 s t = 13,5 s t = 14,25 s Stephanie Geier 14

15 Conclusion and outlook Model for polyurethane foaming processes on bubble scale Phenomenological phase change model Bubble-bubble interaction u Work in progress: Foams with lower density Extension to time-varying polymer viscosity appropriate boundary conditions accounting for varying flow conditions during foaming process u Stephanie Geier 15

16 Numerical simulation of polyurethane foaming processes on bubble scale 7th OpenFOAM Workshop Darmstadt, June 2012 Stephanie Geier and Manfred Piesche Institute of Mechanical Process Engineering University of Stuttgart Thank you very much for your attention.

MODENA. Deliverable 3.2. WP s leader: TU/e. Simulations for foams, dispersion and mixing and developed SW. Principal investigator:

MODENA. Deliverable 3.2. WP s leader: TU/e. Simulations for foams, dispersion and mixing and developed SW. Principal investigator: Delivery date: 11-4-2015 MODENA Authors: Patrick Anderson, Martien Hulsen, Christos Mitrias TU/e E-mail : pda@tue.nl Deliverable 3.2 Simulations for foams, dispersion and mixing and developed SW Daniele

More information

MoDeNa. Deliverable D3.4 Tooling: Tool simulating the macroscopic properties of PU foams and compact TPU. Delivery date:

MoDeNa. Deliverable D3.4 Tooling: Tool simulating the macroscopic properties of PU foams and compact TPU. Delivery date: Delivery date: 31-08-2016 MoDeNa Authors: Patrick Anderson Javier Llorca Juraj Kosek Daniele Marchisio Christos Mitrias Pavel Ferkl Mohammad Marvi Mashadi Mohsen Karimi Deliverable D3.4 Tooling: Tool simulating

More information

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang,

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, yfwang09@stanford.edu 1. Problem setting In this project, we present a benchmark simulation for segmented flows, which contain

More information

Absorption of gas by a falling liquid film

Absorption of gas by a falling liquid film Absorption of gas by a falling liquid film Christoph Albert Dieter Bothe Mathematical Modeling and Analysis Center of Smart Interfaces/ IRTG 1529 Darmstadt University of Technology 4th Japanese-German

More information

MoDeNa. Deliverable D3.5 Validation: Model validation and realistic ways of controlling the foam morphology on macro-scale. Delivery date:

MoDeNa. Deliverable D3.5 Validation: Model validation and realistic ways of controlling the foam morphology on macro-scale. Delivery date: Delivery date: 31-08-2016 MoDeNa Authors: Patrick Anderson Javier Llorca Juraj Kosek Daniele Marchisio Christos Mitrias Pavel Ferkl Mohammad Marvi Mashadi Mohsen Karimi Deliverable D3.5 Validation: Model

More information

On Air Bubbles Sliding through a Thermal Boundary Layer

On Air Bubbles Sliding through a Thermal Boundary Layer On Air Bubbles Sliding through a Thermal Boundary Layer A comparative study of Predicions by OpenFoam and Fluent s VOF Schemes Dr Yan Delauré and Abdulaleem Albadawi School of Mechanical Engineering, Dublin

More information

Numerical modelling of phase change processes in clouds. Challenges and Approaches. Martin Reitzle Bernard Weigand

Numerical modelling of phase change processes in clouds. Challenges and Approaches. Martin Reitzle Bernard Weigand Institute of Aerospace Thermodynamics Numerical modelling of phase change processes in clouds Challenges and Approaches Martin Reitzle Bernard Weigand Introduction Institute of Aerospace Thermodynamics

More information

Height function interface reconstruction algorithm for the simulation of boiling flows

Height function interface reconstruction algorithm for the simulation of boiling flows Computational Methods in Multiphase Flow VI 69 Height function interface reconstruction algorithm for the simulation of boiling flows M. Magnini & B. Pulvirenti Dipartimento di Ingegneria Energetica, Nucleare

More information

Diffuse Interface Models for Metal Foams

Diffuse Interface Models for Metal Foams Diffuse Interface Models for Metal Foams B. Chinè 1,3, M. Monno 2,3, E. Reossi 3, M. Verani 3 1 Instituto Tecnològico de Costa Rica, Costa Rica; 2 Politecnico di Milano, Italy; 3 Laboratorio MUSP, Macchine

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

Direct Numerical Simulation of Single Bubble Rising in Viscous Stagnant Liquid

Direct Numerical Simulation of Single Bubble Rising in Viscous Stagnant Liquid Direct Numerical Simulation of Single Bubble Rising in Viscous Stagnant Liquid Nima. Samkhaniani, Azar. Ajami, Mohammad Hassan. Kayhani, Ali. Sarreshteh Dari Abstract In this paper, direct numerical simulation

More information

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach

Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach Numerical Simulation of Gas-Liquid-Reactors with Bubbly Flows using a Hybrid Multiphase-CFD Approach TFM Hybrid Interface Resolving Two-Fluid Model (HIRES-TFM) by Coupling of the Volume-of-Fluid (VOF)

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

Numerical simulation of wave breaking in turbulent two-phase Couette flow

Numerical simulation of wave breaking in turbulent two-phase Couette flow Center for Turbulence Research Annual Research Briefs 2012 171 Numerical simulation of wave breaking in turbulent two-phase Couette flow By D. Kim, A. Mani AND P. Moin 1. Motivation and objectives When

More information

Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and Boundary Condition

Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and Boundary Condition ILASS-Americas 25th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 23 Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and

More information

Reduction of parasitic currents in the DNS VOF code FS3D

Reduction of parasitic currents in the DNS VOF code FS3D M. Boger a J. Schlottke b C.-D. Munz a B. Weigand b Reduction of parasitic currents in the DNS VOF code FS3D Stuttgart, March 2010 a Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring

More information

Free energy concept Free energy approach LBM implementation Parameters

Free energy concept Free energy approach LBM implementation Parameters BINARY LIQUID MODEL A. Kuzmin J. Derksen Department of Chemical and Materials Engineering University of Alberta Canada August 22,2011 / LBM Workshop OUTLINE 1 FREE ENERGY CONCEPT 2 FREE ENERGY APPROACH

More information

Numerical simulations of drop impacts

Numerical simulations of drop impacts Numerical simulations of drop impacts Christophe Josserand Institut D Alembert, CNRS-UPMC L. Duchemin, Z. Jian, P. Ray and S. Zaleski Numerical simulations of drop impacts Christophe Josserand Institut

More information

Application of computational fluid dynamics on cavitation in journal bearings

Application of computational fluid dynamics on cavitation in journal bearings EPJ Web of Conferences 67, 02099 (2014) DOI: 10.1051/ epjconf/20146702099 C Owned by the authors, published by EDP Sciences, 2014 Application of computational fluid dynamics on cavitation in journal bearings

More information

Hybrid Atomistic-Continuum Methods for Dense Liquids

Hybrid Atomistic-Continuum Methods for Dense Liquids Hybrid Atomistic-Continuum Methods for Dense Liquids Matej Praprotnik Laboratory for Molecular Modeling National Institute of Chemistry Ljubljana Slovenia TUD Autumn School 2009, Darmstadt, September 24-25,

More information

Why Should We Be Interested in Hydrodynamics?

Why Should We Be Interested in Hydrodynamics? Why Should We Be Interested in Hydrodynamics? Li-Shi Luo Department of Mathematics and Statistics Center for Computational Sciences Old Dominion University, Norfolk, Virginia 23529, USA Email: lluo@odu.edu

More information

An OpenFOAM-based electro-hydrodynamical model

An OpenFOAM-based electro-hydrodynamical model An OpenFOAM-based electro-hydrodynamical model Ivo Roghair, Dirk van den Ende, Frieder Mugele Department of Science and Technology, University of Twente, Enschede, The Netherlands Keywords: modelling,

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

Simulation of floating bodies with lattice Boltzmann

Simulation of floating bodies with lattice Boltzmann Simulation of floating bodies with lattice Boltzmann by Simon Bogner, 17.11.2011, Lehrstuhl für Systemsimulation, Friedrich-Alexander Universität Erlangen 1 Simulation of floating bodies with lattice Boltzmann

More information

Simulation of evaporation and combustion of droplets using a VOF method

Simulation of evaporation and combustion of droplets using a VOF method Simulation of evaporation and combustion of droplets using a VOF method P. Keller, P.A. Nikrityuk, B. Meyer June 23, 2010 Motivation Mathematics Physics Validation & Test Cases Conclusions Motivation (1)

More information

Numerical Study of Laminar Annular Two-Phase Flow in Effervescent Atomizers

Numerical Study of Laminar Annular Two-Phase Flow in Effervescent Atomizers ILASS Americas 28th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI, May 2016 Numerical Study of Laminar Annular Two-Phase Flow in Effervescent Atomizers C.K. Mohapatra and M.A.

More information

FEM-Level Set Techniques for Multiphase Flow --- Some recent results

FEM-Level Set Techniques for Multiphase Flow --- Some recent results FEM-Level Set Techniques for Multiphase Flow --- Some recent results ENUMATH09, Uppsala Stefan Turek, Otto Mierka, Dmitri Kuzmin, Shuren Hysing Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.tu-dortmund.de/ls3

More information

FLOWS IN LIQUID FOAMS

FLOWS IN LIQUID FOAMS FLOWS IN LIQUID FOAMS A finite element approach A. SAUGEY, E. JANIAUD, W. DRENCKHAN, S. HUTZLER, D. WEAIRE Physics Department,, TRINITY COLLEGE DUBLIN Facing a problem of fluid flow in a physical system,

More information

Physical Modeling of Multiphase flow. Boltzmann method

Physical Modeling of Multiphase flow. Boltzmann method with lattice Boltzmann method Exa Corp., Burlington, MA, USA Feburary, 2011 Scope Scope Re-examine the non-ideal gas model in [Shan & Chen, Phys. Rev. E, (1993)] from the perspective of kinetic theory

More information

CFD-Simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment

CFD-Simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment CFD-Simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment M. Bornstein, H. Dutz, S. Goertz, S. Reeve, University of Bonn, Germany E-mail: runkel@physik.uni-bonn.de The polarized

More information

CCC Annual Report. UIUC, August 19, Argon Bubble Behavior in EMBr Field. Kai Jin. Department of Mechanical Science & Engineering

CCC Annual Report. UIUC, August 19, Argon Bubble Behavior in EMBr Field. Kai Jin. Department of Mechanical Science & Engineering CCC Annual Report UIUC, August 19, 2015 Argon Bubble Behavior in EMBr Field Kai Jin Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign Introduction Argon bubbles

More information

A Numerical Study of an Injection-Compression Molding Process by using a Moving Grid Bambang Arip Dwiyantoro

A Numerical Study of an Injection-Compression Molding Process by using a Moving Grid Bambang Arip Dwiyantoro Applied Mechanics and Materials Online: 2012-12-13 IN: 1662-7482, ols. 249-250, pp 472-476 doi:10.4028/www.scientific.net/amm.249-250.472 2013 Trans Tech Publications, witzerland A Numerical tudy of an

More information

Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi

Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi WHAT we will learn I. Characterization of Fluids - What is the fluid? (Physical properties of Fluid) II. Behavior of fluids - Fluid

More information

ELONGATIONAL VISCOSITY AND POLYMER FOAMING PROCESS. Αλέξανδρος Δ. Γκότσης Πολυτεχνείο Κρήτης Χανιά

ELONGATIONAL VISCOSITY AND POLYMER FOAMING PROCESS. Αλέξανδρος Δ. Γκότσης Πολυτεχνείο Κρήτης Χανιά 10 ΠΑΝΕΛΛΗΝΙΟ ΕΠΙΣΤΗΜΟΝΙΚΟ ΣΥΝΕΔΡΙΟ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ, ΠΑΤΡΑ, 4-6 ΙΟΥΝΙΟΥ, 2015. ELONGATIONAL VISCOSITY AND POLYMER FOAMING PROCESS Αλέξανδρος Δ. Γκότσης Πολυτεχνείο Κρήτης 73100 Χανιά ABSTRACT The manufacturing

More information

C-Therm TCi Principles of Operation Introduction

C-Therm TCi Principles of Operation Introduction Fax: (506) 454-70 C-Therm TCi Principles of Operation Introduction The third generation of the technology expands the capabilities of this rapid, non-destructive testing instrumentation originally developed

More information

Detailed numerical investigations of two-phase flow and transport. narrow channels. Dr.-Ing. Martin Wörner. Institut für Kern- und Energietechnik

Detailed numerical investigations of two-phase flow and transport. narrow channels. Dr.-Ing. Martin Wörner. Institut für Kern- und Energietechnik Detailed numerical investigations of two-phase flow and transport INSTITUT phenomena FÜR KERN- UND ENERGIETECHNIK in narrow channels Dr.-Ing. Martin Wörner Opening Workshop Helmholtz Research School Energy-Related

More information

EXTENDED FREE SURFACE FLOW MODEL BASED ON THE LATTICE BOLTZMANN APPROACH

EXTENDED FREE SURFACE FLOW MODEL BASED ON THE LATTICE BOLTZMANN APPROACH METALLURGY AND FOUNDRY ENGINEERING Vol. 36, 2010, No. 2 Micha³ Szucki*, Józef S. Suchy***, Pawe³ ak*, Janusz Lelito**, Beata Gracz* EXTENDED FREE SURFACE FLOW MODEL BASED ON THE LATTICE BOLTZMANN APPROACH

More information

Study fluid dynamics. Understanding Bernoulli s Equation.

Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that

More information

A Multi-Physics Study of the Wave Propagation Problem in Open Cell Polyurethane Foams

A Multi-Physics Study of the Wave Propagation Problem in Open Cell Polyurethane Foams A Multi-Physics Study of the Wave Propagation Problem in Open Cell Polyurethane Foams M. Brennan 1, M. Dossi 1, M. Moesen 1 1. Huntsman Polyurethanes, Everslaan 45, 3078 Everberg, Belgium. Abstract Flexible

More information

Detailed 3D modelling of mass transfer processes in two phase flows with dynamic interfaces

Detailed 3D modelling of mass transfer processes in two phase flows with dynamic interfaces Detailed 3D modelling of mass transfer processes in two phase flows with dynamic interfaces D. Darmana, N.G. Deen, J.A.M. Kuipers Fundamentals of Chemical Reaction Engineering, Faculty of Science and Technology,

More information

2. Modeling of shrinkage during first drying period

2. Modeling of shrinkage during first drying period 2. Modeling of shrinkage during first drying period In this chapter we propose and develop a mathematical model of to describe nonuniform shrinkage of porous medium during drying starting with several

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

Turbulence modulation by fully resolved particles using Immersed Boundary Methods

Turbulence modulation by fully resolved particles using Immersed Boundary Methods Turbulence modulation by fully resolved particles using Immersed Boundary Methods Abouelmagd Abdelsamie and Dominique Thévenin Lab. of Fluid Dynamics & Technical Flows University of Magdeburg Otto von

More information

Computer Fluid Dynamics E181107

Computer Fluid Dynamics E181107 Computer Fluid Dynamics E181107 2181106 Transport equations, Navier Stokes equations Remark: foils with black background could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav

More information

EXPERIMENTAL AND NUMERICAL STUDY ON THE MELTING BEHAVIOUR OF A PHASE CHANGE MATERIAL IN BUOYANCY DRIVEN FLOWS

EXPERIMENTAL AND NUMERICAL STUDY ON THE MELTING BEHAVIOUR OF A PHASE CHANGE MATERIAL IN BUOYANCY DRIVEN FLOWS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK EXPERIMENTAL AND NUMERICAL STUDY ON THE MELTING

More information

Catalisi e stabilizzazione di schiume PIR: recenti sviluppi

Catalisi e stabilizzazione di schiume PIR: recenti sviluppi Catalisi e stabilizzazione di schiume PIR: recenti sviluppi Milano, 25 Maggio 2017 Jobst Grimminger Andrea Stefani Introduction With high energy costs, increasing importance is being placed on insulation

More information

SIMULATION AIDED ANALYSIS AND EXPERIMENTAL STUDY OF POLYURETHANE POLYMERIZATION REACTION AND FOAMING PROCESS. A Dissertation.

SIMULATION AIDED ANALYSIS AND EXPERIMENTAL STUDY OF POLYURETHANE POLYMERIZATION REACTION AND FOAMING PROCESS. A Dissertation. SIMULATION AIDED ANALYSIS AND EXPERIMENTAL STUDY OF POLYURETHANE POLYMERIZATION REACTION AND FOAMING PROCESS A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia

More information

Ben Wolfe 11/3/14. Figure 1: Theoretical diagram showing the each step of heat loss.

Ben Wolfe 11/3/14. Figure 1: Theoretical diagram showing the each step of heat loss. Condenser Analysis Water Cooled Model: For this condenser design there will be a coil of stainless steel tubing suspended in a bath of cold water. The cold water will be stationary and begin at an ambient

More information

On the relation between lattice variables and physical quantities in lattice Boltzmann simulations

On the relation between lattice variables and physical quantities in lattice Boltzmann simulations On the relation between lattice variables and physical quantities in lattice Boltzmann simulations Michael Junk Dirk Kehrwald th July 6 Kaiserslautern, Germany CONTENTS Contents Initial situation Problem

More information

Numerical Simulation of Film Flow over an Inclined Plate: Effects of Solvent Properties and Contact Angle

Numerical Simulation of Film Flow over an Inclined Plate: Effects of Solvent Properties and Contact Angle Numerical Simulation of Film Flow over an Inclined Plate: Effects of Solvent Properties and Contact Angle Janine Carney and Rajesh Singh Multiphase Flow Science Workshop August 5-6, 214 Lakeview Golf Resort

More information

Numerical Simulation of Core- Annular Flow in a Curved Pipe

Numerical Simulation of Core- Annular Flow in a Curved Pipe Numerical Simulation of Core- Annular Flow in a Curved Pipe Simulation of two phase flow with OpenFOAM Report Number:2625(MEAH:277) Master of Science Thesis Process and Energy Numerical Simulation of

More information

, where the -function is equal to:

, where the -function is equal to: Paper ID ILASS08-000 ILASS08-9-4 ILASS 2008 Sep. 8-10, 2008, Como Lake, Italy BINARY COLLISION BETWEEN UNEQUAL SIZED DROPLETS. A NUMERICAL INVESTIGATION. N. Nikolopoulos 1, A. Theodorakakos 2 and G. Bergeles

More information

Conservation Laws of Surfactant Transport Equations

Conservation Laws of Surfactant Transport Equations Conservation Laws of Surfactant Transport Equations Alexei Cheviakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada Winter 2011 CMS Meeting Dec. 10, 2011 A. Cheviakov

More information

Seminar I. Simulations of evolving foams

Seminar I. Simulations of evolving foams Seminar I Simulations of evolving foams Author: Rok Geršak Advisor: prof. dr. Daniel Svenšek Ljubljana, 018 Abstract Bubbles and foams are objects seen in everyday life. Due to the processes, such as a

More information

VIRTUE / WP4 Delft Twisted Foil in steady flow Simulation with EOLE

VIRTUE / WP4 Delft Twisted Foil in steady flow Simulation with EOLE 6 th Framework Programme "Sustainable development, global change and ecosystems" Project No. 516201 / WP4 Delft Twisted Foil in steady flow Simulation with EOLE Workshop Oct. 17-18, 2007 R. Marcer Principia

More information

Numerical Simulation of a Bubble Rising in an Environment Consisting of Xanthan Gum

Numerical Simulation of a Bubble Rising in an Environment Consisting of Xanthan Gum Numerical Simulation of a Bubble Rising in an Environment Consisting of Xanthan Gum Víctor, A, Aguirre 1, Byron, A, Castillo 1 and Christian Narvaez-Muñoz 1 a) 1 Departamento de Ciencias de la Energía

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

Multi-scale simulation of droplet-droplet interaction and coalescence

Multi-scale simulation of droplet-droplet interaction and coalescence Multi-scale simulation of droplet-droplet interaction and coalescence Ndivhuwo M. Musehane a,b, Oliver F. Oxtoby a,, B. Daya Reddy b a Aeronautic Systems, Council for Scientific and Industrial Research,

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

3D spray simulation using advanced intra-droplet and interface modeling

3D spray simulation using advanced intra-droplet and interface modeling 3D spray simulation using advanced intra-droplet and interface modeling TU Darmstadt Mechanical Engineering Simulation of reactive Thermo-Fluid Systems Andrea Pati, Christian Hasse Agenda Introduction

More information

InterPACKICNMM

InterPACKICNMM Proceedings of ASME 2015 International Technical Conference and Exhibition & on Packaging and Integration of Electronic and Photonic Microsystems InterPACK2015 July 6-9, 2015, San Francisco, USA InterPACKICNMM2015-48129

More information

Effusivity is defined as the square root of the product of thermal conductivity, k, density,

Effusivity is defined as the square root of the product of thermal conductivity, k, density, Pg of 8 Mathis TCi Principles of Operation Introduction The third generation of Mathis technology expands the capabilities of this rapid, nondestructive testing instrument to a whole new level. Designed

More information

DEVELOPMENT OF AN EVAPORATION SUB-MODEL AND SIMULATION OF MULTIPLE DROPLET IMPINGEMENT IN VOLUME OF FLUID METHOD

DEVELOPMENT OF AN EVAPORATION SUB-MODEL AND SIMULATION OF MULTIPLE DROPLET IMPINGEMENT IN VOLUME OF FLUID METHOD Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2017 DEVELOPMENT OF AN EVAPORATION SUB-MODEL AND SIMULATION OF MULTIPLE DROPLET IMPINGEMENT

More information

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 17 Physics, 4 th Edition James S. Walker Chapter 17 Phases and Phase Changes Ideal Gases Kinetic Theory Units of Chapter 17 Solids and Elastic Deformation Phase Equilibrium and

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 1 - Introduction 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Modes of Heat Transfer Basic Heat Transfer Phenomena Conduction Convection

More information

8.1 Technically Feasible Design of a Heat Exchanger

8.1 Technically Feasible Design of a Heat Exchanger 328 Technically Feasible Design Case Studies T 2 q 2 ρ 2 C p2 T F q ρ C p T q ρ C p T 2F q 2 ρ 2 C p2 Figure 3.5. Countercurrent double-pipe exchanger. 8. Technically Feasible Design of a Heat Exchanger

More information

Film dynamics relevant to spray cooling

Film dynamics relevant to spray cooling Advanced Computational Methods and Experiments in Heat Transfer XI 313 Film dynamics relevant to spray cooling E. Gehring1, G. Soriano2, Y. P. Lin2, J. L. Alvarado2 & M. F. Trujillo1 1 2 University of

More information

A method to reduce load imbalances in simulations of phase change processes with FS3D

A method to reduce load imbalances in simulations of phase change processes with FS3D A method to reduce load imbalances in simulations of phase change processes with FS3D Johannes Müller Philipp Offenhäuser Martin Reitzle Workshop on Sustained Simulation Performance HLRS, Stuttgart, Germany

More information

Flow of fluids 1. Prof. Ferenc Bari. Department of Medical Physics and Informatics

Flow of fluids 1. Prof. Ferenc Bari. Department of Medical Physics and Informatics Flow of fluids 1 Prof Ferenc Bari Department of Medical Physics and Informatics 20 th October 2016 Prof Ferenc Bari (SZTE DMI) Flow of fluids 1 20 th October 2016 1 / 71 Contents 1 Overview 2 Gases Overview

More information

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future?

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future? Modeling Random Wet 2D Foams with Controlled Polydispersity Back to the Future? Andy Kraynik Sandia National Labs (retired) CEAS, University of Manchester University of Erlangen-Nuremberg Simon Cox Aberystwyth

More information

LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT BOUNDARY CONDITIONS

LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT BOUNDARY CONDITIONS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 5 June 28, Glasgow, UK LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT

More information

Exam in Fluid Mechanics SG2214

Exam in Fluid Mechanics SG2214 Exam in Fluid Mecanics G2214 Final exam for te course G2214 23/10 2008 Examiner: Anders Dalkild Te point value of eac question is given in parentesis and you need more tan 20 points to pass te course including

More information

Computer Fluid Dynamics E181107

Computer Fluid Dynamics E181107 Computer Fluid Dynamics E181107 2181106 Combustion, multiphase flows Remark: foils with black background could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav procesní a zpracovatelské

More information

Medical Imaging Injecting Mathematics into the Problem of Bubbly Blood. Sarah McBurnie Prof Jon Chapman OCIAM, University of Oxford

Medical Imaging Injecting Mathematics into the Problem of Bubbly Blood. Sarah McBurnie Prof Jon Chapman OCIAM, University of Oxford Medical Imaging Injecting Mathematics into the Problem of Bubbly Blood Sarah McBurnie Prof Jon Chapman OCIAM, University of Oxford Diagnostic Ultrasound http://www.polhemus.com/ 03/02/2009 2 Ultrasound

More information

HT Proceedings of HT2003 ASME Summer Heat Transfer Conference July 21-23, 2003, Las Vegas, Nevada, USA

HT Proceedings of HT2003 ASME Summer Heat Transfer Conference July 21-23, 2003, Las Vegas, Nevada, USA Proceedings of HT3 ASME Summer Heat Transfer Conference July 1-3, 3, Las Vegas, Nevada, USA HT 3-7 15 Numerical Simulation and Experimental Validation of the Dynamics of a Single Bubble during Pool Boiling

More information

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1 University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311 - Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based

More information

KEYNOTE PAPER LIQUID FILM THICKNESS IN MICRO CHANNEL SLUG FLOW

KEYNOTE PAPER LIQUID FILM THICKNESS IN MICRO CHANNEL SLUG FLOW Proceedings of of the the ASME Seventh 009 International 7th International ASME Conference on on Nanochannels, Microchannels and and Minichannels ICNMM009 June June -4, -4, 009, 009, Pohang, Pohang, South

More information

On the lattice Boltzmann method for multiphase flows

On the lattice Boltzmann method for multiphase flows Center for Turbulence Research Annual Research Briefs 2009 377 On the lattice Boltzmann method for multiphase flows By S. H. Kim AND H. Pitsch 1. Motivation and objectives The lattice Boltzmann (LB) method

More information

Mathematical Theory of Non-Newtonian Fluid

Mathematical Theory of Non-Newtonian Fluid Mathematical Theory of Non-Newtonian Fluid 1. Derivation of the Incompressible Fluid Dynamics 2. Existence of Non-Newtonian Flow and its Dynamics 3. Existence in the Domain with Boundary Hyeong Ohk Bae

More information

Boiling Heat Transfer and Two-Phase Flow Fall 2012 Rayleigh Bubble Dynamics. Derivation of Rayleigh and Rayleigh-Plesset Equations:

Boiling Heat Transfer and Two-Phase Flow Fall 2012 Rayleigh Bubble Dynamics. Derivation of Rayleigh and Rayleigh-Plesset Equations: Boiling Heat Transfer and Two-Phase Flow Fall 2012 Rayleigh Bubble Dynamics Derivation of Rayleigh and Rayleigh-Plesset Equations: Let us derive the Rayleigh-Plesset Equation as the Rayleigh equation can

More information

ACOUSTICS SIMULATION IN THE PRESENCE OF MOVING INTERFACES IN MULTIPHASE FLOWS

ACOUSTICS SIMULATION IN THE PRESENCE OF MOVING INTERFACES IN MULTIPHASE FLOWS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 11 15 June 18, Glasgow, UK ACOUSTICS SIMULATION IN THE PRESENCE OF MOVING INTERFACES

More information

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch

Transport equation cavitation models in an unstructured flow solver. Kilian Claramunt, Charles Hirsch Transport equation cavitation models in an unstructured flow solver Kilian Claramunt, Charles Hirsch SHF Conference on hydraulic machines and cavitation / air in water pipes June 5-6, 2013, Grenoble, France

More information

PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD

PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD Luís Orlando Emerich dos Santos emerich@lmpt.ufsc.br Carlos Enrique Pico Ortiz capico@lmpt.ufsc.br Henrique Cesar de Gaspari henrique@lmpt.ufsc.br

More information

Lattice Boltzmann approach to liquid - vapour separation

Lattice Boltzmann approach to liquid - vapour separation Lattice Boltzmann approach to liquid - vapour separation T.Biciușcă 1,2, A.Cristea 1, A.Lamura 3, G.Gonnella 4, V.Sofonea 1 1 Centre for Fundamental and Advanced Technical Research, Romanian Academy Bd.

More information

The lattice Boltzmann method for contact line dynamics

The lattice Boltzmann method for contact line dynamics The lattice Boltzmann method for contact line dynamics Sudhir Srivastava, J.H.M. ten Thije Boonkkamp, Federico Toschi April 13, 2011 Overview 1 Problem description 2 Huh and Scriven model 3 Lattice Boltzmann

More information

Rheology of Soft Materials. Rheology

Rheology of Soft Materials. Rheology Τ Thomas G. Mason Department of Chemistry and Biochemistry Department of Physics and Astronomy California NanoSystems Institute Τ γ 26 by Thomas G. Mason All rights reserved. γ (t) τ (t) γ τ Δt 2π t γ

More information

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henry Anglart Royal Institute of Technology, Department of Physics Division of Nuclear Reactor Technology Stocholm,

More information

Development of a consistent and conservative Eulerian - Eulerian algorithm for multiphase flows

Development of a consistent and conservative Eulerian - Eulerian algorithm for multiphase flows Development of a consistent and conservative Eulerian - Eulerian algorithm for multiphase flows Ana Cubero Alberto Sanchez-Insa Norberto Fueyo Numerical Fluid Dynamics Group University of Zaragoza Spain

More information

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference AJTEC2011 March 13-17, 2011, Honolulu, Hawaii, USA AJTEC2011-44190 LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Youngbae

More information

Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows

Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows Amir Eshghinejadfard, Abouelmagd Abdelsamie, Dominique Thévenin University of Magdeburg, Germany 14th Workshop on Two-Phase Flow Predictions

More information

Multiphase Flow and Heat Transfer

Multiphase Flow and Heat Transfer Multiphase Flow and Heat Transfer ME546 -Sudheer Siddapureddy sudheer@iitp.ac.in Two Phase Flow Reference: S. Mostafa Ghiaasiaan, Two-Phase Flow, Boiling and Condensation, Cambridge University Press. http://dx.doi.org/10.1017/cbo9780511619410

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information

A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati Abstract

More information

Description of reactingtwophaseeulerfoam solver with a focus on mass transfer modeling terms

Description of reactingtwophaseeulerfoam solver with a focus on mass transfer modeling terms Description of reactingtwophaseeulerfoam solver with a focus on mass transfer modeling terms Submitted by: Thummala Phanindra Prasad, Environmental Engineering Department, Anadolu University of Technology,

More information

Interfacial dynamics

Interfacial dynamics Interfacial dynamics Interfacial dynamics = dynamic processes at fluid interfaces upon their deformation Interfacial rheological properties: elasticity, viscosity, yield stress, Relation between macroscopic

More information

Generalization and Modelling of Rigid Polyisocyanurate Foam Reaction Kinetics, Structural Units Effect, and Cell Configuration Mechanism

Generalization and Modelling of Rigid Polyisocyanurate Foam Reaction Kinetics, Structural Units Effect, and Cell Configuration Mechanism Generalization and Modelling of Rigid Polyisocyanurate Foam Reaction Kinetics, Structural Units Effect, and Cell Configuration Mechanism Generalization and Modelling of Rigid Polyisocyanurate Foam Reaction

More information

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING

1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING 1D-3D COUPLED SIMULATION OF THE FUEL INJECTION INSIDE A HIGH PERFORMANCE ENGINE FOR MOTORSPORT APPLICATION: SPRAY TARGETING AND INJECTION TIMING M. Fiocco, D. Borghesi- Mahindra Racing S.P.A. Outline Introduction

More information