A Numerical Study of an Injection-Compression Molding Process by using a Moving Grid Bambang Arip Dwiyantoro

Size: px
Start display at page:

Download "A Numerical Study of an Injection-Compression Molding Process by using a Moving Grid Bambang Arip Dwiyantoro"

Transcription

1 Applied Mechanics and Materials Online: IN: , ols , pp doi: / Trans Tech Publications, witzerland A Numerical tudy of an Injection-Compression Molding Process by using a Moving Grid Bambang Arip Dwiyantoro Department of Mechanical Engineering, Institute of Technology epuluh Nopember, urabaya, Indonesia bambangads@me.its.ac.id Keywords: Numerical tudy, Injection-Compression Molding Process, Moving Grid Abstract. A numerical study for the simulation of melt in an injection-compression molding process by using moving grid is proposed in this paper. The fully three-dimensional Navier-tokes equations are solved together with the front transport equation using a front capturing approach. Different from previous studies, the proposed model can take the movement of cavity through a moving grid approach. The melt filling of a disk is conducted to illustrate the applications of the proposed numerical model with several computations under different processing conditions. The numerically predicted results show the influence of compression time or compression speed in determining the molding pressure and the melt temperature. Introduction Injection molding is one of the most important polymer processing operations. The injection-compression molding (ICM) process combines conventional injection molding process and compression molding process. ome related researches in the injection-compression molding can be found from Refs. [1,2]. Compared with injection molding, the injection-compression molding techniques have the following advantages including the decreasing molding pressure through cavity wall movement, reducing uneven shrinkage and birefringence, reducing density variation, and higher dimension accuracy. Kim et al. [3]studied a physical model and the numerical analysis of the injection compression molding process based on finite-difference method (FDM) for center-gated disk. They investigated the effect of the compression stage, flow rate, mold temperature, melt temperature, velocity of the mold on the density distribution and the birefringence of the injection-molded products. Chen et al. [4] studied the filling stage simulation of injection-compression molding (ICM) process by using Hele-haw fluid flow model and finite element method (FEM), and also compared with the conventional injection molding assuming the same entrance flow rate. They developed a numerical algorithm with an additional source term inserted in the continuity equation to account for the volumetric decrease of cavity of the injection-compression processes. In the present study, a numerical algorithm using a finite volume formation and grid movement is proposed to simulate the injection-compression molding process of disk with different processing conditions. Figure 1. Geometry of the disk part All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans Tech Publications, (ID: , Pennsylvania tate University, University Park, UA-17/05/16,18:55:42)

2 Applied Mechanics and Materials ols Mathematical Model and Numerical Method The governing equations describing the melt flow inside cavities during an injection molding process, i.e. the conservations of mass, momentum, energy and species, are expressed in the differential form as follows: ρ + ( ρu) ( ρh) ( ρu) = ( ρuu) = T+ ρg ( ρu h) = ( k T) + 2ηD : D (1) (2) (3) c + u. c=0 (4) where ρ, t, h, k, T, η, u, T, g, D and c denote the density, time, enthalpy, thermal conductivity, temperature, viscosity, velocity vector, stress tensor, gravitational acceleration, rate of strain tensor and volume fraction, respectively. The melt front is determined by solving the transport equation for volume fraction c. The value of volume fraction c complies with the following convection, c=1 for cells fully filled by air, c=0 for cells are fully filled by melt, and 0<c<1 for cells filled by both fluids. The stress tensor T and rate of strain tensor D are then given as follows: 2 T= 2 ηd η( u) I pi (5) 3 1 T D= u+ u (6) 2 ( ) where I and p denote the unit vector and pressure. To describe the rheological properties of polymer melt, the modified-cross model is adopted in the numerical scheme: η η0( T), = (7) 1 1+ ( T γ) * ( η γ/ τ ) n 0 Tb η 0( T) = Bexp (8) T where γ denotes the shear rate, η 0 the viscosity of zero shear rate, n, τ *, B, T b are parameters of material properties. To simulate the injection-compression molding process with more flexibility, a moving grid approach [5] is adopted in the study, where the computational domain will deform with time. In the filling process, there is no grid movement involved and therefore the grid face velocity is insignificant here. The deformation of melt cavity during the compression process will be exactly reflected by the grid movement at different time instances in the numerical simulations. Therefore, the velocity must be redefined as follows: u = u 0 u f (9) where u 0 represents the absolute flow velocity and u f represents the grid velocity defined at the face center of face f bounding a control volume. The differential form of governing equations can be expressed in the integral form over a control volume as follows: d + ρ( u 0 uf) d = ρ 0 (10)

3 474 Applied Mechanics and Mechanical Engineering III ρuu ( uf) d = ( T n) d+ ρud + 0 ρgd (11) hd + ρh( u 0 uf) d = k( T n) d+ 2η( D: D) ρ d (12) cd + c( 0 uf) d = u 0 (13) The numerical scheme used to solve these coupled governing equations is based on finite volume method [6]. Using the Picard iteration method, the generalized convective flux term C f at cell face f is approximated by equation: C ( n) = ρφ v d φf (14) f m f where m f the mass flux across the cell face f, φ f represents the generalized field variable at the cell face f. The diffusion terms is approximated by the central difference scheme with second-order accuracy [7].The generalized diffusive flux D f at cell face f is expressed as follows: D f = Γ n (15) ( φ ) d Γf φff where Γ f and f denote the generic diffusion coefficient and the area of cell face f. Finally, IMPLE algorithm [8] is adopted to calculate the velocity and pressure coupling. The melt filling of a disk part is chosen to illustrate the applications of proposed numerical model to fully three-dimensional injection-compression molding simulations. The geometry of the simulated disk part is given in Fig. 1, where diameter of disk part is 70 mm and thickness of disk part is 1.0 mm. Melt temperatures for Polystyrene resin is 240 C and mold temperature is 40 C. Table 1 summarizes the constants of employed Modifield-Cross model and related material properties for the injected melt. Filling times for full injection molding is 0.2 s. The melt was first injected for a specified period then the compression started. Used compression speeds are 10 mm/s. The melt filling of disk is simulated under several processing conditions, while a conventional injection molding case is also conducted for the purpose of comparison. Table 2 summarizes the employed processing parameters of all simulated case. Case A represents the conventional injection modeling case, while case B, C, D and E denote the simulated cases using injection-compression molding techniques. In the injection-compression molding cases, the melt is injected into the cavity with a constant opening in the depth direction during the injection phase. Then in the compression phase, the mold is closed within the given compression time. For all simulations, a multi-block structured grid system with approximately cells is used to discretize the cavity in the filling simulation. Table 1. Modified-cross model and material properties for Polystyrene ρ (kg/m3) 940 c p (J/kg.K) 2100 k (W/m.K) 0.18 n τ * (Pa) B (Pa-s) T b (K) 11680

4 Applied Mechanics and Materials ols Case Name Table 2. Parameters for simulated cases Injection Time (sec) Compression Time (sec) Results and discussions CIM ICM ICM ICM ICM Figure 2 shows the evolution of the melt front at different time instances in the injection molding process for the CIM case. In this case, the melt is injected into the cavity simultaneously with the closing of cavity wall. However, the melt still fails to purge the rest of air out of the cavity through the mold gap located at the mold outer boundary before the melt encloses all mold outer boundaries. Figure 3 depicts the locations of melt front at different melt filling percentages in the injection and compression phase for case ICM-2. In the compression phase, the movement of cavity wall clearly accelerates the melt. It leads to more uniform melt front velocity, and no trapped air in melt is expected. Figure 2. Melt front evolution of case CIM (a) Figure 3. Melt front evolution of case ICM-2 (a) in the injection phase. (b) in the compression phase (b)

5 476 Applied Mechanics and Mechanical Engineering III (a) Figure 4. (a) Predicted pressure profiles along injection and compression time. (b) Predicted temperature profile at different distance from inlet Figure 4(a) shows the pressure distribution at the end of the filling stage with different compression times. It was found that under higher compression time the process resulted in lower pressure distribution. The influence of compression time or compression speed in determining the molding pressure is important. Figure 4(b) shows the melt-temperature distribution within the cavity at different distances from the inlet. For the injection-compression molding, the compression time decreases with the increase of averaged melt temperature. Conclusion In this study, a numerical model using a finite volume formulation for three-dimensional simulations of melt filling in injection-compression molding processes by using a moving grid is proposed. At the fully three-dimensional methods, the full Navier-tokes equations are solved together with the front transport equation using a front capturing approach. In the compression phase, the movement of cavity wall clearly through a grid moving approach. Compression speed or compression time is one of factor that affects the molding pressure and the temperature of the melt. References [1]. C. Chen, Y. C. Chen, H.. Peng, imulation of injection-compression-molding process. II. Influence of process characteristics on part shrinkage, J. Applied Polymer ci. 75 (2000) [2] R. Y. Chang, W. Y. Chang, W. H. Yang, Three-dimensional simulation of injection-compression molding of a compact disc, ANTEC Conference Proceedings (2001), 1-5. [3] I. H. Kim,. J. Park,. T. Chung, T. H. Kwon, Numerical modeling of injection/compression molding for center-gated disk: Park II. Effect of compression stage, Polymer Engineering and cience 39 (1999) [4]. C. Chen, Y. C. Chen, N. T. Cheng, M.. Huang, imulation of injection-compression mold-filling process, Int. Comm. Heat Mass Transfer 25 (1998) [5]. W. Chau, Y. D. Lin, Three-dimensional simulation of injection-compression molding process, ANTEC Conference Proceedings (2007) [6]. W. Chau, Numerical investigation of free-stream rudder characteristics using a multi-block finite volume method, PhD Thesis, Universit at Hamburg, Hamburg, [7] M. Peri c, J. H. Ferziger, Computational Methods for Fluid Dynamics, pringer, Berlin, [8].. Pantankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, (b)

6 Applied Mechanics and Mechanical Engineering III / A Numerical tudy of an Injection-Compression Molding Process by Using a Moving Grid / DOI References [1]. C. Chen, Y. C. Chen, H.. Peng, imulation of injection-compression-molding process. II. Influence of process characteristics on part shrinkage, J. Applied Polymer ci. 75 (2000) /(ICI) ( )75:13<1640::AID-APP10>3.0.CO;2-L [4]. C. Chen, Y. C. Chen, N. T. Cheng, M.. Huang, imulation of injection-compression mold-filling process, Int. Comm. Heat Mass Transfer 25 (1998) / (98)

NUMERICAL SIMULATION AND MOLDABILITY INVESTIGATION OF MICRO-FEATURES

NUMERICAL SIMULATION AND MOLDABILITY INVESTIGATION OF MICRO-FEATURES NUMERICAL SIMULATION AND MOLDABILITY INVESTIGATION OF MICRO-FEATURES Shia-Chung Chen¹, ², Li-Chi Su¹, ², Cheng-Yi Chang³, Hsin-Wei Hung³ and Wen-Hsien Yang³ 1. Department of Mechanical Engineering, Chung

More information

Dynamic Behavior of Core-material Penetration in Multi-Cavity Co-Injection Molding

Dynamic Behavior of Core-material Penetration in Multi-Cavity Co-Injection Molding Dynamic Behavior of Core-material Penetration in Multi-Cavity Co-Injection Molding Jackie Yang 1, Chao-Tsai (CT) Huang 1, Hsien-Sen Chiu 1, Jimmy C.Chien 1, and Anthony Wen-Hsien Yang 2 1. CoreTech System

More information

Effect of cooling channels position on the shrinkage of plastic material during injection molding

Effect of cooling channels position on the shrinkage of plastic material during injection molding Effect of cooling channels position on the shrinkage of plastic material during injection molding Hamdy HASSAN, Nicolas REGNIER, Eric ARQUIS, Guy DEFAYE Laboratoire TREFLE-Bordeaux1-UMR 8508, site ENSCPB,

More information

OPTICAL PROPERTY INVESTIGATION IN SEQUENTIAL MULTI-COMPONENT MOLDING

OPTICAL PROPERTY INVESTIGATION IN SEQUENTIAL MULTI-COMPONENT MOLDING OPTICAL PROPERTY INVESTIGATION IN SEQUENTIAL MULTI-COMPONENT MOLDING Chao-Tsai Huang 1, Meng-Chih Chen 1, Yuan-Rong Chang 1, Wen-Li Yang 1, Shi-Chang Tseng 2,and Huang-Yi Chang 2, 1. CoreTech System (Moldex3D)

More information

Computer Fluid Dynamics E181107

Computer Fluid Dynamics E181107 Computer Fluid Dynamics E181107 2181106 Transport equations, Navier Stokes equations Remark: foils with black background could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav

More information

Computational Astrophysics

Computational Astrophysics Computational Astrophysics Lecture 1: Introduction to numerical methods Lecture 2:The SPH formulation Lecture 3: Construction of SPH smoothing functions Lecture 4: SPH for general dynamic flow Lecture

More information

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES Proceedings of the International Conference on Mechanical Engineering 2 (ICME2) 8-2 December 2, Dhaka, Bangladesh ICME-TH-6 FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is The Energy Balance Consider a volume enclosing a mass M and bounded by a surface δ. δ At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

Lecture 8: Tissue Mechanics

Lecture 8: Tissue Mechanics Computational Biology Group (CoBi), D-BSSE, ETHZ Lecture 8: Tissue Mechanics Prof Dagmar Iber, PhD DPhil MSc Computational Biology 2015/16 7. Mai 2016 2 / 57 Contents 1 Introduction to Elastic Materials

More information

International Communications in Heat and Mass Transfer 36 (2009) Contents lists available at ScienceDirect

International Communications in Heat and Mass Transfer 36 (2009) Contents lists available at ScienceDirect International Communications in Heat and Mass Transfer 36 (2009) 213 219 Contents lists available at ScienceDirect International Communications in Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ichmt

More information

Natural Convection from Horizontal Rectangular Fin Arrays within Perforated Chassis

Natural Convection from Horizontal Rectangular Fin Arrays within Perforated Chassis Proceedings of the 2 nd International Conference on Fluid Flow, Heat and Mass Transfer Ottawa, Ontario, Canada, April 30 May 1, 2015 Paper No. 146 Natural Convection from Horizontal Rectangular Fin Arrays

More information

Effect of Static Magnetic Field Application on the Mass Transfer in Sequence Slab Continuous Casting Process

Effect of Static Magnetic Field Application on the Mass Transfer in Sequence Slab Continuous Casting Process , pp. 844 850 Effect of Static Magnetic Field Application on the Mass Transfer in Sequence Slab Continuous Casting Process Baokuan LI and Fumitaka TSUKIHASHI 1) Department of Thermal Engineering, The School

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

The Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz

The Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz Solid State Phenomena Vol. 113 (2006) pp 603-608 Online available since 2006/Jun/15 at www.scientific.net (2006) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.113.603 The Mechatronics

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE v TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES v viii ix xii xiv CHAPTER 1 INTRODUCTION 1.1 Introduction 1 1.2 Literature Review

More information

Optimization of the nozzles structure in gas well

Optimization of the nozzles structure in gas well International Forum on Energy, Environment Science and Materials (IFEESM 2017) Optimization of the nozzles structure in gas well Zuwen WANG1, a, Shasha WANG2,b Yihua DOU3,c and Zhiguo WANG4,d 1 CNPC Chuanqing

More information

Fractal Characterization of Sealing Surface Topography and Leakage Model of Metallic Gaskets Xiu FENG a and Boqin GU b

Fractal Characterization of Sealing Surface Topography and Leakage Model of Metallic Gaskets Xiu FENG a and Boqin GU b Key Engineering Materials Online: 007-09-10 ISSN: 166-9795, Vols. 353-358, pp 977-980 doi:10.408/www.scientific.net/kem.353-358.977 007 Trans Tech Publications, Switzerland Fractal Characterization of

More information

Fluid Flow Modelling with Modelica

Fluid Flow Modelling with Modelica NE T E C H N I C A L N O T E Marco Bonvini 1*, Mirza Popovac 2 1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italia; 1 * bonvini@elet.polimi.it 2 Austrian

More information

Elmer :Heat transfert with phase change solid-solid in transient problem Application to silicon properties. SIF file : phasechange solid-solid

Elmer :Heat transfert with phase change solid-solid in transient problem Application to silicon properties. SIF file : phasechange solid-solid Elmer :Heat transfert with phase change solid-solid in transient problem Application to silicon properties 3 6 1. Tb=1750 [K] 2 & 5. q=-10000 [W/m²] 0,1 1 Ω1 4 Ω2 7 3 & 6. α=15 [W/(m²K)] Text=300 [K] 4.

More information

CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM EVAPORATOR

CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM EVAPORATOR Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

Calculations on a heated cylinder case

Calculations on a heated cylinder case Calculations on a heated cylinder case J. C. Uribe and D. Laurence 1 Introduction In order to evaluate the wall functions in version 1.3 of Code Saturne, a heated cylinder case has been chosen. The case

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Direct numerical simulation database for supercritical carbon dioxide

Direct numerical simulation database for supercritical carbon dioxide Direct numerical simulation database for supercritical carbon dioxide S. Pandey 1, X. Chu 2, E. Laurien 3 Emails: sandeep.pandey@ike.uni-stuttgart.de 1 xu.chu@itlr.uni-stuttgart.de 2 laurien@ike.unistuttgart.de

More information

3D Compression Molding

3D Compression Molding Autodesk Simulation Moldflow Insight 2014 3D Compression Molding Executive summary In this work, the simulation results from a program developed for the three-dimensional analysis of compression molding

More information

Final Polymer Processing

Final Polymer Processing 030319 Final Polymer Processing I) Blow molding is used to produce plastic bottles and a blow molding machine was seen during the Equistar tour. In blow molding a tubular parison is produced by extrusion

More information

Comparison of Base Shear Force Method in the Seismic Design Codes of China, America and Europe

Comparison of Base Shear Force Method in the Seismic Design Codes of China, America and Europe Applied Mechanics and Materials Vols. 66-69 (202) pp 2345-2352 Online available since 202/May/4 at www.scientific.net (202) Trans Tech Publications, Switzerland doi:0.4028/www.scientific.net/amm.66-69.2345

More information

The Simulation of Dropped Objects on the Offshore Structure Liping SUN 1,a, Gang MA 1,b, Chunyong NIE 2,c, Zihan WANG 1,d

The Simulation of Dropped Objects on the Offshore Structure Liping SUN 1,a, Gang MA 1,b, Chunyong NIE 2,c, Zihan WANG 1,d Advanced Materials Research Online: 2011-09-02 ISSN: 1662-8985, Vol. 339, pp 553-556 doi:10.4028/www.scientific.net/amr.339.553 2011 Trans Tech Publications, Switzerland The Simulation of Dropped Objects

More information

Polymer Injection Molding: Flow-induced Crystallization

Polymer Injection Molding: Flow-induced Crystallization Polymer Injection Molding: Flow-induced Crystallization A model for the description of the combined process of quiescent and flow-induced crystallization of polymers is presented. With such a model it

More information

Review of fluid dynamics

Review of fluid dynamics Chapter 2 Review of fluid dynamics 2.1 Preliminaries ome basic concepts: A fluid is a substance that deforms continuously under stress. A Material olume is a tagged region that moves with the fluid. Hence

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Modeling a Catalytic Converter in Comsol Multiphysics

Modeling a Catalytic Converter in Comsol Multiphysics Modeling a Catalytic Converter in Comsol Multiphysics By Jacob Harding December 10 th, 2007 Chem E 499 Problem The goal of this project was to develop a model of a catalytic converter in Comsol Multiphysics.

More information

RANS Equations in Curvilinear Coordinates

RANS Equations in Curvilinear Coordinates Appendix C RANS Equations in Curvilinear Coordinates To begin with, the Reynolds-averaged Navier-Stokes RANS equations are presented in the familiar vector and Cartesian tensor forms. Each term in the

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 963-972 963 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER by Jitesh RANA, Anshuman SILORI, Rajesh MAITHANI *, and

More information

Numerical modeling of a cutting torch

Numerical modeling of a cutting torch Journal of Physics: Conference Series OPEN ACCESS Numerical modeling of a cutting torch To cite this article: B R Mancinelli et al 2014 J. Phys.: Conf. Ser. 511 012071 View the article online for updates

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD International Journal of Thermal Technologies ISSN 2277-4114 213 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Research Article Numerical Analysis of a Helical Coiled

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

Numerical simulation of polyurethane foaming processes on bubble scale

Numerical simulation of polyurethane foaming processes on bubble scale Numerical simulation of polyurethane foaming processes on bubble scale 7th OpenFOAM Workshop Darmstadt, 25-28 June 2012 Stephanie Geier and Manfred Piesche Institute of Mechanical Process Engineering University

More information

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 5, May 2018, pp. 717 724, Article ID: IJMET_09_05_079 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=5

More information

CFD Simulation of Internal Flowfield of Dual-mode Scramjet

CFD Simulation of Internal Flowfield of Dual-mode Scramjet CFD Simulation of Internal Flowfield of Dual-mode Scramjet C. Butcher, K. Yu Department of Aerospace Engineering, University of Maryland, College Park, MD, USA Abstract: The internal flowfield of a hypersonic

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. MEK4300/9300 Viscous flow og turbulence

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. MEK4300/9300 Viscous flow og turbulence UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: Day of examination: Friday 15. June 212 Examination hours: 9. 13. This problem set consists of 5 pages. Appendices: Permitted

More information

CFD Analysis of Micro-Ramps for Hypersonic Flows Mogrekar Ashish 1, a, Sivakumar, R. 2, b

CFD Analysis of Micro-Ramps for Hypersonic Flows Mogrekar Ashish 1, a, Sivakumar, R. 2, b Applied Mechanics and Materials Submitted: 2014-04-25 ISSN: 1662-7482, Vols. 592-594, pp 1962-1966 Revised: 2014-05-07 doi:10.4028/www.scientific.net/amm.592-594.1962 Accepted: 2014-05-16 2014 Trans Tech

More information

NUMERICAL STUDY OF MELTING OF TIN WITHIN A RECTANGULAR CAVITY INCLUDING CONVECTIVE EFFECTS

NUMERICAL STUDY OF MELTING OF TIN WITHIN A RECTANGULAR CAVITY INCLUDING CONVECTIVE EFFECTS NUMERICAL STUDY OF MELTING OF TIN WITHIN A RECTANGULAR CAVITY INCLUDING CONVECTIVE EFFECTS Christiano Garcia da Silva Santim, chrisoff22@yahoo.com.br Luiz Fernando Milanez, milanez@fem.unicamp.br Universidade

More information

Performance evaluation of different model mixers by numerical simulation

Performance evaluation of different model mixers by numerical simulation Journal of Food Engineering 71 (2005) 295 303 www.elsevier.com/locate/jfoodeng Performance evaluation of different model mixers by numerical simulation Chenxu Yu, Sundaram Gunasekaran * Food and Bioprocess

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Study of the Spinning Mechanism Resulting from Permanent Magnet Linear Actuation

Study of the Spinning Mechanism Resulting from Permanent Magnet Linear Actuation Materials cience Forum Online: 21264 I: 16629752, Vol. 721, pp 25526 doi:1.428/www.scientific.net/mf.721.255 212 Trans Tech Publications, witzerland tudy of the pinning Mechanism Resulting from Linear

More information

Basic concepts in viscous flow

Basic concepts in viscous flow Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Adapted from Chapter 1 of Cambridge Texts in Applied Mathematics 1 The fluid dynamic equations Navier-Stokes equations Dimensionless

More information

Corrections to flow data in polymer melts

Corrections to flow data in polymer melts Corrections to flow data in polymer melts Narongrit Sombatsompop Polymer PROcessing and Flow (P-PROF) Materials Technology, School of Energy & Materials King Mongkut s University of Technology Thonburi

More information

CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION

CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 6-8 December 1999 CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION

More information

INVESTIGATION ON WARPAGE AND ITS BEHAVIOR IN SEQUENTIAL OVERMOLDING

INVESTIGATION ON WARPAGE AND ITS BEHAVIOR IN SEQUENTIAL OVERMOLDING INVESTIGATION ON WARPAGE AND ITS BEHAVIOR IN SEQUENTIAL OVERMOLDING Chao-Tsai Huang 1, Meng-Chih Chen 1, Wen-Li Yang 1, Kai-Jie Chang 2, and Shi-Chang Tseng 2 1. CoreTech System Co., Ltd., Hsinchu, Taiwan.

More information

The effect of Entry Region on Thermal Field

The effect of Entry Region on Thermal Field The effect of Entry Region on Thermal Field Flow Fractionation Nick Cox Supervised by Professor Bruce Finlayson University of Washington Department of Chemical Engineering June 6, 2007 Abstract Achieving

More information

CFD Analysis of Mixing in Polymerization Reactor. By Haresh Patel Supervisors: Dr. R. Dhib & Dr. F. Ein-Mozaffari IPR 2007

CFD Analysis of Mixing in Polymerization Reactor. By Haresh Patel Supervisors: Dr. R. Dhib & Dr. F. Ein-Mozaffari IPR 2007 CFD Analysis of Mixing in Polymerization Reactor By Haresh Patel Supervisors: Dr. R. Dhib & Dr. F. Ein-Mozaffari Introduction Model development Simulation Outline Model Setup for Fluent Results and discussion

More information

Material Testing Overview (THERMOPLASTICS)

Material Testing Overview (THERMOPLASTICS) Material Testing Overview (THERMOPLASTICS) Table of Contents Thermal Conductivity... 3 Specific Heat... 4 Transition Temperature and Ejection Temperature... 5 Shear Viscosity... 7 Pressure-Volume-Temperature

More information

CFD-Simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment

CFD-Simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment CFD-Simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment M. Bornstein, H. Dutz, S. Goertz, S. Reeve, University of Bonn, Germany E-mail: runkel@physik.uni-bonn.de The polarized

More information

Automatic optimization of the cooling of injection mold based on the boundary element method

Automatic optimization of the cooling of injection mold based on the boundary element method Automatic optimization of the cooling of injection mold based on the boundary element method E. Mathey, L. Penazzi, F.M. Schmidt and F. Rondé-Oustau Research Center on Tools, Materials and Forming Processes,

More information

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics For Friday, October 26 th Start reading the handout entitled Notes on finite-volume methods. Review Chapter 7 on Dimensional Analysis

More information

Wall-Slip of Highly Filled Powder Injection Molding Compounds: Effect of Flow Channel Geometry and Roughness

Wall-Slip of Highly Filled Powder Injection Molding Compounds: Effect of Flow Channel Geometry and Roughness Wall-Slip of Highly Filled Powder Injection Molding Compounds: Effect of Flow Channel Geometry and Roughness Berenika Hausnerovaa,b, Daniel Sanetrnika,b, Gordana Paravanovab a Dept. of Production Engineering,

More information

LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT BOUNDARY CONDITIONS

LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT BOUNDARY CONDITIONS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 5 June 28, Glasgow, UK LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is.

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is. The Energy Balance Consider a volume Ω enclosing a mass M and bounded by a surface δω. δω At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Numerical modeling of magnetic induction and heating in injection molding tools

Numerical modeling of magnetic induction and heating in injection molding tools Downloaded from orbit.dtu.dk on: Apr 6, 08 Numerical modeling of magnetic induction and heating in injection molding tools Guerrier, Patrick; Hattel, Jesper Henri Published in: Proceedings of International

More information

Parabolic Flow in Parallel Plate Channel ME 412 Project 4

Parabolic Flow in Parallel Plate Channel ME 412 Project 4 Parabolic Flow in Parallel Plate Channel ME 412 Project 4 Jingwei Zhu April 12, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of this project is to develop and apply a computer

More information

Modelling Turbulent Heat Transfer in a Natural Convection Flow

Modelling Turbulent Heat Transfer in a Natural Convection Flow Journal of Applied Mathematics and Physics, 2014, 2, 662-670 Published Online June 2014 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2014.27073 Modelling Turbulent Heat Transfer

More information

The effect of natural convection on solidification in tall tapered feeders

The effect of natural convection on solidification in tall tapered feeders ANZIAM J. 44 (E) ppc496 C511, 2003 C496 The effect of natural convection on solidification in tall tapered feeders C. H. Li D. R. Jenkins (Received 30 September 2002) Abstract Tall tapered feeders (ttfs)

More information

SIMULATIVE EVALUATION OF THE TEMPERATURE INFLUENCE ON DIFFERENT TYPES OF PRE-DISTRIBUTORS IN SPIRAL MANDREL DIES

SIMULATIVE EVALUATION OF THE TEMPERATURE INFLUENCE ON DIFFERENT TYPES OF PRE-DISTRIBUTORS IN SPIRAL MANDREL DIES SIMULATIVE EVALUATION OF THE TEMPERATURE INFLUENCE ON DIFFERENT TYPES OF PRE-DISTRIBUTORS IN SPIRAL MANDREL DIES Christian Hopmann and Nafi Yesildag, Institute of Plastics Processing (IKV) at RWTH Aachen

More information

Tutorial for the supercritical pressure pipe with STAR-CCM+

Tutorial for the supercritical pressure pipe with STAR-CCM+ Tutorial for the supercritical pressure pipe with STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities with

More information

MATHEMATICAL MODELING OF A COMBINED HOT-WATER HEATING SYSTEM BY MEANS OF THE FINITE ELEMENT METHOD

MATHEMATICAL MODELING OF A COMBINED HOT-WATER HEATING SYSTEM BY MEANS OF THE FINITE ELEMENT METHOD 2005/2 PAGES 15 19 RECEIVED 21. 2. 2005 ACCEPTED 18. 4. 2005 J. LOVÁS, K. MIKULA MATHEMATICAL MODELING OF A COMBINED HOT-WATER HEATING SYSTEM BY MEANS OF THE FINITE ELEMENT METHOD ABSTRACT Ing. Jozef Lovás

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities

More information

CASE MF Report of pipe connector

CASE MF Report of pipe connector Moldflow Analysis Report CASE MF Report of pipe connector Page 1 ANALYSIS AIMS To analysis original design, and check flow,cooling,and warpage. Page 2 PA66 Ultramid A3K : BASF Moldflow Analysis Report

More information

INVESTIGATION ON EFFECT OF SOME OPERATING CONDITIONS ON FLOW AND HEAT TRANSFER OF SUPERCRITICAL CO2 IN HELICAL COILED TUBES

INVESTIGATION ON EFFECT OF SOME OPERATING CONDITIONS ON FLOW AND HEAT TRANSFER OF SUPERCRITICAL CO2 IN HELICAL COILED TUBES MJIT 2017 Malaysian Journal of Industrial Technology INVESTIGATION ON EFFECT OF SOME OPERATING CONDITIONS ON FLOW AND HEAT TRANSFER OF SUPERCRITICAL CO2 IN HELICAL COILED TUBES VIA MULTILEVEL FACTORIAL

More information

2009 Best Paper Understanding and Quantification of Die Drool Phenomenon During Polypropylene Extrusion Process

2009 Best Paper Understanding and Quantification of Die Drool Phenomenon During Polypropylene Extrusion Process 2009 Best Paper Understanding and Quantification of Die Drool Phenomenon During Polypropylene Extrusion Process Print (10)» 2010 Best Paper An Engineering Approach to the Correction of Rotational Flow

More information

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston Using Comsol Multiphysics to Model Viscoelastic Fluid Flow Bruce A. Finlayson, Professor Emeritus Department of Chemical Engineering University of Washington, Seattle, WA 98195-1750 finlayson@cheme.washington.edu

More information

LAMINAR FORCED CONVECTION HEAT TRANSFER IN HELICAL COILED TUBE HEAT EXCHANGERS

LAMINAR FORCED CONVECTION HEAT TRANSFER IN HELICAL COILED TUBE HEAT EXCHANGERS LAMINAR FORCED CONVECTION HEAT TRANSFER IN HELICAL COILED TUBE HEAT EXCHANGERS Hesam Mirgolbabaei ia, Hessam Taherian b a Khajenasir University of Technology, Department of Mechanical Engineering, Tehran,

More information

PROPOSAL OF HEAT EXCHANGER IN MICRO COGENERATION UNIT, CONFIGURATION WITH BIOMASS COMBUSTION. Jozef HUŽVÁR, Patrik NEMEC

PROPOSAL OF HEAT EXCHANGER IN MICRO COGENERATION UNIT, CONFIGURATION WITH BIOMASS COMBUSTION. Jozef HUŽVÁR, Patrik NEMEC PROPOSAL OF HEAT EXCHANGER IN MICRO COGENERATION UNIT, CONFIGURATION WITH BIOMASS COMBUSTION Jozef HUŽVÁR, Patri NEMEC Authors: Worplace: Jozef Hužvár, MSc. Eng. Patri Nemec, MSc. Eng. Faculty of Mechanical

More information

Physical Diffusion Cures the Carbuncle Phenomenon

Physical Diffusion Cures the Carbuncle Phenomenon Physical Diffusion Cures the Carbuncle Phenomenon J. M. Powers 1, J. Bruns 1, A. Jemcov 1 1 Department of Aerospace and Mechanical Engineering University of Notre Dame, USA Fifty-Third AIAA Aerospace Sciences

More information

Numerical simulation of steady and unsteady flow for generalized Newtonian fluids

Numerical simulation of steady and unsteady flow for generalized Newtonian fluids Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical simulation of steady and unsteady flow for generalized Newtonian fluids To cite this article: Radka Keslerová et al 2016 J. Phys.: Conf.

More information

Study on the application of rigid body dynamics in the traffic accident reconstruction. Ming Ni

Study on the application of rigid body dynamics in the traffic accident reconstruction. Ming Ni Applied Mechanics and Materials Submitted: 2014-10-25 ISSN: 1662-7482, Vol. 707, pp 412-416 Revised: 2014-11-01 doi:10.4028/www.scientific.net/amm.707.412 Accepted: 2014-11-01 2015 Trans Tech Publications,

More information

Theoretical Calculation and Experimental Study On Sung Torque And Angle For The Injector Clamp Tightening Bolt Of Engine

Theoretical Calculation and Experimental Study On Sung Torque And Angle For The Injector Clamp Tightening Bolt Of Engine Applied Mechanics and Materials Online: 201-08-08 ISSN: 1662-7482, Vols. 51-52, pp 1284-1288 doi:10.4028/www.scientific.net/amm.51-52.1284 201 Trans Tech Publications, Switzerland Theoretical Calculation

More information

ABSTRACT. Keywords: Birefringence, injection molding, simulation, plastic, viscoelasticity, residual stress, prediction, finite element

ABSTRACT. Keywords: Birefringence, injection molding, simulation, plastic, viscoelasticity, residual stress, prediction, finite element Prediction of Birefringence in Plastic Moldings Alexander Bakharev*, Chris Friedl, Franco S. Costa and Peter K. Kennedy Moldflow, 259-261 Colchester Rd Kilsyth, Victoria 3137 Australia ABSTRACT This article

More information

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i Turbulence Modeling Cuong Nguyen November 05, 2005 1 Incompressible Case 1.1 Reynolds-averaged Navier-Stokes equations The incompressible Navier-Stokes equations in conservation form are u i x i = 0 (1)

More information

Investigation of CNT Growth Regimes in a Tubular CVD Reactor Considering Growth Temperature

Investigation of CNT Growth Regimes in a Tubular CVD Reactor Considering Growth Temperature ICHMT2014-XXXX Investigation of CNT Growth Regimes in a Tubular CVD Reactor Considering Growth Temperature B. Zahed 1, T. Fanaei Sheikholeslami 2,*, A. Behzadmehr 3, H. Atashi 4 1 PhD Student, Mechanical

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING

DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING DIRECT NUMERICAL SIMULATION OF SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER FOR SKIN FRICTION DRAG REDUCTION BY WALL SURFACE-HEATING OR COOLING Yukinori Kametani Department of mechanical engineering Keio

More information

A Phenomenological Model for Linear Viscoelasticity of Monodisperse Linear Polymers

A Phenomenological Model for Linear Viscoelasticity of Monodisperse Linear Polymers Macromolecular Research, Vol. 10, No. 5, pp 266-272 (2002) A Phenomenological Model for Linear Viscoelasticity of Monodisperse Linear Polymers Kwang Soo Cho*, Woo Sik Kim, Dong-ho Lee, Lee Soon Park, Kyung

More information

Simulation of unsteady muzzle flow of a small-caliber gun

Simulation of unsteady muzzle flow of a small-caliber gun Advances in Fluid Mechanics VI 165 Simulation of unsteady muzzle flow of a small-caliber gun Y. Dayan & D. Touati Department of Computational Mechanics & Ballistics, IMI, Ammunition Group, Israel Abstract

More information

TEMPERATURE INVESTIGATION IN REAL HOT RUNNER SYSTEM USING A TRUE 3D NUMERICAL METHOD

TEMPERATURE INVESTIGATION IN REAL HOT RUNNER SYSTEM USING A TRUE 3D NUMERICAL METHOD TEMPERATURE INVESTIGATION IN REAL HOT RUNNER SYSTEM USING A TRUE 3D NUMERICAL METHOD Tzu-Chau Chen 1, Yan-Chen Chiu 1, Marvin Wang 1, Chao-Tsai Huang 1, Cheng-Li Hsu 2, Chen-Yang Lin 2, Lung-Wen Kao 2

More information

A multiscale framework for lubrication analysis of bearings with textured surface

A multiscale framework for lubrication analysis of bearings with textured surface A multiscale framework for lubrication analysis of bearings with textured surface *Leiming Gao 1), Gregory de Boer 2) and Rob Hewson 3) 1), 3) Aeronautics Department, Imperial College London, London, SW7

More information

NUMERICAL ANALYSIS OF THE HEAT TRANSFER IN THE WALL OF ROTARY KILN USING FINITE ELEMENT METHOD ANSYS

NUMERICAL ANALYSIS OF THE HEAT TRANSFER IN THE WALL OF ROTARY KILN USING FINITE ELEMENT METHOD ANSYS eventh International Conference on CFD in the Minerals and Process Industries CIRO, Melbourne, Australia 9-11 December 009 NUMERICA ANAYI OF THE HEAT TRANFER IN THE WA OF ROTARY KIN UIN FINITE EEMENT METHOD

More information

Investigation of the numerical analysis for the ultrasonic vibration in the injection molding

Investigation of the numerical analysis for the ultrasonic vibration in the injection molding Korea-Australia Rheology Journal Vol. 21, No. 1, March 2009 pp. 17-25 Investigation of the numerical analysis for the ultrasonic vibration in the inection molding Jaeyeol Lee and Naksoo Kim* Department

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

Institute of Solid State Physics of RAS, Chernogolovka, Moscow district, , Russia

Institute of Solid State Physics of RAS, Chernogolovka, Moscow district, , Russia Cryst. Res. Technol. 4, No. 4, 35 33 (7) / DOI./crat.683 Mathematical modeling of the multi-run process of crystal pulling from the melt by EFG (Stepanov) technique in dependence on the angle of inclination

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

Analysis of flow characteristics of a cam rotor pump

Analysis of flow characteristics of a cam rotor pump IOP Conference Series: Materials Science and Engineering OPEN ACCESS Analysis of flow characteristics of a cam rotor pump To cite this article: Y Y Liu et al 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52 032023

More information

Computation of turbulent natural convection at vertical walls using new wall functions

Computation of turbulent natural convection at vertical walls using new wall functions Computation of turbulent natural convection at vertical alls using ne all functions M. Hölling, H. Herig Institute of Thermo-Fluid Dynamics Hamburg University of Technology Denickestraße 17, 2173 Hamburg,

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information