A Uniform Proof Procedure for Classical and Non-Classical Logics

Size: px
Start display at page:

Download "A Uniform Proof Procedure for Classical and Non-Classical Logics"

Transcription

1 A Uniform Proof Procedure for Classical and Non-Classical Logics Jens Otten Christoph Kreitz Fachgebiet Intellektik, Fachbereich Informatik Technische Hochschule Darmstadt Alexanderstr. 10, Darmstadt, Germany

2 Overview 1. Logical Validity 2. Characterization of Logical Validity Matrix, Paths, and Connections A Matrix Characterization 3. A Uniform Proof Search Procedure 4. Testing Complementarity T-String Unification: Unifying Prefixes 5. Further Research A Uniform Proof Procedure 1 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt)

3 Logical Validity Example: If the sun is shining then I am happy. deduce The sun is not shining or I am happy. Formalization: S : The sun is shining. H : I am happy. 1) Classical Logic S H S H iff formula F 1 (S H) ( S H) is valid usual connectives (,,, ) and quantifiers (, ) F 1 is valid (S H eq. S H) 2) Intuitionistic Logic restrict classical validity (A A is not valid) F 1 is not (intuitionistically) valid 3) Modal Logics extend classical logic by the modal operators ( and ) A Uniform Proof Procedure 2 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt)

4 A Uniform Proof Procedure 3 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt) Matrix, Paths, and Connections Def.: A Matrix of a formula F is the representation of F as matrix. Example: F 1 (S H) ( S H) S H ( S H) S 0 H 1 S 1 H 0 Def.: A Path through a formula F is a subset of its atoms; it is a horizontal path through the matrix of F. Example: {S 0, S 1, H 0 } and {H 1, S 1, H 0 } are (the only) paths through F 1. Def.: A Connection is a pair of atoms with the same predicate symbols but different polarities. Example: {S 0, S 1 } and {H 1, H 0 } are conections.

5 A Matrix Characterization Theorem: A Formula F is valid, iff there is 1. a multiplicity µ, 2. classical: a first-order substitution σ:=σ Q (replacing terms for variables) intuitionistic: a combined substitution σ:=(σ Q, σ J ), where σ J is an intuitionistic substitution ( unifies prefixes ) modal: a combined substitution σ:=(σ Q, σ M ), where σ M is a modal substitution ( unifies prefixes ) 3. a set of σ-complementary connections such that every path through F µ contains a connection. Example (classical): F 1 (S H) ( S H) S 0 H 1 S 1 H no multiplicity and first-order substitution necessary 3. set of connections {{S 0, S 1 }, {H 1, H 0 }} F 1 classically valid A Uniform Proof Procedure 4 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt)

6 A Matrix Characterization Example (intuitionistic): F 2 xp x (P a P b) P 1 x 1 : a 0 A 1 A 2 }{{} prefix P 1 x 2 : a 0 A 6 A 7 P 0 a : a 0 a 4 P 0 b : a 0 a 5 1. Two instances of P x necessary 2. σ Q = {x 1 \a, x 2 \b}, σ J = {A 1 \ε, A 2 \a 4, A 6 \ε, A 7 \a 5 } 3. set of connections {{P 1 x 1, P 0 a}, {P 1 x 2, P 0 b}} F 2 intuitionistically valid Prefix describes position of atom in the formula tree Automated Theorem Proving = A) Searching for a set of connections B) Testing complementarity (computing the combined substitution) A Uniform Proof Procedure 5 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt)

7 Searching for a Set of Connections path-checking similar to Bibel s connection method once a connection is identified all paths containing it are deleted applicable to arbitrary formulae (necessary for non-classical logics) Def.: Two atoms U and V are α-(β-)related, denoted U α V (U β V ), iff they appear side by side (one upon the other) in the matrix, where U V. Def.: An atom U and a set of atoms S are α-(β-)related, denoted U α S (U β S), iff U α V (U β V ) for all V ɛ S. The function Subproof L (F µ, P, C) realizes the path-checking for a given multiplicity µ and is invoked by Subproof L (F µ,, ) Complementary L (F µ, A, Ā, σ, σ) implements the complementarity test for atoms A and Ā and returns the combined substitution σ (depends on logic L) A Uniform Proof Procedure 6 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt)

8 A Uniform Proof Search Procedure The function Subproof L (F µ, P, C) [set of atoms A µ in F µ and σ are global] if there is no A ɛ A µ where A α P and A β C then return true; E := ; σ := σ; repeat select A ɛ A µ where A α (P E) and A β C; if there is no such A then return false; E := E {A}; D := ; valid := false; noconnect := false; repeat select Ā ɛ Aµ where Ā ɛ D and Complementary L(F µ, A, Ā, σ, σ) and (1.) Ā ɛ P or (2.) Ā α(p {A}); if there is no such Ā then noconnect := true else D := D {Ā} if Ā ɛ P then valid := true else valid := Subproof L (F µ, P {A}, {Ā}); if valid=true then valid := Subproof L (F µ, P, C {A}); until valid=true or noconnect=true; until valid=true; return true. A Uniform Proof Procedure 7 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt)

9 Testing Complementarity Compute an appropriate combined substitution after adding a connection all connections still have to be complementary Example: F 3 xp x P a 1. classical: Term-unification (P x, P a) first-order substitution σ Q = {x\a} algorithm of Herbrand&Robinson or Martelli&Montanari P 1 x : a 0 A 1 A 2 }{{} prefix P 0 a : a 0 a 3 2. non-classical: in addition Prefix-unification (a 0 A 1 A 2, a 0 a 3 ) intuitionistic (modal) substitution σ J = {A 1 \a 3, A 2 \ε} specialized string-unification T-String-Unification A Uniform Proof Procedure 8 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt)

10 T-String Unification Def.: Strings are words over an Alphabet A = V C, where V is a set of variables and C is a set of constants. (ε is the empty word, s t the concatenation of the strings s and t.) Def.: Two strings are called T-Strings, iff 1. no character is repeated in s or in t, and 2. equal characters occur only at the beginning of s and t. T-strings can be represented as branches in a tree. Prefixes of atoms in a formula are T-Strings. Example: unify tabular and tast ef ul to tableaux with the substitution σ = {U\ε, A\ea, R\ux, S\b, T \l, F \a, L\x}. Computing a set(!) of most general unifiers (in the worst case up to 2 1(2n)! (n!) 2 O(22n n ) most general unifiers) (unifier) A Uniform Proof Procedure 9 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt)

11 T-String Unification of s and t Sequence of transformations of the tuple (Γ, σ), where Γ is an equation and σ is a substitution (similar to term-unification of Martelli&Montanari). Start: ({s = ε t}, {}) (divide right part of equation!). Stop: ({}, σ), where σ represents an idempotent most general unifier for s and t. Transformation Rules for intuitionistic logic or S4 (apply nondeterministically): R1. {ε = ε ε}, σ {}, σ R2. {ε = ε t + }, σ {t + = ε ε}, σ R3. {Xs = ε Xt}, σ {s = ε t}, σ R4. {Cs = ε V t}, σ {V t = ε Cs}, σ R5. {V s = z ε}, σ {s = ε ε}, {V \z} σ R6. {V s = ε C 1 t}, σ {s = ε C 1 t}, {V \ε} σ R7. {V s = z C 1 C 2 t}, σ {s = ε C 2 t}, {V \zc 1 } σ R8. {V s + = ε V 1 t}, σ {V 1 t = V s + }, σ R9. {V s + = z + V 1 t}, σ {V 1 t = V s + }, {V \z + V } σ R10. {V s = z Xt}, σ {V s = zx t}, σ, where V X, and s=ε or t ε or X C V, C, V denote sets of variables, constants and auxiliary variables. s, t, z denote (arbitrary) strings and s +, t +, z + non-empty strings. X, V, V 1, C, C 1, C 2 denote single characters with X V C V, V, V 1 V V (V V 1 ), and C, C 1, C 2 C. V V is a new variable. Similar rules for the modal logics D, D4, S5, and T. A Uniform Proof Procedure 10 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt)

12 Further Research Provide a Prolog implementation for all logics under consideration (prototype for classical and intuitionistic logic already finished) Further optimizations like a decision procedure for the propositional case and efficiency improvements Implementations in ML and/or C Extend the procedure to additional logics such as (fragments of) linear logic A Uniform Proof Procedure 11 Jens Otten, Christoph Kreitz (Technische Hochschule Darmstadt)

T-String-Unification: Unifying Prefixes in Non-Classical Proof Methods

T-String-Unification: Unifying Prefixes in Non-Classical Proof Methods T-String-Unification: Unifying Prefixes in Non-Classical Proof Methods Jens Otten Christoph Kreitz Fachgebiet Intellektik, Fachbereich Informatik Technische Hochschule Darmstadt Alexanderstr. 10, 64283

More information

A Uniform Proof Procedure for Classical and Non-Classical Logics

A Uniform Proof Procedure for Classical and Non-Classical Logics A Uniform Proof Procedure for Classical and Non-Classical Logics Jens Otten Christoph Kreitz Fachgebiet Intellektik, Fachbereich Informatik Technische Hochschule Darmstadt Alexanderstr. 10, 64283 Darmstadt,

More information

Minimal and Complete Prefix Unification for Non-Classical Theorem Proving

Minimal and Complete Prefix Unification for Non-Classical Theorem Proving Forschungsbericht, Technische Hochschule Darmstadt, FB Informatik, FG Intellektik, 1997. Minimal and Complete Prefix Unification for Non-Classical Theorem Proving Jens Otten 1 Christoph Kreitz 2 1 Fachgebiet

More information

A Connection Based Proof Method for Intuitionistic Logic

A Connection Based Proof Method for Intuitionistic Logic A Connection Based Proof Method for Intuitionistic Logic Jens Otten Christoph Kreitz Fachgebiet Intellektik, Fachbereich Informatik Technische Hochschule Darmstadt Alexanderstr. 10, 64283 Darmstadt, Germany

More information

ileantap: An Intuitionistic Theorem Prover

ileantap: An Intuitionistic Theorem Prover ileantap: An Intuitionistic Theorem Prover Jens Otten Fachgebiet Intellektik, Fachbereich Informatik Technische Hochschule Darmstadt jeotten@informatik.th-darmstadt.de Overview Idea: free variable analytic

More information

T-String-Unification: Unifying Prefixes in Non-Classical Proof Methods

T-String-Unification: Unifying Prefixes in Non-Classical Proof Methods T-String-Unification: Unifying Prefixes in Non-Classical Proof Methods Jens Otten Christoph Kreitz Fachgebiet Intellektik, Fachbereich Informatik Technische Hochschule Darmstadt Alexanderstr. 10, 64283

More information

Connection-Based Proof Construction in Linear Logic

Connection-Based Proof Construction in Linear Logic Connection-Based Proof Construction in Linear Logic C Kreitz 1 H Mantel 2 J Otten 3 S Schmitt 3 1 Department of Computer Science, Cornell University Ithaca, NY 14853, USA kreitz@cscornelledu 2 Deutsches

More information

Deleting Redundancy in Proof Reconstruction

Deleting Redundancy in Proof Reconstruction Deleting Redundancy in Proof Reconstruction Stephan Schmitt 1 Christoph Kreitz 2 1 Fachgebiet Intellektik, Fachbereich Informatik, Darmstadt University of Technology Alexanderstr. 10, 64283 Darmstadt,

More information

' $ Theorem Prover. Jens Otten & %

' $ Theorem Prover. Jens Otten & % ' $ ileantap: An Intuitionistic Theorem Prover Jens Otten & %? Forschungsbericht AIDA{96{18 Darmstadt Fachgebiet Intellektik, Fachbereich Informatik Technische Hochschule Darmstadt Alexanderstrae 10 D{64283

More information

A Constructively Adequate Refutation System for Intuitionistic Logic

A Constructively Adequate Refutation System for Intuitionistic Logic A Constructively Adequate Refutation System for Intuitionistic Logic Daniel S. Korn 1 Christoph Kreitz 2 1 FG Intellektik, FB Informatik, TH-Darmstadt Alexanderstraße 10, D 64238 Darmstadt e-mail: korn@informatik.th-darmstadt.de,

More information

A Non-clausal Connection Calculus

A Non-clausal Connection Calculus A Non-clausal Connection Calculus Jens Otten Institut für Informatik, University of Potsdam August-Bebel-Str. 89, 14482 Potsdam-Babelsberg, Germany jeotten@cs.uni-potsdam.de Abstract. A non-clausal connection

More information

Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic

Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic Jens Otten Institut für Informatik, University of Potsdam August-Bebel-Str. 89, 14482 Potsdam-Babelsberg, Germany jeotten@cs.uni-potsdam.de

More information

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa CS:4330 Theory of Computation Spring 2018 Regular Languages Finite Automata and Regular Expressions Haniel Barbosa Readings for this lecture Chapter 1 of [Sipser 1996], 3rd edition. Sections 1.1 and 1.3.

More information

Connection-Driven Inductive Theorem Proving

Connection-Driven Inductive Theorem Proving Connection-Driven Inductive Theorem Proving Christoph Kreitz (kreitz@cs.cornell.edu) Department of Computer Science, Cornell-University, Ithaca, NY 14853-7501, USA Brigitte Pientka (bp@cs.cmu.edu) Department

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

September 7, Formal Definition of a Nondeterministic Finite Automaton

September 7, Formal Definition of a Nondeterministic Finite Automaton Formal Definition of a Nondeterministic Finite Automaton September 7, 2014 A comment first The formal definition of an NFA is similar to that of a DFA. Both have states, an alphabet, transition function,

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 3 January 9, 2017 January 9, 2017 CS21 Lecture 3 1 Outline NFA, FA equivalence Regular Expressions FA and Regular Expressions January 9, 2017 CS21 Lecture 3 2

More information

Automated Synthesis of Tableau Calculi

Automated Synthesis of Tableau Calculi Automated Synthesis of Tableau Calculi Renate A. Schmidt 1 and Dmitry Tishkovsky 1 School of Computer Science, The University of Manchester Abstract This paper presents a method for synthesising sound

More information

Matrix-based Inductive Theorem Proving

Matrix-based Inductive Theorem Proving Matrix-based Inductive Theorem Proving Christoph Kreitz 1 & Brigitte Pientka 2 1 Department of Computer Science, Cornell-University Ithaca, NY 14853-7501, USA kreitz@cs.cornell.edu 2 Department of Computer

More information

Chapter 2. Unification. Foundations of Logic Programming

Chapter 2. Unification. Foundations of Logic Programming Chapter 2 1 Outline Understanding the need for unification Defining alphabets, terms, and substitutions Introducing the Martelli-Montanari Algorithm for unification Proving correctness of the algorithm

More information

Connection method - Scholarpedia

Connection method - Scholarpedia Connection method From Scholarpedia Wolfgang Bibel and Christoph Kreitz (2009), Scholarpedia, 4(1):6816. revision #56298 [link to/cite this article] Curator: Dr. Wolfgang Bibel, Professor emer., Darmstadt

More information

Predicate Logic: Sematics Part 1

Predicate Logic: Sematics Part 1 Predicate Logic: Sematics Part 1 CS402, Spring 2018 Shin Yoo Predicate Calculus Propositional logic is also called sentential logic, i.e. a logical system that deals with whole sentences connected with

More information

Restricting Backtracking in Connection Calculi

Restricting Backtracking in Connection Calculi 1 Restricting Backtracking in Connection Calculi Jens Otten Institut für Informatik, University of otsdam August-Bebel-Str. 89, 14482 otsdam-babelsberg Germany E-mail: jeotten@cs.uni-potsdam.de Connection

More information

Propositional and Predicate Logic

Propositional and Predicate Logic Formal Verification of Software Propositional and Predicate Logic Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU B. Beckert: Formal Verification of Software p.1 Propositional Logic: Syntax Special symbols

More information

On the Complexity of the Reflected Logic of Proofs

On the Complexity of the Reflected Logic of Proofs On the Complexity of the Reflected Logic of Proofs Nikolai V. Krupski Department of Math. Logic and the Theory of Algorithms, Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119899,

More information

Computational Logic Automated Deduction Fundamentals

Computational Logic Automated Deduction Fundamentals Computational Logic Automated Deduction Fundamentals 1 Elements of First-Order Predicate Logic First Order Language: An alphabet consists of the following classes of symbols: 1. variables denoted by X,

More information

Predicate Calculus - Semantics 1/4

Predicate Calculus - Semantics 1/4 Predicate Calculus - Semantics 1/4 Moonzoo Kim CS Dept. KAIST moonzoo@cs.kaist.ac.kr 1 Introduction to predicate calculus (1/2) Propositional logic (sentence logic) dealt quite satisfactorily with sentences

More information

Propositional Calculus - Semantics (3/3) Moonzoo Kim CS Dept. KAIST

Propositional Calculus - Semantics (3/3) Moonzoo Kim CS Dept. KAIST Propositional Calculus - Semantics (3/3) Moonzoo Kim CS Dept. KAIST moonzoo@cs.kaist.ac.kr 1 Overview 2.1 Boolean operators 2.2 Propositional formulas 2.3 Interpretations 2.4 Logical Equivalence and substitution

More information

CSE 1400 Applied Discrete Mathematics Definitions

CSE 1400 Applied Discrete Mathematics Definitions CSE 1400 Applied Discrete Mathematics Definitions Department of Computer Sciences College of Engineering Florida Tech Fall 2011 Arithmetic 1 Alphabets, Strings, Languages, & Words 2 Number Systems 3 Machine

More information

Mathematical Preliminaries. Sipser pages 1-28

Mathematical Preliminaries. Sipser pages 1-28 Mathematical Preliminaries Sipser pages 1-28 Mathematical Preliminaries This course is about the fundamental capabilities and limitations of computers. It has 3 parts 1. Automata Models of computation

More information

THE AUSTRALIAN NATIONAL UNIVERSITY Second Semester COMP2600/COMP6260 (Formal Methods for Software Engineering)

THE AUSTRALIAN NATIONAL UNIVERSITY Second Semester COMP2600/COMP6260 (Formal Methods for Software Engineering) THE AUSTRALIAN NATIONAL UNIVERSITY Second Semester 2016 COMP2600/COMP6260 (Formal Methods for Software Engineering) Writing Period: 3 hours duration Study Period: 15 minutes duration Permitted Materials:

More information

1 Alphabets and Languages

1 Alphabets and Languages 1 Alphabets and Languages Look at handout 1 (inference rules for sets) and use the rules on some examples like {a} {{a}} {a} {a, b}, {a} {{a}}, {a} {{a}}, {a} {a, b}, a {{a}}, a {a, b}, a {{a}}, a {a,

More information

CS2742 midterm test 2 study sheet. Boolean circuits: Predicate logic:

CS2742 midterm test 2 study sheet. Boolean circuits: Predicate logic: x NOT ~x x y AND x /\ y x y OR x \/ y Figure 1: Types of gates in a digital circuit. CS2742 midterm test 2 study sheet Boolean circuits: Boolean circuits is a generalization of Boolean formulas in which

More information

MA/CSSE 474 Theory of Computation

MA/CSSE 474 Theory of Computation MA/CSSE 474 Theory of Computation CFL Hierarchy CFL Decision Problems Your Questions? Previous class days' material Reading Assignments HW 12 or 13 problems Anything else I have included some slides online

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

Limits of Computability

Limits of Computability Limits of Computability Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at Wolfgang Schreiner

More information

Towards the use of Simplification Rules in Intuitionistic Tableaux

Towards the use of Simplification Rules in Intuitionistic Tableaux Towards the use of Simplification Rules in Intuitionistic Tableaux Mauro Ferrari 1, Camillo Fiorentini 2 and Guido Fiorino 3 1 Dipartimento di Informatica e Comunicazione, Università degli Studi dell Insubria,

More information

Chap. 1.2 NonDeterministic Finite Automata (NFA)

Chap. 1.2 NonDeterministic Finite Automata (NFA) Chap. 1.2 NonDeterministic Finite Automata (NFA) DFAs: exactly 1 new state for any state & next char NFA: machine may not work same each time More than 1 transition rule for same state & input Any one

More information

α-formulas β-formulas

α-formulas β-formulas α-formulas Logic: Compendium http://www.ida.liu.se/ TDDD88/ Andrzej Szalas IDA, University of Linköping October 25, 2017 Rule α α 1 α 2 ( ) A 1 A 1 ( ) A 1 A 2 A 1 A 2 ( ) (A 1 A 2 ) A 1 A 2 ( ) (A 1 A

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Intuitionistic Proof Transformations and their Application to Constructive Program Synthesis

Intuitionistic Proof Transformations and their Application to Constructive Program Synthesis Intuitionistic Proof Transformations and their Application to Constructive Program Synthesis Uwe Egly uwe@krtuwienacat Stephan Schmitt steph@cscornelledu presented by: Christoph Kreitz kreitz@cscornelledu

More information

A Little Logic. Propositional Logic. Satisfiability Problems. Solving Sudokus. First Order Logic. Logic Programming

A Little Logic. Propositional Logic. Satisfiability Problems. Solving Sudokus. First Order Logic. Logic Programming A Little Logic International Center for Computational Logic Technische Universität Dresden Germany Propositional Logic Satisfiability Problems Solving Sudokus First Order Logic Logic Programming A Little

More information

With Question/Answer Animations. Chapter 2

With Question/Answer Animations. Chapter 2 With Question/Answer Animations Chapter 2 Chapter Summary Sets The Language of Sets Set Operations Set Identities Functions Types of Functions Operations on Functions Sequences and Summations Types of

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Lecture 4 Ana Bove March 24th 2017 Structural induction; Concepts of automata theory. Overview of today s lecture: Recap: Formal Proofs

More information

Outline. Overview. Syntax Semantics. Introduction Hilbert Calculus Natural Deduction. 1 Introduction. 2 Language: Syntax and Semantics

Outline. Overview. Syntax Semantics. Introduction Hilbert Calculus Natural Deduction. 1 Introduction. 2 Language: Syntax and Semantics Introduction Arnd Poetzsch-Heffter Software Technology Group Fachbereich Informatik Technische Universität Kaiserslautern Sommersemester 2010 Arnd Poetzsch-Heffter ( Software Technology Group Fachbereich

More information

8 General first order representation

8 General first order representation Intro. to Artificial Intelligence: Dale Schuurmans, Relu Patrascu 1 8 General first order representation 8.1 First order language Propositional core constants A, B, C, D predicates on(, ) associated arity,

More information

Chapter 11: Automated Proof Systems

Chapter 11: Automated Proof Systems Chapter 11: Automated Proof Systems SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems are

More information

Chapter 11: Automated Proof Systems (1)

Chapter 11: Automated Proof Systems (1) Chapter 11: Automated Proof Systems (1) SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems

More information

Equivalence of DFAs and NFAs

Equivalence of DFAs and NFAs CS 172: Computability and Complexity Equivalence of DFAs and NFAs It s a tie! DFA NFA Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: L.von Ahn, L. Blum, M. Blum What we ll do today Prove that DFAs

More information

Finite Automata Part Two

Finite Automata Part Two Finite Automata Part Two DFAs A DFA is a Deterministic Finite Automaton A DFA is defined relative to some alphabet Σ. For each state in the DFA, there must be exactly one transition defined for each symbol

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 4 Ana Bove March 23rd 2018 Recap: Formal Proofs How formal should a proof be? Depends on its purpose...... but should be convincing......

More information

Recall that the expression x > 3 is not a proposition. Why?

Recall that the expression x > 3 is not a proposition. Why? Predicates and Quantifiers Predicates and Quantifiers 1 Recall that the expression x > 3 is not a proposition. Why? Notation: We will use the propositional function notation to denote the expression "

More information

First-Order Logic. Chapter Overview Syntax

First-Order Logic. Chapter Overview Syntax Chapter 10 First-Order Logic 10.1 Overview First-Order Logic is the calculus one usually has in mind when using the word logic. It is expressive enough for all of mathematics, except for those concepts

More information

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics CS256/Spring 2008 Lecture #11 Zohar Manna Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

More information

CS 208: Automata Theory and Logic

CS 208: Automata Theory and Logic CS 28: Automata Theory and Logic b a a start A x(la(x) y(x < y) L b (y)) B b Department of Computer Science and Engineering, Indian Institute of Technology Bombay of 32 Nondeterminism Alternation 2 of

More information

AN INTRODUCTION TO SEPARATION LOGIC. 2. Assertions

AN INTRODUCTION TO SEPARATION LOGIC. 2. Assertions AN INTRODUCTION TO SEPARATION LOGIC 2. Assertions John C. Reynolds Carnegie Mellon University January 7, 2011 c 2011 John C. Reynolds Pure Assertions An assertion p is pure iff, for all stores s and all

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

Lecture 9 CS 1813 Discrete Mathematics. Predicate Calculus. Propositions Plus Plus

Lecture 9 CS 1813 Discrete Mathematics. Predicate Calculus. Propositions Plus Plus Lecture 9 CS 1813 Discrete Mathematics Predicate Calculus Propositions Plus Plus 1 Predicate What is a Predicate? Parameterized collection of propositions P(x) Typically a different proposition for each

More information

Chapter 2. Assertions. An Introduction to Separation Logic c 2011 John C. Reynolds February 3, 2011

Chapter 2. Assertions. An Introduction to Separation Logic c 2011 John C. Reynolds February 3, 2011 Chapter 2 An Introduction to Separation Logic c 2011 John C. Reynolds February 3, 2011 Assertions In this chapter, we give a more detailed exposition of the assertions of separation logic: their meaning,

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 2 January 5, 2018 January 5, 2018 CS21 Lecture 2 1 Outline Finite Automata Nondeterministic Finite Automata Closure under regular operations NFA, FA equivalence

More information

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA)

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA) Deterministic Finite Automata Non deterministic finite automata Automata we ve been dealing with have been deterministic For every state and every alphabet symbol there is exactly one move that the machine

More information

A Theorem Prover for Intuitionistic Propositional Logic. Jesse Wu Supervisors: Rajeev Goré and Jimmy Thomson

A Theorem Prover for Intuitionistic Propositional Logic. Jesse Wu Supervisors: Rajeev Goré and Jimmy Thomson A Theorem Prover for Intuitionistic Propositional Logic Jesse Wu Supervisors: Rajeev Goré and Jimmy Thomson Introduction Semantics and Syntax Sequent Rules Implementation Experimental Results Contents

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

A Prolog implementation of KEM

A Prolog implementation of KEM A Prolog implementation of KEM Alberto Artosi, Paola Cattabriga, Guido Governatori Dipartimento di Filosofia CIRFID Università di Bologna via Zamboni,38, 40126 Bologna (Italy) governat@cirfid.unibo.it

More information

Propositional and Predicate Logic - IV

Propositional and Predicate Logic - IV Propositional and Predicate Logic - IV Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - IV ZS 2015/2016 1 / 19 Tableau method (from the previous lecture)

More information

Introduction to Kleene Algebras

Introduction to Kleene Algebras Introduction to Kleene Algebras Riccardo Pucella Basic Notions Seminar December 1, 2005 Introduction to Kleene Algebras p.1 Idempotent Semirings An idempotent semiring is a structure S = (S, +,, 1, 0)

More information

Informal Statement Calculus

Informal Statement Calculus FOUNDATIONS OF MATHEMATICS Branches of Logic 1. Theory of Computations (i.e. Recursion Theory). 2. Proof Theory. 3. Model Theory. 4. Set Theory. Informal Statement Calculus STATEMENTS AND CONNECTIVES Example

More information

3 Propositional Logic

3 Propositional Logic 3 Propositional Logic 3.1 Syntax 3.2 Semantics 3.3 Equivalence and Normal Forms 3.4 Proof Procedures 3.5 Properties Propositional Logic (25th October 2007) 1 3.1 Syntax Definition 3.0 An alphabet Σ consists

More information

CPSC 421: Tutorial #1

CPSC 421: Tutorial #1 CPSC 421: Tutorial #1 October 14, 2016 Set Theory. 1. Let A be an arbitrary set, and let B = {x A : x / x}. That is, B contains all sets in A that do not contain themselves: For all y, ( ) y B if and only

More information

Automating inductive Specification Proofs

Automating inductive Specification Proofs Fundamenta Informaticae 39(1 2, 1999) 189 208 189 IOS Press Automating inductive Specification Proofs Brigitte Pientka Department of Computer Science Carnegie Mellon University Pittsburgh, PA, USA bp@cs.cmu.edu

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

Deterministic Finite Automata

Deterministic Finite Automata Deterministic Finite Automata COMP2600 Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 2016 Slides by Ranald Clouston and Katya Lebedeva. COMP 2600 Deterministic

More information

Proofs, Strings, and Finite Automata. CS154 Chris Pollett Feb 5, 2007.

Proofs, Strings, and Finite Automata. CS154 Chris Pollett Feb 5, 2007. Proofs, Strings, and Finite Automata CS154 Chris Pollett Feb 5, 2007. Outline Proofs and Proof Strategies Strings Finding proofs Example: For every graph G, the sum of the degrees of all the nodes in G

More information

Predicate Calculus - Semantic Tableau (2/2) Moonzoo Kim CS Division of EECS Dept. KAIST

Predicate Calculus - Semantic Tableau (2/2) Moonzoo Kim CS Division of EECS Dept. KAIST Predicate Calculus - Semantic Tableau (2/2) Moonzoo Kim CS Division of EECS Dept. KAIST moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07 1 Formal construction is explained in two steps

More information

Axioms of Kleene Algebra

Axioms of Kleene Algebra Introduction to Kleene Algebra Lecture 2 CS786 Spring 2004 January 28, 2004 Axioms of Kleene Algebra In this lecture we give the formal definition of a Kleene algebra and derive some basic consequences.

More information

TABLEAU SYSTEM FOR LOGIC OF CATEGORIAL PROPOSITIONS AND DECIDABILITY

TABLEAU SYSTEM FOR LOGIC OF CATEGORIAL PROPOSITIONS AND DECIDABILITY Bulletin of the Section of Logic Volume 37:3/4 (2008), pp. 223 231 Tomasz Jarmużek TABLEAU SYSTEM FOR LOGIC OF CATEGORIAL PROPOSITIONS AND DECIDABILITY Abstract In the article we present an application

More information

Introduction to Logic in Computer Science: Autumn 2006

Introduction to Logic in Computer Science: Autumn 2006 Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Today s class will be an introduction

More information

Introduction to Logic in Computer Science: Autumn 2007

Introduction to Logic in Computer Science: Autumn 2007 Introduction to Logic in Computer Science: Autumn 2007 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Tableaux for First-order Logic The next part of

More information

Syntax of FOL. Introduction to Logic in Computer Science: Autumn Tableaux for First-order Logic. Syntax of FOL (2)

Syntax of FOL. Introduction to Logic in Computer Science: Autumn Tableaux for First-order Logic. Syntax of FOL (2) Syntax of FOL Introduction to Logic in Computer Science: Autumn 2007 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam The syntax of a language defines the way in which

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation 1/19/2016 LECTURE 3 Last time: DFAs and NFAs Operations on languages Today: Nondeterminism Equivalence of NFAs and DFAs Closure properties of regular languages Sofya Raskhodnikova

More information

Closure under the Regular Operations

Closure under the Regular Operations Closure under the Regular Operations Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have

More information

Closed Book Examination. Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science

Closed Book Examination. Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science Closed Book Examination COMP60121 Appendix: definition sheet (3 pages) Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE M.Sc. in Advanced Computer Science Automated Reasoning Tuesday 27 th

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) September,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.  ETH Zürich (D-ITET) September, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) September, 24 2015 Last week was all about Deterministic Finite Automaton We saw three main

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

Developing Modal Tableaux and Resolution Methods via First-Order Resolution

Developing Modal Tableaux and Resolution Methods via First-Order Resolution Developing Modal Tableaux and Resolution Methods via First-Order Resolution Renate Schmidt University of Manchester Reference: Advances in Modal Logic, Vol. 6 (2006) Modal logic: Background Established

More information

CS243, Logic and Computation Nondeterministic finite automata

CS243, Logic and Computation Nondeterministic finite automata CS243, Prof. Alvarez NONDETERMINISTIC FINITE AUTOMATA (NFA) Prof. Sergio A. Alvarez http://www.cs.bc.edu/ alvarez/ Maloney Hall, room 569 alvarez@cs.bc.edu Computer Science Department voice: (67) 552-4333

More information

CS154, Lecture 10: Rice s Theorem, Oracle Machines

CS154, Lecture 10: Rice s Theorem, Oracle Machines CS154, Lecture 10: Rice s Theorem, Oracle Machines Moral: Analyzing Programs is Really, Really Hard But can we more easily tell when some program analysis problem is undecidable? Problem 1 Undecidable

More information

Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing

Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing Cesare Tinelli (tinelli@cs.uiowa.edu) Department of Computer Science The University of Iowa Iowa City, IA, USA Abstract. We propose

More information

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Section 2.1 Introduction Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Important for counting. Programming languages have set operations. Set theory

More information

Predicate Calculus. Formal Methods in Verification of Computer Systems Jeremy Johnson

Predicate Calculus. Formal Methods in Verification of Computer Systems Jeremy Johnson Predicate Calculus Formal Methods in Verification of Computer Systems Jeremy Johnson Outline 1. Motivation 1. Variables, quantifiers and predicates 2. Syntax 1. Terms and formulas 2. Quantifiers, scope

More information

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel Foundations of AI 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard and Bernhard Nebel Contents Agents that think rationally The wumpus world Propositional logic: syntax and semantics

More information

Finite Automata and Languages

Finite Automata and Languages CS62, IIT BOMBAY Finite Automata and Languages Ashutosh Trivedi Department of Computer Science and Engineering, IIT Bombay CS62: New Trends in IT: Modeling and Verification of Cyber-Physical Systems (2

More information

SLD-Resolution And Logic Programming (PROLOG)

SLD-Resolution And Logic Programming (PROLOG) Chapter 9 SLD-Resolution And Logic Programming (PROLOG) 9.1 Introduction We have seen in Chapter 8 that the resolution method is a complete procedure for showing unsatisfiability. However, finding refutations

More information

Nondeterministic Finite Automata and Regular Expressions

Nondeterministic Finite Automata and Regular Expressions Nondeterministic Finite Automata and Regular Expressions CS 2800: Discrete Structures, Spring 2015 Sid Chaudhuri Recap: Deterministic Finite Automaton A DFA is a 5-tuple M = (Q, Σ, δ, q 0, F) Q is a finite

More information

06 From Propositional to Predicate Logic

06 From Propositional to Predicate Logic Martin Henz February 19, 2014 Generated on Wednesday 19 th February, 2014, 09:48 1 Syntax of Predicate Logic 2 3 4 5 6 Need for Richer Language Predicates Variables Functions 1 Syntax of Predicate Logic

More information

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017 3. The Logic of Quantified Statements Summary Aaron Tan 28 31 August 2017 1 3. The Logic of Quantified Statements 3.1 Predicates and Quantified Statements I Predicate; domain; truth set Universal quantifier,

More information

CS 3110: Proof Strategy and Examples. 1 Propositional Logic Proof Strategy. 2 A Proof Walkthrough

CS 3110: Proof Strategy and Examples. 1 Propositional Logic Proof Strategy. 2 A Proof Walkthrough CS 3110: Proof Strategy and Examples 1 Propositional Logic Proof Strategy The fundamental thing you have to do is figure out where each connective is going to come from. Sometimes the answer is very simple;

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Unranked Tree Automata with Sibling Equalities and Disequalities

Unranked Tree Automata with Sibling Equalities and Disequalities Unranked Tree Automata with Sibling Equalities and Disequalities Wong Karianto Christof Löding Lehrstuhl für Informatik 7, RWTH Aachen, Germany 34th International Colloquium, ICALP 2007 Xu Gao (NFS) Unranked

More information