UCLA Department of Statistics Papers

Size: px
Start display at page:

Download "UCLA Department of Statistics Papers"

Transcription

1 UCLA Department of Statistics Papers Title Rate of Convergence of the Arithmetic-Geometric Mean Process Permalink Author de Leeuw, Jan Publication Date escholarship.org Powered by the California Digital Library University of California

2 RATE OF CONVERGENCE OF THE ARITHMETIC-GEOMETRIC MEAN PROCESS JAN DE LEEUW Abstract. This (didactic) note gives a simple counter-example to the notion that Picard iterations converge super-linearly if and only if the sup-norm of the Jacobian at the solution is equal to zero and sub-linearly if and only if it is equal to one.. Introduction Suppose S is an open subset of R n and Γ : S S is a differentiable map. Assume the Picard iterations x (k+) = Γ (x (k) ) starting from some x (0) S converge to x S. We can derive information about the rate of convergence from the sup-norm (the eigenvalue of maximum modulus) of the derivative DΓ (x). If DΓ (x) = λ < we have linear convergence with rate λ, and if DΓ (x) = 0 we have super-linear convergence [Ortega and Rheinboldt, 970, Chapter 0]. DΓ (x) = often indicates sub-linear convergence. Our elementary example below, however, has DΓ (x) = and quadratic convergence.. The Arithmetic-Geometric Mean Suppose a and b are two positive numbers. Their arithmetic mean is defined as AM(a, b) = (a + b) and their geometric mean as GM(a, b) = ab. Result. AM(a, b) GM(a, b) with equality if and only if a = b. Proof. 0 ( a b) = (AM(a, b) GM(a, b)). Date: October 3, 008 8h 4min Typeset in Lucida Bright.

3 JAN DE LEEUW From now on suppose, without loss of generality, that a > b. Let a 0 = a and b 0 = b and define the sequences (a) (b) a n = AM(a n, b n ), b n = GM(a n, b n ). Result. a n > b n Proof. From Result. Result 3. {a n } is a decreasing sequence, which is bounded below, and thus converges to some a. {b n } is an increasing sequence, which is bounded above, and thus converges to some b. Proof. a n < max(a n, b n ) = a n and b n > min(a n, b n ) = b n. Moreover a n > b n > b and b n < a n < a. Result 4. a = b. Proof. Take limits on both sides of (). This gives a = AM(a, b ), b = GM(a, b ). Both equations imply a = b. The common limit a = b is called the arithmetic-geometric mean of a and b, written as AGM(a, b). The arithmetic-geometric mean was studied by Legendre and Gauss, and it has fascinating applications in many areas of mathematics and numerical analysis. There are excellent reviews of these applications in Carlson [97], Cox [984], and Almqvist and Berndt [988]. Result 5. b < GM(a, b) < AGM(a, b) < AM(a, b) < a Proof. AGM(a, b) = a < a = AM(a, b) < a 0 = a and AGM(a, b) = b > b = GM(a, b) > b 0 = b.

4 ARITHMETIC-GEOMETRIC MEAN 3 For another proof of the convergence to a common limit we define the sequence = a n b n. It should be noted that is a reasonable way to measure distance to the solution, since a n AGM(a, b) + b n AGM(a, b) = a n AGM(a, b) + AGM(a, b) b n =. Result 6. { } is a decreasing sequence bounded below by zero, and thus converges to some δ 0. Proof. Since a n < a n and b n > b n we have = a n b n < a n b n =. Moreover > 0 for all n. Result 7. δ = 0 Proof. (a) (b) = AM(a n, b n ) GM(a n, b n ) = ( a n b n ), = a n b n = ( a n b n )( a n + b n ), and thus < It follows that 0 < < ( )n δ 0 and thus lim n = 0. The proof shows that convergence of { } is faster than that of a geometric sequence with radius. But we can be more precise. Result 8. Convergence of the sequence { } to zero is superlinear, i.e. Proof. From Equations () lim n = 0. = an b n an + 0. b n In fact, we can be even more precise. Result 9. Convergence of the sequence { } to zero is quadratic. lim n δ n = 8 AGM(a, b).

5 4 JAN DE LEEUW Proof. From Equations () δ n = ( a n + b n ) 8 AGM(a, b). In a sense, the sequences {a n } and {b n } converge equally fast. Result 0. (a n a n ) (b n b n ), i.e. a n a n lim =. n b n b n Proof. and thus a n a n = ( a n b n b n = b n ( a n b n )( a n + b n ). a n a n = an + b n. b n b n bn b n ), 3. Counterexample Equation () defines a mapping Γ : R R. The derivative of this mapping is and thus DΓ (a, b) = b a a b, DΓ (AGM(a, b), AGM(a, b)) = which has eigenvalues one and zero. The fact that DΓ (AGM(a, b), AGM(a, b)) = seems to suggest sublinear convergence, while in fact we know convergence is quadratic. If γ n is the two-element vector with elements a n a n and b n b n, normalized to length one, then Result 0 shows that γ n converges to a vector with elements and +. This eigenvector corresponds with the smallest eigenvalue of the Jacobian at the solution, and that smallest eigenvalue is equal to zero.,

6 ARITHMETIC-GEOMETRIC MEAN 5 References G. Almqvist and B. Berndt. Gauss, Landen, Ramanujan, the Arithmetic- Geometric Mean, Ellipses, π, and the Ladies Diary. The American Mathematical Monthly, 95: , 988. B.G. Carlson. Algorithms Involving Arithmetic and Geometric Means. The American Mathematical Monthly, 78: , 97. D.A. Cox. The Arithmetic-Geometric Mean of Gauss. L Enseignement Mathématique, 30:75 330, 984. J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, N.Y., 970.

7 6 JAN DE LEEUW Appendix A. Code agm<-function(a,b,eps=e-8,itmax=000,verbose=true) { 3 xold<-max(a,b); yold<-min(a,b); dold<-xold-yold; itel<- 4 repeat { 5 xnew<-(xold+yold)/; ynew<-sqrt(xold*yold) 6 dnew<-xnew-ynew; rat<-dnew/dold; rat<-dnew/(dold^) 7 if (verbose) cat( 8 "Iteration: ",formatc(itel,width=3, format="d"), 9 "old: ",formatc(c(xold,yold,dold),digits=8, 0 width=,format="f"), "old: ",formatc(c(xnew,ynew,dnew),digits=8, width=,format="f"), 3 "rat: ",formatc(c(rat,rat),digits=8, 4 width=,format="f"), 5 "\n") 6 if ((dnew < eps) (itel == itmax)) 7 return(c(xnew,ynew)) 8 xold<-xnew; yold<-ynew; dold<-dnew; itel<-itel+ 9 } 0 } Department of Statistics, University of California, Los Angeles, CA address, Jan de Leeuw: deleeuw@stat.ucla.edu URL, Jan de Leeuw:

An Arithmetic-Geometric Mean Inequality

An Arithmetic-Geometric Mean Inequality EXPOSITIONES MATHEMATICAE Mathematical Note Expo. Math. 19 (2001):273-279 Urban & Fischer Verlag www. u rbanfischer.de/jou rnals/expomath An Arithmetic-Geometric Mean Inequality Paul Bracken Centre de

More information

The AGM Function. Kurt Nalty. July 1, 2014

The AGM Function. Kurt Nalty. July 1, 2014 The AGM Function Kurt Nalty July 1, 014 Abstract These are some informal notes on the Arithmetic Geometic Mean function, and the connection to elliptic integrals of the first and second kind. The primary

More information

HOMOGENEITY ANALYSIS USING EUCLIDEAN MINIMUM SPANNING TREES 1. INTRODUCTION

HOMOGENEITY ANALYSIS USING EUCLIDEAN MINIMUM SPANNING TREES 1. INTRODUCTION HOMOGENEITY ANALYSIS USING EUCLIDEAN MINIMUM SPANNING TREES JAN DE LEEUW 1. INTRODUCTION In homogeneity analysis the data are a system of m subsets of a finite set of n objects. The purpose of the technique

More information

MAXIMUM LIKELIHOOD IN GENERALIZED FIXED SCORE FACTOR ANALYSIS 1. INTRODUCTION

MAXIMUM LIKELIHOOD IN GENERALIZED FIXED SCORE FACTOR ANALYSIS 1. INTRODUCTION MAXIMUM LIKELIHOOD IN GENERALIZED FIXED SCORE FACTOR ANALYSIS JAN DE LEEUW ABSTRACT. We study the weighted least squares fixed rank approximation problem in which the weight matrices depend on unknown

More information

Computation Of The Arithmetic-Geometric Mean

Computation Of The Arithmetic-Geometric Mean Computation Of The Arithmetic-Geometric Mean Tomack Gilmore 816489 Plot of arithmetic geometric means for a=3 and b=.4.3..1 Imaginary.1..3.4.5.8.6.4...4.6.8 Real Queen Mary, University of London Contents

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

AN ITERATIVE MAXIMUM EIGENVALUE METHOD FOR SQUARED DISTANCE SCALING 1. INTRODUCTION

AN ITERATIVE MAXIMUM EIGENVALUE METHOD FOR SQUARED DISTANCE SCALING 1. INTRODUCTION AN ITERATIVE MAXIMUM EIGENVALUE METHOD FOR SQUARED DISTANCE SCALING JAN DE LEEUW ABSTRACT. Meet the abstract. This is the abstract. 1. INTRODUCTION The proble we consider in this paper is a etric ultidiensional

More information

REGRESSION, DISCRIMINANT ANALYSIS, AND CANONICAL CORRELATION ANALYSIS WITH HOMALS 1. MORALS

REGRESSION, DISCRIMINANT ANALYSIS, AND CANONICAL CORRELATION ANALYSIS WITH HOMALS 1. MORALS REGRESSION, DISCRIMINANT ANALYSIS, AND CANONICAL CORRELATION ANALYSIS WITH HOMALS JAN DE LEEUW ABSTRACT. It is shown that the homals package in R can be used for multiple regression, multi-group discriminant

More information

Maria Cameron. f(x) = 1 n

Maria Cameron. f(x) = 1 n Maria Cameron 1. Local algorithms for solving nonlinear equations Here we discuss local methods for nonlinear equations r(x) =. These methods are Newton, inexact Newton and quasi-newton. We will show that

More information

A Remarkable Cubic Mean Iteration

A Remarkable Cubic Mean Iteration - Computational Methods Function Theory Proceedings, Valparafso 1989 St. Ruseheweyh, E.B. Saff, L. C. Salinas, R.S. Varga (eds.) Lecture Notes in Mathematics 145, pp. 27-1 (~) Springer Berlin Heidelberg

More information

A NOTE ON Q-ORDER OF CONVERGENCE

A NOTE ON Q-ORDER OF CONVERGENCE BIT 0006-3835/01/4102-0422 $16.00 2001, Vol. 41, No. 2, pp. 422 429 c Swets & Zeitlinger A NOTE ON Q-ORDER OF CONVERGENCE L. O. JAY Department of Mathematics, The University of Iowa, 14 MacLean Hall Iowa

More information

LEAST SQUARES ORTHOGONAL POLYNOMIAL COMPONENT ANALYSIS IN R. 1. Introduction

LEAST SQUARES ORTHOGONAL POLYNOMIAL COMPONENT ANALYSIS IN R. 1. Introduction LEAST SQUARES ORTHOGONAL POLYNOMIAL COMPONENT ANALYSIS IN R JAN DE LEEUW AND KEKONA KAI SORENSON Abstract. We present a simple algorithm (with code in R) to fit multivariate polynomial components or factors

More information

The speed of Shor s R-algorithm

The speed of Shor s R-algorithm IMA Journal of Numerical Analysis 2008) 28, 711 720 doi:10.1093/imanum/drn008 Advance Access publication on September 12, 2008 The speed of Shor s R-algorithm J. V. BURKE Department of Mathematics, University

More information

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015 Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two

More information

over the parameters θ. In both cases, consequently, we select the minimizing

over the parameters θ. In both cases, consequently, we select the minimizing MONOTONE REGRESSION JAN DE LEEUW Abstract. This is an entry for The Encyclopedia of Statistics in Behavioral Science, to be published by Wiley in 200. In linear regression we fit a linear function y =

More information

Optimization Methods. Lecture 18: Optimality Conditions and. Gradient Methods. for Unconstrained Optimization

Optimization Methods. Lecture 18: Optimality Conditions and. Gradient Methods. for Unconstrained Optimization 5.93 Optimization Methods Lecture 8: Optimality Conditions and Gradient Methods for Unconstrained Optimization Outline. Necessary and sucient optimality conditions Slide. Gradient m e t h o d s 3. The

More information

ALGORITHM CONSTRUCTION BY DECOMPOSITION 1. INTRODUCTION. The following theorem is so simple it s almost embarassing. Nevertheless

ALGORITHM CONSTRUCTION BY DECOMPOSITION 1. INTRODUCTION. The following theorem is so simple it s almost embarassing. Nevertheless ALGORITHM CONSTRUCTION BY DECOMPOSITION JAN DE LEEUW ABSTRACT. We discuss and illustrate a general technique, related to augmentation, in which a complicated optimization problem is replaced by a simpler

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon's method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

Numerical Methods for Differential Equations Mathematical and Computational Tools

Numerical Methods for Differential Equations Mathematical and Computational Tools Numerical Methods for Differential Equations Mathematical and Computational Tools Gustaf Söderlind Numerical Analysis, Lund University Contents V4.16 Part 1. Vector norms, matrix norms and logarithmic

More information

The arithmetic geometric mean (Agm)

The arithmetic geometric mean (Agm) The arithmetic geometric mean () Pictures by David Lehavi This is part of exercise 5 question 4 in myc> calculus class Fall 200: a = c a n+ =5a n 2 lim n an = a = a an + bn a n+ = 2 b = b b n+ = a nb n

More information

QUADRATIC MAJORIZATION 1. INTRODUCTION

QUADRATIC MAJORIZATION 1. INTRODUCTION QUADRATIC MAJORIZATION JAN DE LEEUW 1. INTRODUCTION Majorization methods are used extensively to solve complicated multivariate optimizaton problems. We refer to de Leeuw [1994]; Heiser [1995]; Lange et

More information

MAJORIZATION OF DIFFERENT ORDER

MAJORIZATION OF DIFFERENT ORDER MAJORIZATION OF DIFFERENT ORDER JAN DE LEEUW 1. INTRODUCTION The majorization method [De Leeuw, 1994; Heiser, 1995; Lange et al., 2000] for minimization of real valued loss functions has become very popular

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

A New Proof of Inequalities for Gauss Compound Mean

A New Proof of Inequalities for Gauss Compound Mean Int. Journal of Math. Analysis, Vol. 4, 2010, no. 21, 1013-1018 A New Proof of Inequalities for Gauss Compound Mean Zhen-hang Yang Electric Grid Planning and Research Center Zhejiang Province Electric

More information

Numerical solutions of nonlinear systems of equations

Numerical solutions of nonlinear systems of equations Numerical solutions of nonlinear systems of equations Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan E-mail: min@math.ntnu.edu.tw August 28, 2011 Outline 1 Fixed points

More information

MULTIVARIATE CUMULANTS IN R. 1. Introduction

MULTIVARIATE CUMULANTS IN R. 1. Introduction MULTIVARIATE CUMULANTS IN R JAN DE LEEUW Abstract. We give algorithms and R code to compute all multivariate cumulants up to order p of m variables. 1. Introduction Multivariate cumulants are of increasing

More information

FIXED-RANK APPROXIMATION WITH CONSTRAINTS

FIXED-RANK APPROXIMATION WITH CONSTRAINTS FIXED-RANK APPROXIMATION WITH CONSTRAINTS JAN DE LEEUW AND IRINA KUKUYEVA Abstract. We discuss fixed-rank weighted least squares approximation of a rectangular matrix with possibly singular Kronecker weights

More information

Chapter 8 Gradient Methods

Chapter 8 Gradient Methods Chapter 8 Gradient Methods An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Introduction Recall that a level set of a function is the set of points satisfying for some constant. Thus, a point

More information

A GEOMETRIC VIEW OF RATIONAL LANDEN TRANSFORMATIONS

A GEOMETRIC VIEW OF RATIONAL LANDEN TRANSFORMATIONS Bull. London Math. Soc. 35 (3 93 3 C 3 London Mathematical Society DOI:./S4693393 A GEOMETRIC VIEW OF RATIONAL LANDEN TRANSFORMATIONS JOHN HUBBARD and VICTOR MOLL Abstract In this paper, a geometric interpretation

More information

SQUARE-ROOT FAMILIES FOR THE SIMULTANEOUS APPROXIMATION OF POLYNOMIAL MULTIPLE ZEROS

SQUARE-ROOT FAMILIES FOR THE SIMULTANEOUS APPROXIMATION OF POLYNOMIAL MULTIPLE ZEROS Novi Sad J. Math. Vol. 35, No. 1, 2005, 59-70 SQUARE-ROOT FAMILIES FOR THE SIMULTANEOUS APPROXIMATION OF POLYNOMIAL MULTIPLE ZEROS Lidija Z. Rančić 1, Miodrag S. Petković 2 Abstract. One-parameter families

More information

min f(x). (2.1) Objectives consisting of a smooth convex term plus a nonconvex regularization term;

min f(x). (2.1) Objectives consisting of a smooth convex term plus a nonconvex regularization term; Chapter 2 Gradient Methods The gradient method forms the foundation of all of the schemes studied in this book. We will provide several complementary perspectives on this algorithm that highlight the many

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

Mathematical modelling Chapter 2 Nonlinear models and geometric models

Mathematical modelling Chapter 2 Nonlinear models and geometric models Mathematical modelling Chapter 2 Nonlinear models and geometric models Faculty of Computer and Information Science University of Ljubljana 2018/2019 3. Nonlinear models Given is a sample of points {(x

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 2nd, 2014 A. Donev (Courant Institute) Lecture

More information

Upon successful completion of MATH 220, the student will be able to:

Upon successful completion of MATH 220, the student will be able to: MATH 220 Matrices Upon successful completion of MATH 220, the student will be able to: 1. Identify a system of linear equations (or linear system) and describe its solution set 2. Write down the coefficient

More information

Review of Some Concepts from Linear Algebra: Part 2

Review of Some Concepts from Linear Algebra: Part 2 Review of Some Concepts from Linear Algebra: Part 2 Department of Mathematics Boise State University January 16, 2019 Math 566 Linear Algebra Review: Part 2 January 16, 2019 1 / 22 Vector spaces A set

More information

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are

, b = 0. (2) 1 2 The eigenvectors of A corresponding to the eigenvalues λ 1 = 1, λ 2 = 3 are Quadratic forms We consider the quadratic function f : R 2 R defined by f(x) = 2 xt Ax b T x with x = (x, x 2 ) T, () where A R 2 2 is symmetric and b R 2. We will see that, depending on the eigenvalues

More information

Goals for This Lecture:

Goals for This Lecture: Goals for This Lecture: Learn the Newton-Raphson method for finding real roots of real functions Learn the Bisection method for finding real roots of a real function Look at efficient implementations of

More information

arxiv: v2 [math.nt] 8 Aug 2018

arxiv: v2 [math.nt] 8 Aug 2018 The Borwein Brothers, Pi and the AGM Richard P. Brent arxiv:1802.07558v2 [math.nt] 8 Aug 2018 Mathematical Sciences Institute, Australian National University, Canberra, ACT 2600, Australia and CARMA, University

More information

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent

Methods that avoid calculating the Hessian. Nonlinear Optimization; Steepest Descent, Quasi-Newton. Steepest Descent Nonlinear Optimization Steepest Descent and Niclas Börlin Department of Computing Science Umeå University niclas.borlin@cs.umu.se A disadvantage with the Newton method is that the Hessian has to be derived

More information

Two improved classes of Broyden s methods for solving nonlinear systems of equations

Two improved classes of Broyden s methods for solving nonlinear systems of equations Available online at www.isr-publications.com/jmcs J. Math. Computer Sci., 17 (2017), 22 31 Research Article Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs Two improved classes of Broyden

More information

Pi: The Next Generation

Pi: The Next Generation Pi: The Next Generation . David H. Bailey Jonathan M. Borwein Pi: The Next Generation A Sourcebook on the Recent History of Pi and Its Computation David H. Bailey Lawrence Berkeley National Laboratory

More information

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 7: Iterative methods for solving linear systems Xiaoqun Zhang Shanghai Jiao Tong University Last updated: December 24, 2014 1.1 Review on linear algebra Norms of vectors and matrices vector

More information

Jim Lambers MAT 610 Summer Session Lecture 2 Notes

Jim Lambers MAT 610 Summer Session Lecture 2 Notes Jim Lambers MAT 610 Summer Session 2009-10 Lecture 2 Notes These notes correspond to Sections 2.2-2.4 in the text. Vector Norms Given vectors x and y of length one, which are simply scalars x and y, the

More information

MATH2071: LAB #5: Norms, Errors and Condition Numbers

MATH2071: LAB #5: Norms, Errors and Condition Numbers MATH2071: LAB #5: Norms, Errors and Condition Numbers 1 Introduction Introduction Exercise 1 Vector Norms Exercise 2 Matrix Norms Exercise 3 Compatible Matrix Norms Exercise 4 More on the Spectral Radius

More information

Newton-type Methods for Solving the Nonsmooth Equations with Finitely Many Maximum Functions

Newton-type Methods for Solving the Nonsmooth Equations with Finitely Many Maximum Functions 260 Journal of Advances in Applied Mathematics, Vol. 1, No. 4, October 2016 https://dx.doi.org/10.22606/jaam.2016.14006 Newton-type Methods for Solving the Nonsmooth Equations with Finitely Many Maximum

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

LEAST SQUARES METHODS FOR FACTOR ANALYSIS. 1. Introduction

LEAST SQUARES METHODS FOR FACTOR ANALYSIS. 1. Introduction LEAST SQUARES METHODS FOR FACTOR ANALYSIS JAN DE LEEUW AND JIA CHEN Abstract. Meet the abstract. This is the abstract. 1. Introduction Suppose we have n measurements on each of m variables. Collect these

More information

An improved convergence theorem for the Newton method under relaxed continuity assumptions

An improved convergence theorem for the Newton method under relaxed continuity assumptions An improved convergence theorem for the Newton method under relaxed continuity assumptions Andrei Dubin ITEP, 117218, BCheremushinsaya 25, Moscow, Russia Abstract In the framewor of the majorization technique,

More information

Learning Module 1 - Basic Algebra Review (Appendix A)

Learning Module 1 - Basic Algebra Review (Appendix A) Learning Module 1 - Basic Algebra Review (Appendix A) Element 1 Real Numbers and Operations on Polynomials (A.1, A.2) Use the properties of real numbers and work with subsets of the real numbers Determine

More information

Iterative techniques in matrix algebra

Iterative techniques in matrix algebra Iterative techniques in matrix algebra Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan September 12, 2015 Outline 1 Norms of vectors and matrices 2 Eigenvalues and

More information

Numerical Algorithms. IE 496 Lecture 20

Numerical Algorithms. IE 496 Lecture 20 Numerical Algorithms IE 496 Lecture 20 Reading for This Lecture Primary Miller and Boxer, Pages 124-128 Forsythe and Mohler, Sections 1 and 2 Numerical Algorithms Numerical Analysis So far, we have looked

More information

FACTOR ANALYSIS AS MATRIX DECOMPOSITION 1. INTRODUCTION

FACTOR ANALYSIS AS MATRIX DECOMPOSITION 1. INTRODUCTION FACTOR ANALYSIS AS MATRIX DECOMPOSITION JAN DE LEEUW ABSTRACT. Meet the abstract. This is the abstract. 1. INTRODUCTION Suppose we have n measurements on each of taking m variables. Collect these measurements

More information

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL Electronic Journal of Differential Equations, Vol. 2015 (2015), o. 274, pp. 1 9. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MULTIPLE SOLUTIOS

More information

Total least squares. Gérard MEURANT. October, 2008

Total least squares. Gérard MEURANT. October, 2008 Total least squares Gérard MEURANT October, 2008 1 Introduction to total least squares 2 Approximation of the TLS secular equation 3 Numerical experiments Introduction to total least squares In least squares

More information

AIMS Exercise Set # 1

AIMS Exercise Set # 1 AIMS Exercise Set #. Determine the form of the single precision floating point arithmetic used in the computers at AIMS. What is the largest number that can be accurately represented? What is the smallest

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Digital Control Engineering Analysis and Design

Digital Control Engineering Analysis and Design Digital Control Engineering Analysis and Design M. Sami Fadali Antonio Visioli AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is

More information

CHAPTER 11. A Revision. 1. The Computers and Numbers therein

CHAPTER 11. A Revision. 1. The Computers and Numbers therein CHAPTER A Revision. The Computers and Numbers therein Traditional computer science begins with a finite alphabet. By stringing elements of the alphabet one after another, one obtains strings. A set of

More information

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count

More information

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 7: Solutions of nonlinear equations Newton-Raphson method

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 7: Solutions of nonlinear equations Newton-Raphson method 10.34: Numerical Methods Applied to Chemical Engineering Lecture 7: Solutions of nonlinear equations Newton-Raphson method 1 Recap Singular value decomposition Iterative solutions to linear equations 2

More information

Lecture 4 Eigenvalue problems

Lecture 4 Eigenvalue problems Lecture 4 Eigenvalue problems Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. OPTIM. Vol. 18, No. 1, pp. 106 13 c 007 Society for Industrial and Applied Mathematics APPROXIMATE GAUSS NEWTON METHODS FOR NONLINEAR LEAST SQUARES PROBLEMS S. GRATTON, A. S. LAWLESS, AND N. K.

More information

Chapter 6. Nonlinear Equations. 6.1 The Problem of Nonlinear Root-finding. 6.2 Rate of Convergence

Chapter 6. Nonlinear Equations. 6.1 The Problem of Nonlinear Root-finding. 6.2 Rate of Convergence Chapter 6 Nonlinear Equations 6. The Problem of Nonlinear Root-finding In this module we consider the problem of using numerical techniques to find the roots of nonlinear equations, f () =. Initially we

More information

1 Implicit Differentiation

1 Implicit Differentiation MATH 1010E University Mathematics Lecture Notes (week 5) Martin Li 1 Implicit Differentiation Sometimes a function is defined implicitly by an equation of the form f(x, y) = 0, which we think of as a relationship

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

THE SECANT METHOD. q(x) = a 0 + a 1 x. with

THE SECANT METHOD. q(x) = a 0 + a 1 x. with THE SECANT METHOD Newton s method was based on using the line tangent to the curve of y = f (x), with the point of tangency (x 0, f (x 0 )). When x 0 α, the graph of the tangent line is approximately the

More information

Search Directions for Unconstrained Optimization

Search Directions for Unconstrained Optimization 8 CHAPTER 8 Search Directions for Unconstrained Optimization In this chapter we study the choice of search directions used in our basic updating scheme x +1 = x + t d. for solving P min f(x). x R n All

More information

Cycling in Newton s Method

Cycling in Newton s Method Universal Journal of Computational Mathematics 1(3: 73-77, 2013 DOI: 10.13189/ujcmj.2013.010302 http://www.hrpub.org Cycling in Newton s Method Mikheev Serge E. Faculty of Applied Mathematics & Control

More information

The residual again. The residual is our method of judging how good a potential solution x! of a system A x = b actually is. We compute. r = b - A x!

The residual again. The residual is our method of judging how good a potential solution x! of a system A x = b actually is. We compute. r = b - A x! The residual again The residual is our method of judging how good a potential solution x! of a system A x = b actually is. We compute r = b - A x! which gives us a measure of how good or bad x! is as a

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

Math 302 Outcome Statements Winter 2013

Math 302 Outcome Statements Winter 2013 Math 302 Outcome Statements Winter 2013 1 Rectangular Space Coordinates; Vectors in the Three-Dimensional Space (a) Cartesian coordinates of a point (b) sphere (c) symmetry about a point, a line, and a

More information

Math 504 (Fall 2011) 1. (*) Consider the matrices

Math 504 (Fall 2011) 1. (*) Consider the matrices Math 504 (Fall 2011) Instructor: Emre Mengi Study Guide for Weeks 11-14 This homework concerns the following topics. Basic definitions and facts about eigenvalues and eigenvectors (Trefethen&Bau, Lecture

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

An Efficient Algorithm for the Numerical Computation of the Complex Eigenpair of a Matrix

An Efficient Algorithm for the Numerical Computation of the Complex Eigenpair of a Matrix Journal of Applied Mathematics and Physics, 2017, 5, 680-692 http://www.scirp.org/journal/jamp ISSN Online: 2327-4379 ISSN Print: 2327-4352 An Efficient Algorithm for the Numerical Computation of the Complex

More information

1 Number Systems and Errors 1

1 Number Systems and Errors 1 Contents 1 Number Systems and Errors 1 1.1 Introduction................................ 1 1.2 Number Representation and Base of Numbers............. 1 1.2.1 Normalized Floating-point Representation...........

More information

Multidimensional Scaling in R: SMACOF

Multidimensional Scaling in R: SMACOF Multidimensional Scaling in R: SMACOF Patrick Mair Institute for Statistics and Mathematics WU Vienna University of Economics and Business Jan de Leeuw Department of Statistics University of California,

More information

Contents. Preface xi. vii

Contents. Preface xi. vii Preface xi 1. Real Numbers and Monotone Sequences 1 1.1 Introduction; Real numbers 1 1.2 Increasing sequences 3 1.3 Limit of an increasing sequence 4 1.4 Example: the number e 5 1.5 Example: the harmonic

More information

Chapter 7. Number Theory. 7.1 Prime Numbers

Chapter 7. Number Theory. 7.1 Prime Numbers Chapter 7 Number Theory 7.1 Prime Numbers Any two integers can be multiplied together to produce a new integer. For example, we can multiply the numbers four and five together to produce twenty. In this

More information

The Ellipsoid Algorithm

The Ellipsoid Algorithm The Ellipsoid Algorithm John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA 9 February 2018 Mitchell The Ellipsoid Algorithm 1 / 28 Introduction Outline 1 Introduction 2 Assumptions

More information

CENTERING IN MULTILEVEL MODELS. Consider the situation in which we have m groups of individuals, where

CENTERING IN MULTILEVEL MODELS. Consider the situation in which we have m groups of individuals, where CENTERING IN MULTILEVEL MODELS JAN DE LEEUW ABSTRACT. This is an entry for The Encyclopedia of Statistics in Behavioral Science, to be published by Wiley in 2005. Consider the situation in which we have

More information

SQUAREM. An R package for Accelerating Slowly Convergent Fixed-Point Iterations Including the EM and MM algorithms.

SQUAREM. An R package for Accelerating Slowly Convergent Fixed-Point Iterations Including the EM and MM algorithms. An R package for Accelerating Slowly Convergent Fixed-Point Iterations Including the EM and MM algorithms Ravi 1 1 Division of Geriatric Medicine & Gerontology Johns Hopkins University Baltimore, MD, USA

More information

4 damped (modified) Newton methods

4 damped (modified) Newton methods 4 damped (modified) Newton methods 4.1 damped Newton method Exercise 4.1 Determine with the damped Newton method the unique real zero x of the real valued function of one variable f(x) = x 3 +x 2 using

More information

Some definitions. Math 1080: Numerical Linear Algebra Chapter 5, Solving Ax = b by Optimization. A-inner product. Important facts

Some definitions. Math 1080: Numerical Linear Algebra Chapter 5, Solving Ax = b by Optimization. A-inner product. Important facts Some definitions Math 1080: Numerical Linear Algebra Chapter 5, Solving Ax = b by Optimization M. M. Sussman sussmanm@math.pitt.edu Office Hours: MW 1:45PM-2:45PM, Thack 622 A matrix A is SPD (Symmetric

More information

UCSD ECE269 Handout #8 Prof. Young-Han Kim Wednesday, February 7, Homework Set #4 (Due: Wednesday, February 21, 2018)

UCSD ECE269 Handout #8 Prof. Young-Han Kim Wednesday, February 7, Homework Set #4 (Due: Wednesday, February 21, 2018) UCSD ECE269 Handout #8 Prof. Young-Han Kim Wednesday, February 7, 2018 Homework Set #4 (Due: Wednesday, February 21, 2018) 1. Almost orthonormal basis. Let u 1,u 2,...,u n form an orthonormal basis for

More information

NUMERICAL MATHEMATICS AND COMPUTING

NUMERICAL MATHEMATICS AND COMPUTING NUMERICAL MATHEMATICS AND COMPUTING Fourth Edition Ward Cheney David Kincaid The University of Texas at Austin 9 Brooks/Cole Publishing Company I(T)P An International Thomson Publishing Company Pacific

More information

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018 1 Linear Systems Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March, 018 Consider the system 4x y + z = 7 4x 8y + z = 1 x + y + 5z = 15. We then obtain x = 1 4 (7 + y z)

More information

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Spring 2006 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 1 / 1 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 2.4 2.6 of Rosen Introduction I When talking

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Preface. 2 Linear Equations and Eigenvalue Problem 22

Preface. 2 Linear Equations and Eigenvalue Problem 22 Contents Preface xv 1 Errors in Computation 1 1.1 Introduction 1 1.2 Floating Point Representation of Number 1 1.3 Binary Numbers 2 1.3.1 Binary number representation in computer 3 1.4 Significant Digits

More information

CH 37 DOUBLE DISTRIBUTING

CH 37 DOUBLE DISTRIBUTING CH 37 DOUBLE DISTRIBUTING 343 The Double Distributive Property W hat we need now is a way to multiply two binomials together, a skill absolutely necessary for success in this class. For example, how do

More information

Introduction Main Theorem

Introduction Main Theorem Abstract: We study the number of rational pre-images of a rational number a under the quadratic polynomial map (x) = x 2 + c. We state the existence of a uniform bound (uniform over the family of maps

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Research Article A Nice Separation of Some Seiffert-Type Means by Power Means

Research Article A Nice Separation of Some Seiffert-Type Means by Power Means International Mathematics and Mathematical Sciences Volume 2012, Article ID 40692, 6 pages doi:10.1155/2012/40692 Research Article A Nice Separation of Some Seiffert-Type Means by Power Means Iulia Costin

More information

ACM 106a: Lecture 1 Agenda

ACM 106a: Lecture 1 Agenda 1 ACM 106a: Lecture 1 Agenda Introduction to numerical linear algebra Common problems First examples Inexact computation What is this course about? 2 Typical numerical linear algebra problems Systems of

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T Heath Chapter 5 Nonlinear Equations Copyright c 2001 Reproduction permitted only for noncommercial, educational

More information

Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations

Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations Oleg Burdakov a,, Ahmad Kamandi b a Department of Mathematics, Linköping University,

More information

Nonlinear equations. Norms for R n. Convergence orders for iterative methods

Nonlinear equations. Norms for R n. Convergence orders for iterative methods Nonlinear equations Norms for R n Assume that X is a vector space. A norm is a mapping X R with x such that for all x, y X, α R x = = x = αx = α x x + y x + y We define the following norms on the vector

More information