Simons Symposium on Approximation Algorithms, February 26, 2014

Size: px
Start display at page:

Download "Simons Symposium on Approximation Algorithms, February 26, 2014"

Transcription

1 Solving Optimization Problems with Diseconomies of Scale via Decoupling Konstantin Makarychev Microsoft Research Maxim Sviridenko Yahoo Labs Simons Symposium on Approximation Algorithms, February 26, 2014

2 What is a diseconomy of scale? 6 Cost of Resources

3 What is a diseconomy of scale? 6 Cost of Resources

4 What is a diseconomy of scale? Cost of Energy used for Computing Energy consumption grows as x q as a function of speed x

5 Example: Energy Efficient Routing Given: graph G set of demand pairs (s i, t i, d i ) Goal: route d i units of unsplittable flow from s i to t i So as to minimize energy: e E c e x e q

6 Example: Energy Efficient Routing Given: graph G set of demand pairs (s i, t i, d i ) Goal: route d i units of unsplittable flow from s i to t i So as to minimize energy: e E c e x e q

7 Example: Energy Efficient Routing Given: graph G set of demand pairs (s i, t i, d i ) Goal: route d i units of unsplittable flow from s i to t i So as to minimize energy: e E c e x e q = 5 1 q q

8 What s known? Arbitrary d i : Andrews, Fernández Anta, Zhang, Zhao O(#demands + log d max ) approximation All d i are the same: Andrews, Fernández Anta, Zhang, Zhao O(1) approximation Bampis, Kononov, Letsios, Lucarelli, Sviridenko P q q approximation We give P q q approximation for the general case

9 Graph of P q q

10 LP Relaxation P i is the set of s i t i paths variable λ p for all p P i constraints: λ p p Pi λ p = d i i λ p [0, d i ] Let Λ be the set of feasible λ s.

11 LP Relaxation P i is the set of s i t i paths variable λ p for all p P i constraints: p Pi λ p = d i i λ p [0, d i ] Minimize e c e p:e p λ p q Subject to λ Λ 2 λ p = 1 n Let Λ be the set of feasible λ s. cost = 2n 1 n 2 = 2/n

12 LP Relaxation Local Distributions of Paths Minimize e c e F q,e (λ) subject to λ Λ Let F q,e = min E Y D e e D e i Y q i, e where D e is a distribution over r.v. {Y e i }; e Y i is the amount of flow s i t i going via e E Y e i = p Pi :e p λ p Y e i {0, d i }

13 Rounding Algorithm LP: Algorithm A: Minimize e c e F q,e (λ) subject to λ Λ where F q,e = min D e E Y e D e p:e p Y p e q. For each i, pick a random path p: s i t i with probability λ p /d i. Pick paths p independently for all i.

14 Analysis Algorithm A: For each i, pick a random path p: s i t i with probability λ p /d i. Pick paths p independently for all i. Analysis: Compare LP and ALG edge by edge. For every edge e: Let X i = amount of flow from s i to t i routed via e by A. All X i are independent. alg. cost e = c e i X i e q.

15 Analysis We need to compare E[alg. cost e ] = E[c e i X i e q ] LP. cost e = E[c e i Y i e q ] Each X i e has the same distribution as Y i. All X i e are independent. But Y i e are not independent

16 Decoupling Inequality (de la Peña 90) If Y 1,, Y n jointly distributed nonnegative r.v. s; X 1,, X n independent nonnegative r.v.; Each X i has the same distribution as Y i ; Then for some absolute constant C q. X X n q C q Y Y n q

17 Decoupling Inequality (de la Peña 90) If Y 1,, Y n jointly distributed nonnegative r.v. s; X 1,, X n independent nonnegative r.v.; Each X i has the same distribution as Y i ; Then X X n q C q Y Y n q De la Peña, Ibragimov, Sharakhmetov 03: C q q 2 for q (1,2]; C q q P q q for q 2.

18 Decoupling Inequality (de la Peña 90) If Y 1,, Y n jointly distributed nonnegative r.v. s; X 1,, X n independent nonnegative r.v.; Each X i has the same distribution as Y i ; Then X X n q C q Y Y n q We show that C q q = P q q, where P is a Poisson r.v. with parameter 1.

19 What is the Poisson distribution? P λ is Poisson with parameter λ P P = k = λk e λ. P λ = number of chosen points in the Poisson process: N points; each chosen w.p. λ/n k!

20 What is the Poisson distribution? P λ is Poisson with parameter λ P P = k = λk e λ. P λ = number of chosen points in the Poisson process: N points; each chosen w.p. λ/n k!

21 Decoupling Inequality (de la Peña 90) If Y 1,, Y n jointly distributed nonnegative r.v. s; X 1,, X n independent nonnegative r.v.; Each X i has the same distribution as Y i ; Then X X n q C q Y Y n q We show that C q q = P q q, where P is a Poisson r.v. with parameter 1.

22 Better Language? Yes Convex Stochastic Order

23 Convex Order Def: X cx Y if for every convex φ: Eφ X Eφ(Y). Basic Properties: cx is a property of distribution: X = st Z, X cx Y Z cx Y If X cx Y, Y cx Z X cx Z If X cx Y, then αx + β cx αy + β If X cx Y, then EX = EY We can verify only for φ with φ 0 = 0

24 Example: Random Walk X = W τ1 Y = W τ2 X cx Y τ 1 τ

25 Example: B cx P B Bernoulli r.v. with parameter p; P Poisson r.v. with parameter p Then, B cx P Proof: φ convex with φ 0 = φ P l P φ B = l(b) φ t Eφ P El P = l EP = l EB = El B = Eφ(B) l t

26 Lemma I If X, Y, Z are independent r.v s and X cx Y, Then Z + X cx Z + Y. Proof: Eφ Z + X = E E φ Z + X Z] cx E E φ Z + Y Z] = Eφ Z + Y Since for any fixed z, Eφ z + X cx Eφ z + Y.

27 Lemma II X 1,, X n are independent r.v. s; Y 1,, Y n are independent r.v. s; X i cx Y i for all i Then X X n cx Y Y n Proof: X 1 + X 2 + X 3 + X 4 cx X 1 + X 2 + X 3 + Y 4 cx X 1 + X 2 + Y 3 + Y 4 cx X 1 + Y 2 + Y 3 + Y 4 cx Y 1 + Y 2 + Y 3 + Y 4

28 Decoupling Inequality If Y 1,, Y n jointly distributed nonnegative r.v. s; X 1,, X n independent nonnegative r.v.; Each X i has the same distribution as Y i ; Then X X n cx P (Y Y n ) where P is a Poisson r.v. with parameter 1 independent of Y i s.

29 Proof of de la Peña s Inequality X X n Y Y n q q = E X X q n q q q = E Y Y n E X X n q E P Y Y n q = E P q E Y Y n q

30 Why Poisson? X 1,, X n : independent Bernoulli r.v. s with parameter 1 n; Y 1,, Y n : Pick a random i [n], let Y i = 1; Y j = 0 for j i; Then So X X n P Y Y n = 1 X X n P(Y Y n )

31 Special Case of the Theorem X 1,, X n are independent Bernoulli random variables with E X i = 1/n; Y 1,, Y n are Bernoulli random variables s.t. i Y i = 1 (always) Then Y Y n cx X X n cx P Y Y n 1 cx X X n cx P

32 Special Case of the Theorem X 1,, X n are independent Bernoulli random variables; Y 1,, Y n are Bernoulli random variables s.t. i Y i = 1 (always) α 1,, α n are non-negative numbers Then α 1 Y α n Y n cx α 1 X α n X n cx P α 1 Y 1 + +α n Y n

33 General Case We compare i Y i = y Y χ Y = y i y i y Y B y i y i y Y i B i y y i y = (y 1,, y n ) Y i X i B y Bernoulli: P B y = 1 = P Y = y

34 General Case Let Y be the support of Y = (Y 1,, Y n ). Then Y i = y Y χ Y = y y i cx y Y B i y y i where B i y is a Bernoulli with parameter P Y = y.

35 General Case Let Y be the support of Y = (Y 1,, Y n ). Then X i = st Y i = y Y χ Y = y y i cx y Y B i y y i where B i y is a Bernoulli with parameter P Y = y.

36 General Case Let Y be the support of Y = (Y 1,, Y n ). Then X i = st Y i = y Y χ Y = y y i cx y Y B i y y i where B i y is a Bernoulli with parameter P Y = y. Thus, i X i cx i y Y B i y y i = y Y ( i B i y y i ) Now, y Y( i y i ) B y cx P y Y ( i y i ) χ Y = y = P i Y i

37 Lemma: i y i B i i y i B Rescale y s.t. y i = 1. Then, E φ i y i B i i y i E φ B i = i y i E φ B = E φ B

38 Special Case of the Theorem X 1,, X n are independent Bernoulli random variables; Y 1,, Y n are Bernoulli random variables s.t. i Y i = 1 (always) α 1,, α n are non-negative numbers Then α 1 Y α n Y n cx α 1 X α n X n cx P α 1 Y 1 + +α n Y n

39 Proof: α 1 Y α n Y n cx α 1 X α n X n Consider a convex function φ with φ 0 = 0 φ is superadditive: φ a + b φ a + φ(b) φ α 1 X α n X n φ α 1 X φ α n X n Eφ i α i X i i Eφ α i X i Eφ i α i Y i = i φ(α i )P(Y i = 1) = i Eφ α i Y i

40 Proof: α 1 X α n X n cx P(α 1 Y α n Y n ) Let P i be a Poisson r.v. with parameter P(X i = 1), then α 1 X α n X n cx α 1 P α n P n P = P 1 + P n is a Poisson r.v. with parameter 1.

41 Proof: α 1 P α n P n cx P(α 1 Y α n Y n ) Let P i be a Poisson r.v. with parameter P(X i = 1), then α 1 X α n X n cx α 1 P α n P n P = P 1 + P n is a Poisson r.v. with parameter 1.

42 Proof: α 1 P α n P n cx P(α 1 Y α n Y n ) Let P = P P n. Condition on P = k > 0: E φ i α i P i ) P = k = E φ( i P i k α ik) P = k E i P i k φ α ik P = k = i φ(α i k) E P i k P = k = i φ(α i k) E P i = i φ(α i k) E Y i = E φ P i α i Y i ) P = k

43 Conclusion Introduced a new framework for problems with diseconomies of scale : Energy minimization L p -minimization Found the exact constant in de la Peña s inequality. Generalized it to other convex and concave functions.

44 X X n cx P (Y Y n ) Thank you!

STAT 430/510: Lecture 15

STAT 430/510: Lecture 15 STAT 430/510: Lecture 15 James Piette June 23, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.4... Conditional Distribution: Discrete Def: The conditional

More information

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1)

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1) Chapter 2: Linear Programming Basics (Bertsimas & Tsitsiklis, Chapter 1) 33 Example of a Linear Program Remarks. minimize 2x 1 x 2 + 4x 3 subject to x 1 + x 2 + x 4 2 3x 2 x 3 = 5 x 3 + x 4 3 x 1 0 x 3

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu https://moodle.cis.fiu.edu/v2.1/course/view.php?id=612 Gaussian Elimination! Solving a system of simultaneous

More information

11.1 Set Cover ILP formulation of set cover Deterministic rounding

11.1 Set Cover ILP formulation of set cover Deterministic rounding CS787: Advanced Algorithms Lecture 11: Randomized Rounding, Concentration Bounds In this lecture we will see some more examples of approximation algorithms based on LP relaxations. This time we will use

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

The diameter and mixing time of critical random graphs.

The diameter and mixing time of critical random graphs. The diameter and mixing time of critical random graphs. March 14, 2007 Joint work with: Asaf Nachmias. Background The Erdos and Rényi random graph G(n, p) is obtained from the complete graph on n vertices

More information

Welfare Maximization with Friends-of-Friends Network Externalities

Welfare Maximization with Friends-of-Friends Network Externalities Welfare Maximization with Friends-of-Friends Network Externalities Extended version of a talk at STACS 2015, Munich Wolfgang Dvořák 1 joint work with: Sayan Bhattacharya 2, Monika Henzinger 1, Martin Starnberger

More information

Static Problem Set 2 Solutions

Static Problem Set 2 Solutions Static Problem Set Solutions Jonathan Kreamer July, 0 Question (i) Let g, h be two concave functions. Is f = g + h a concave function? Prove it. Yes. Proof: Consider any two points x, x and α [0, ]. Let

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

On the Entropy of Sums of Bernoulli Random Variables via the Chen-Stein Method

On the Entropy of Sums of Bernoulli Random Variables via the Chen-Stein Method On the Entropy of Sums of Bernoulli Random Variables via the Chen-Stein Method Igal Sason Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel ETH, Zurich,

More information

Properties of Summation Operator

Properties of Summation Operator Econ 325 Section 003/004 Notes on Variance, Covariance, and Summation Operator By Hiro Kasahara Properties of Summation Operator For a sequence of the values {x 1, x 2,..., x n, we write the sum of x 1,

More information

Integer programming: an introduction. Alessandro Astolfi

Integer programming: an introduction. Alessandro Astolfi Integer programming: an introduction Alessandro Astolfi Outline Introduction Examples Methods for solving ILP Optimization on graphs LP problems with integer solutions Summary Introduction Integer programming

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

Problem set 4, Real Analysis I, Spring, 2015.

Problem set 4, Real Analysis I, Spring, 2015. Problem set 4, Real Analysis I, Spring, 215. (18) Let f be a measurable finite-valued function on [, 1], and suppose f(x) f(y) is integrable on [, 1] [, 1]. Show that f is integrable on [, 1]. [Hint: Show

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Optimization Methods in Management Science MIT 15.05 Recitation 8 TAs: Giacomo Nannicini, Ebrahim Nasrabadi At the end of this recitation, students should be able to: 1. Derive Gomory cut from fractional

More information

Expectation of Random Variables

Expectation of Random Variables 1 / 19 Expectation of Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 13, 2015 2 / 19 Expectation of Discrete

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Stat4 Probability and Statistics II (F6 Exponential, Poisson and Gamma Suppose on average every /λ hours, a Stochastic train arrives at the Random station. Further we assume the waiting time between two

More information

March 2002, December Introduction. We investigate the facial structure of the convex hull of the mixed integer knapsack set

March 2002, December Introduction. We investigate the facial structure of the convex hull of the mixed integer knapsack set ON THE FACETS OF THE MIXED INTEGER KNAPSACK POLYHEDRON ALPER ATAMTÜRK Abstract. We study the mixed integer knapsack polyhedron, that is, the convex hull of the mixed integer set defined by an arbitrary

More information

Topic: Primal-Dual Algorithms Date: We finished our discussion of randomized rounding and began talking about LP Duality.

Topic: Primal-Dual Algorithms Date: We finished our discussion of randomized rounding and began talking about LP Duality. CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Primal-Dual Algorithms Date: 10-17-07 14.1 Last Time We finished our discussion of randomized rounding and

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Lecture 4: Bernoulli Process

Lecture 4: Bernoulli Process Lecture 4: Bernoulli Process Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 4 Hyang-Won Lee 1 / 12 Stochastic Process A stochastic process is a mathematical model of a probabilistic

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Chapter 4 - Tail inequalities

Chapter 4 - Tail inequalities Chapter 4 - Tail inequalities Igor Gonopolskiy & Nimrod Milo BGU November 10, 2009 Igor Gonopolskiy & Nimrod Milo (BGU) Chapter 4 November 10, 2009 1 / 28 Outline 1 Definitions 2 Chernoff Bound Upper deviation

More information

Random Variables. P(x) = P[X(e)] = P(e). (1)

Random Variables. P(x) = P[X(e)] = P(e). (1) Random Variables Random variable (discrete or continuous) is used to derive the output statistical properties of a system whose input is a random variable or random in nature. Definition Consider an experiment

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be Chapter 6 Expectation and Conditional Expectation Lectures 24-30 In this chapter, we introduce expected value or the mean of a random variable. First we define expectation for discrete random variables

More information

Probability and Statistics

Probability and Statistics Probability and Statistics Jane Bae Stanford University hjbae@stanford.edu September 16, 2014 Jane Bae (Stanford) Probability and Statistics September 16, 2014 1 / 35 Overview 1 Probability Concepts Probability

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

arxiv: v1 [cs.ds] 29 Jul 2014

arxiv: v1 [cs.ds] 29 Jul 2014 Speed-scaling with no Preemptions Evripidis Bampis 1, Dimitrios Letsios 2, and Giorgio Lucarelli 1 arxiv:1407.7654v1 [cs.ds] 29 Jul 2014 1 LIP6, Université Pierre et Marie Curie, France {Evripidis.Bampis,

More information

Continuous methods for numerical linear algebra problems

Continuous methods for numerical linear algebra problems Continuous methods for numerical linear algebra problems Li-Zhi Liao (http://www.math.hkbu.edu.hk/ liliao) Department of Mathematics Hong Kong Baptist University The First International Summer School on

More information

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4,

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4, LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR OCH KOMBINATORISK OPTIMERING 2018-03-16 1. a) The rst thing to do is to rewrite the problem so that the right hand side of all constraints are positive.

More information

Speed-scaling with no Preemptions

Speed-scaling with no Preemptions Speed-scaling with no Preemptions Evripidis Bampis 1, Dimitrios Letsios 2, and Giorgio Lucarelli 1,3 1 Sorbonne Universités, UPMC Univ. Paris 06, UMR 7606, LIP6, Paris, France. Evripidis.Bampis@lip6.fr

More information

Lecture 11. Probability Theory: an Overveiw

Lecture 11. Probability Theory: an Overveiw Math 408 - Mathematical Statistics Lecture 11. Probability Theory: an Overveiw February 11, 2013 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 1 / 24 The starting point in developing the

More information

Convergence Rate of Markov Chains

Convergence Rate of Markov Chains Convergence Rate of Markov Chains Will Perkins April 16, 2013 Convergence Last class we saw that if X n is an irreducible, aperiodic, positive recurrent Markov chain, then there exists a stationary distribution

More information

Lecture 22: Variance and Covariance

Lecture 22: Variance and Covariance EE5110 : Probability Foundations for Electrical Engineers July-November 2015 Lecture 22: Variance and Covariance Lecturer: Dr. Krishna Jagannathan Scribes: R.Ravi Kiran In this lecture we will introduce

More information

A NICE PROOF OF FARKAS LEMMA

A NICE PROOF OF FARKAS LEMMA A NICE PROOF OF FARKAS LEMMA DANIEL VICTOR TAUSK Abstract. The goal of this short note is to present a nice proof of Farkas Lemma which states that if C is the convex cone spanned by a finite set and if

More information

MATH 217A HOMEWORK. P (A i A j ). First, the basis case. We make a union disjoint as follows: P (A B) = P (A) + P (A c B)

MATH 217A HOMEWORK. P (A i A j ). First, the basis case. We make a union disjoint as follows: P (A B) = P (A) + P (A c B) MATH 217A HOMEWOK EIN PEASE 1. (Chap. 1, Problem 2. (a Let (, Σ, P be a probability space and {A i, 1 i n} Σ, n 2. Prove that P A i n P (A i P (A i A j + P (A i A j A k... + ( 1 n 1 P A i n P (A i P (A

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

Homework 3 Suggested Answers

Homework 3 Suggested Answers Homework 3 Suggested Answers Answers from Simon and Blume are on the back of the book. Answers to questions from Dixit s book: 2.1. We are to solve the following budget problem, where α, β, p, q, I are

More information

ORIGINS OF STOCHASTIC PROGRAMMING

ORIGINS OF STOCHASTIC PROGRAMMING ORIGINS OF STOCHASTIC PROGRAMMING Early 1950 s: in applications of Linear Programming unknown values of coefficients: demands, technological coefficients, yields, etc. QUOTATION Dantzig, Interfaces 20,1990

More information

7.4 DO (uniqueness of minimum-cost spanning tree) Prove: if all edge weights are distinct then the minimum-cost spanning tree is unique.

7.4 DO (uniqueness of minimum-cost spanning tree) Prove: if all edge weights are distinct then the minimum-cost spanning tree is unique. Algorithms CMSC-700 http://alg1.cs.uchicago.edu Homework set #7. Posted -19. Due Wednesday, February, 01 The following problems were updated on -0: 7.1(a), 7.1(b), 7.9(b) Read the homework instructions

More information

Lecture 4: Proofs for Expectation, Variance, and Covariance Formula

Lecture 4: Proofs for Expectation, Variance, and Covariance Formula Lecture 4: Proofs for Expectation, Variance, and Covariance Formula by Hiro Kasahara Vancouver School of Economics University of British Columbia Hiro Kasahara (UBC) Econ 325 1 / 28 Discrete Random Variables:

More information

Duality. Geoff Gordon & Ryan Tibshirani Optimization /

Duality. Geoff Gordon & Ryan Tibshirani Optimization / Duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Duality in linear programs Suppose we want to find lower bound on the optimal value in our convex problem, B min x C f(x) E.g., consider

More information

The Shannon s basic inequalities refer to the following fundamental properties of entropy function:

The Shannon s basic inequalities refer to the following fundamental properties of entropy function: COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2003 International Press Vol. 3, No. 1, pp. 47-60, June 2003 004 ON A NEW NON-SHANNON TYPE INFORMATION INEQUALITY ZHEN ZHANG Abstract. Recently, K. Makarychev,

More information

2.1 Definition and graphical representation for games with up to three players

2.1 Definition and graphical representation for games with up to three players Lecture 2 The Core Let us assume that we have a TU game (N, v) and that we want to form the grand coalition. We model cooperation between all the agents in N and we focus on the sharing problem: how to

More information

Improving Christofides Algorithm for the s-t Path TSP

Improving Christofides Algorithm for the s-t Path TSP Cornell University May 21, 2012 Joint work with Bobby Kleinberg and David Shmoys Metric TSP Metric (circuit) TSP Given a weighted graph G = (V, E) (c : E R + ), find a minimum Hamiltonian circuit Triangle

More information

ORIE 6334 Spectral Graph Theory December 1, Lecture 27 Remix

ORIE 6334 Spectral Graph Theory December 1, Lecture 27 Remix ORIE 6334 Spectral Graph Theory December, 06 Lecturer: David P. Williamson Lecture 7 Remix Scribe: Qinru Shi Note: This is an altered version of the lecture I actually gave, which followed the structure

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. There are situations where one might be interested

More information

UCSD ECE250 Handout #20 Prof. Young-Han Kim Monday, February 26, Solutions to Exercise Set #7

UCSD ECE250 Handout #20 Prof. Young-Han Kim Monday, February 26, Solutions to Exercise Set #7 UCSD ECE50 Handout #0 Prof. Young-Han Kim Monday, February 6, 07 Solutions to Exercise Set #7. Minimum waiting time. Let X,X,... be i.i.d. exponentially distributed random variables with parameter λ, i.e.,

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

Integer Linear Programs

Integer Linear Programs Lecture 2: Review, Linear Programming Relaxations Today we will talk about expressing combinatorial problems as mathematical programs, specifically Integer Linear Programs (ILPs). We then see what happens

More information

Module 1: Basics and Background Lecture 5: Vector and Metric Spaces. The Lecture Contains: Definition of vector space.

Module 1: Basics and Background Lecture 5: Vector and Metric Spaces. The Lecture Contains: Definition of vector space. The Lecture Contains: Definition of vector space Dimensionality Definition of metric space file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture5/5_1.htm[6/14/2012

More information

A simple LP relaxation for the Asymmetric Traveling Salesman Problem

A simple LP relaxation for the Asymmetric Traveling Salesman Problem A simple LP relaxation for the Asymmetric Traveling Salesman Problem Thành Nguyen Cornell University, Center for Applies Mathematics 657 Rhodes Hall, Ithaca, NY, 14853,USA thanh@cs.cornell.edu Abstract.

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

linear programming and approximate constraint satisfaction

linear programming and approximate constraint satisfaction linear programming and approximate constraint satisfaction Siu On Chan MSR New England James R. Lee University of Washington Prasad Raghavendra UC Berkeley David Steurer Cornell results MAIN THEOREM: Any

More information

1 Strict local optimality in unconstrained optimization

1 Strict local optimality in unconstrained optimization ORF 53 Lecture 14 Spring 016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, April 14, 016 When in doubt on the accuracy of these notes, please cross check with the instructor s

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

EC487 Advanced Microeconomics, Part I: Lecture 2

EC487 Advanced Microeconomics, Part I: Lecture 2 EC487 Advanced Microeconomics, Part I: Lecture 2 Leonardo Felli 32L.LG.04 6 October, 2017 Properties of the Profit Function Recall the following property of the profit function π(p, w) = max x p f (x)

More information

Linear programming: algebra

Linear programming: algebra : algebra CE 377K March 26, 2015 ANNOUNCEMENTS Groups and project topics due soon Announcements Groups and project topics due soon Did everyone get my test email? Announcements REVIEW geometry Review geometry

More information

Yaming Yu Department of Statistics, University of California, Irvine Xiao-Li Meng Department of Statistics, Harvard University.

Yaming Yu Department of Statistics, University of California, Irvine Xiao-Li Meng Department of Statistics, Harvard University. Appendices to To Center or Not to Center: That is Not the Question An Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency Yaming Yu Department of Statistics, University of

More information

Approximations for MAX-SAT Problem

Approximations for MAX-SAT Problem Approximations for MAX-SAT Problem Chihao Zhang BASICS, Shanghai Jiao Tong University Oct. 23, 2012 Chihao Zhang (BASICS@SJTU) Approximations for MAX-SAT Problem Oct. 23, 2012 1 / 16 The Weighted MAX-SAT

More information

Mixing time and diameter in random graphs

Mixing time and diameter in random graphs October 5, 2009 Based on joint works with: Asaf Nachmias, and Jian Ding, Eyal Lubetzky and Jeong-Han Kim. Background The mixing time of the lazy random walk on a graph G is T mix (G) = T mix (G, 1/4) =

More information

1 Theory of the Firm: Topics and Exercises

1 Theory of the Firm: Topics and Exercises 1 Theory of the Firm: Topics and Exercises Firms maximize profits, i.e. the difference between revenues and costs, subject to technological and other, here not considered) constraints. 1.1 Technology Technology

More information

On the Bennett-Hoeffding inequality

On the Bennett-Hoeffding inequality On the Bennett-Hoeffding inequality Iosif 1,2,3 1 Department of Mathematical Sciences Michigan Technological University 2 Supported by NSF grant DMS-0805946 3 Paper available at http://arxiv.org/abs/0902.4058

More information

Chance Constrained Data Envelopment Analysis The Productive Efficiency of Units with Stochastic Outputs

Chance Constrained Data Envelopment Analysis The Productive Efficiency of Units with Stochastic Outputs Chance Constrained Data Envelopment Analysis The Productive Efficiency of Units with Stochastic Outputs Michal Houda Department of Applied Mathematics and Informatics ROBUST 2016, September 11 16, 2016

More information

Lecture 3. Mathematical methods in communication I. REMINDER. A. Convex Set. A set R is a convex set iff, x 1,x 2 R, θ, 0 θ 1, θx 1 + θx 2 R, (1)

Lecture 3. Mathematical methods in communication I. REMINDER. A. Convex Set. A set R is a convex set iff, x 1,x 2 R, θ, 0 θ 1, θx 1 + θx 2 R, (1) 3- Mathematical methods in communication Lecture 3 Lecturer: Haim Permuter Scribe: Yuval Carmel, Dima Khaykin, Ziv Goldfeld I. REMINDER A. Convex Set A set R is a convex set iff, x,x 2 R, θ, θ, θx + θx

More information

1 Column Generation and the Cutting Stock Problem

1 Column Generation and the Cutting Stock Problem 1 Column Generation and the Cutting Stock Problem In the linear programming approach to the traveling salesman problem we used the cutting plane approach. The cutting plane approach is appropriate when

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

Separation Techniques for Constrained Nonlinear 0 1 Programming

Separation Techniques for Constrained Nonlinear 0 1 Programming Separation Techniques for Constrained Nonlinear 0 1 Programming Christoph Buchheim Computer Science Department, University of Cologne and DEIS, University of Bologna MIP 2008, Columbia University, New

More information

Approximations for MAX-SAT Problem

Approximations for MAX-SAT Problem Approximations for MAX-SAT Problem Chihao Zhang BASICS, Shanghai Jiao Tong University Oct. 23, 2012 Chihao Zhang (BASICS@SJTU) Approximations for MAX-SAT Problem Oct. 23, 2012 1 / 16 The Weighted MAX-SAT

More information

LP Relaxations of Mixed Integer Programs

LP Relaxations of Mixed Integer Programs LP Relaxations of Mixed Integer Programs John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA February 2015 Mitchell LP Relaxations 1 / 29 LP Relaxations LP relaxations We want

More information

Stein Couplings for Concentration of Measure

Stein Couplings for Concentration of Measure Stein Couplings for Concentration of Measure Jay Bartroff, Subhankar Ghosh, Larry Goldstein and Ümit Işlak University of Southern California [arxiv:0906.3886] [arxiv:1304.5001] [arxiv:1402.6769] Borchard

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Convex Optimization Problems Instructor: Shaddin Dughmi Outline 1 Convex Optimization Basics 2 Common Classes 3 Interlude: Positive Semi-Definite

More information

Business Statistics 41000: Homework # 2 Solutions

Business Statistics 41000: Homework # 2 Solutions Business Statistics 4000: Homework # 2 Solutions Drew Creal February 9, 204 Question #. Discrete Random Variables and Their Distributions (a) The probabilities have to sum to, which means that 0. + 0.3

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Portfolio optimization with stochastic dominance constraints

Portfolio optimization with stochastic dominance constraints Charles University in Prague Faculty of Mathematics and Physics Portfolio optimization with stochastic dominance constraints December 16, 2014 Contents Motivation 1 Motivation 2 3 4 5 Contents Motivation

More information

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018

15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 15-850: Advanced Algorithms CMU, Fall 2018 HW #4 (out October 17, 2018) Due: October 28, 2018 Usual rules. :) Exercises 1. Lots of Flows. Suppose you wanted to find an approximate solution to the following

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 2. Countable Markov Chains I started Chapter 2 which talks about Markov chains with a countably infinite number of states. I did my favorite example which is on

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

ECE353: Probability and Random Processes. Lecture 5 - Cumulative Distribution Function and Expectation

ECE353: Probability and Random Processes. Lecture 5 - Cumulative Distribution Function and Expectation ECE353: Probability and Random Processes Lecture 5 - Cumulative Distribution Function and Expectation Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu

More information

Recent Progress in Approximation Algorithms for the Traveling Salesman Problem

Recent Progress in Approximation Algorithms for the Traveling Salesman Problem Recent Progress in Approximation Algorithms for the Traveling Salesman Problem Lecture 4: s-t path TSP for graph TSP David P. Williamson Cornell University July 18-22, 2016 São Paulo School of Advanced

More information

Today: Linear Programming (con t.)

Today: Linear Programming (con t.) Today: Linear Programming (con t.) COSC 581, Algorithms April 10, 2014 Many of these slides are adapted from several online sources Reading Assignments Today s class: Chapter 29.4 Reading assignment for

More information

An Introduction to Matroids & Greedy in Approximation Algorithms

An Introduction to Matroids & Greedy in Approximation Algorithms An Introduction to Matroids & Greedy in Approximation Algorithms (Juliàn Mestre, ESA 2006) CoReLab Monday seminar presentation: Evangelos Bampas 1/21 Subset systems CoReLab Monday seminar presentation:

More information

Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement

Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement Jefferson Huang March 21, 2018 Reinforcement Learning for Processing Networks Seminar Cornell University Performance

More information

Weak convergence in Probability Theory A summer excursion! Day 3

Weak convergence in Probability Theory A summer excursion! Day 3 BCAM June 2013 1 Weak convergence in Probability Theory A summer excursion! Day 3 Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM June 2013 2 Day 1: Basic

More information

Polyhedral Results for A Class of Cardinality Constrained Submodular Minimization Problems

Polyhedral Results for A Class of Cardinality Constrained Submodular Minimization Problems Polyhedral Results for A Class of Cardinality Constrained Submodular Minimization Problems Shabbir Ahmed and Jiajin Yu Georgia Institute of Technology A Motivating Problem [n]: Set of candidate investment

More information

A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region

A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region Eissa Nematollahi Tamás Terlaky January 5, 2008 Abstract By introducing some redundant Klee-Minty constructions,

More information

6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes

6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes 6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes Daron Acemoglu and Asu Ozdaglar MIT September 16, 2009 1 Outline Erdös-Renyi random graph model Branching processes Phase transitions

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 5 Sequential Monte Carlo methods I 31 March 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Randomized Load Balancing:The Power of 2 Choices

Randomized Load Balancing:The Power of 2 Choices Randomized Load Balancing: The Power of 2 Choices June 3, 2010 Balls and Bins Problem We have m balls that are thrown into n bins, the location of each ball chosen independently and uniformly at random

More information

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang.

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang. Florida State University March 1, 2018 Framework 1. (Lizhe) Basic inequalities Chernoff bounding Review for STA 6448 2. (Lizhe) Discrete-time martingales inequalities via martingale approach 3. (Boning)

More information

Linear and Integer Programming - ideas

Linear and Integer Programming - ideas Linear and Integer Programming - ideas Paweł Zieliński Institute of Mathematics and Computer Science, Wrocław University of Technology, Poland http://www.im.pwr.wroc.pl/ pziel/ Toulouse, France 2012 Literature

More information

Twelfth Problem Assignment

Twelfth Problem Assignment EECS 401 Not Graded PROBLEM 1 Let X 1, X 2,... be a sequence of independent random variables that are uniformly distributed between 0 and 1. Consider a sequence defined by (a) Y n = max(x 1, X 2,..., X

More information

Fenchel Duality between Strong Convexity and Lipschitz Continuous Gradient

Fenchel Duality between Strong Convexity and Lipschitz Continuous Gradient Fenchel Duality between Strong Convexity and Lipschitz Continuous Gradient Xingyu Zhou The Ohio State University zhou.2055@osu.edu December 5, 2017 Xingyu Zhou (OSU) Fenchel Duality December 5, 2017 1

More information