CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S

Size: px
Start display at page:

Download "CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S"

Transcription

1 ECO 513 Fall 25 C. Sims CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S 1. THE GENERAL IDEA As is documented elsewhere Sims (revised 1996, 2), there is a strong tendency for estimated time series models, when the estimates are based on a flat prior and on likelihood conditional on initial observations, to attribute unreasonable explanatory power to initial conditions. Since classical estimation methods (like OLS in simple unrestricted VAR s) are close to flat-prior Bayesian methods, they have this same tendency. The pathology is reflected, in classical distribution theory, in the small-sample bias toward stationarity in estimated models. The problem with the flat-prior estimates is that in these models a flat prior implies that we give considerable credence to the possibility that in our sample initial conditions are very far from the model s steady state. If this were true, it would imply that the data contain an initial transient" that allows the model to be estimated with much higher precision in the sample at hand than would be the case in a typical sample taken from data after the end of the current sample period. While this may be a realistic possibility for some applications, in most economic applications it is not. One solution to this problem is to use the unconditional likelihood. That is, derive the mapping from the model s parameters to the unconditional distribution of the initial conditions, and combine that pdf with the usual likelihood function in doing inference. This approach requires the use of iterative nonlinear optimization methods, but it is quite feasible. The main disadvantage of this approach is that, because there is no unconditional distribution of the initial conditions if the model implies non-stationarity, the approach applies only when we are certain in advance that the model should imply stationarity, and this is seldom the case in economic applications. Another approach is to introduce a prior that captures our belief that it is implausible that initial transients explain a large part of observed long-run variation, which is what we explain how to do here. 2. MECHANICS The basic idea of dummy observation priors for VAR s is the same as that for dummy observation priors in ordinary regression models. Intuitively, one adds extra data" to the sample that express prior beliefs about the parameters. The prior takes the form of the likelihood function for the dummy observations. The difference from single-equation regression models is that the added observations are used in all the equations of the system, not just in one. Circumstances can arise where one has beliefs about parameters in some equations but not others, or has different beliefs about different equations. In fact, the Minnesota Prior" that has been widely used in VAR forecasting models and is automated in the Date: May 9, 26. c 26 by Christopher A. Sims. This document may be reproduced for educational and research purposes, so long as the copies contain this notice and are retained for personal use or distributed free.

2 2 CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S RATS program has this character. It might seem we could handle such a prior just by creating separate sets of dummy observation for each equation, and indeed this is the way RATS and most of the research in the literature that uses priors has implemented them. However, once the dummy observations differ across equations, the seemingly unrelated regressions algebra that justifies equation-by-equation estimation no longer applies. So to maintain internal consistency in likelihood calculations, it is best to stick to pure systemwide dummy observations. Such dummy observations amount to stating prior beliefs about how the whole system will behave. In all our discussion below we will assume a model in the form (1) y(t) = c + k B s y(t s) + ε(t) with data for t = 1,..., T and ε(t) {y(t s), s 1; B, c, Σ} N(, Σ) The one-unit-root prior. The type of prior we describe here is called in the published literature a dummy initial observation" prior. This is not very descriptive however, so we ll call it the one-unit-root prior. We introduce data for the artificial date t in which y(t ) n 1 = y(t 1) =... = y(t k) = ȳ λ n 1 and the vector of 1 s that corresponds to the constant term in the data matrix is set to λ in the t observation. The vector ȳ is usually set to the sample mean of the initial conditions, i.e. (2) ȳ = 1 k k y(1 k). If we write out the equation for this observation, we get ( k (3) ȳλ = B s )ȳλ + cλ + ε(t ). If I B(1) is full rank, this equation can be rearranged to read (4) ȳ = ( I B(1) ) 1 c + ( I B(1) ) 1ε(t)λ 1. It might appear, then, that the dummy observation is equivalent to asserting an unconditional pdf for ȳ, i.e. ( (I ) 1c, (5) ȳ {B, c, Σ} N B(1) λ 2 ( I B(1) ) 1 ( ) ) 1 Σ I B(1). In the case where n = k = 1, so ȳ = y(), this would simply be an unconditional pdf for y(). Otherwise, it is an unconditional pdf for a particular set of linear combination of elements of the initial conditions {y(),..., y( k + 1)}, so amounts to an improper unconditional pdf for the initial conditions. However, the dummy observation does not actually add to the log likelihood the same terms that we would add by using (5) as an unconditional pdf for the initial conditions. The dummy observation adds the terms (6) 1 2 log Σ λ2 2 (( I B(1) )ȳ c ) Σ 1 (( I B(1) ) ȳ c ).

3 CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S 3 Using (5) as an unconditional distribution for ȳ would add the same terms, but in addition would add log λ + log I B(1). The extra term in λ has no effect on the posterior for c, B and Σ, but the term in B(1) has an important effect. In using the dummy observation, then, we are acting as if we have an unconditional distribution for ȳ given by (5), and at the same time have an improper prior on B proportional to I B(1) 1. The reason for calling this dummy observation a single-unit root" prior is that I B(1) = is exactly the condition that there be at least one unit root in the system. Thus the prior is centered on a part of the parameter space where either c = and the system contains a unit root with ȳ as its eigenvector, or c =, y is stationary, and y() is close to the model s implied population mean. If one wants the prior to lean more sharply toward the presence of a unit root, one can introduce separate dummy observations in which all the y s are zero and the element of the data matrix to which c applies is non-zero. In conjunction with the single-unit-root prior as we have set it out, this forces c closer to zero and thus beliefs closer to a unit-root case. One could also add dummy observations that have the same form as the single-unitroot dummy observation, except that the column of the data matrix corresponding to c is set to zero. This type of dummy observation used alone would center on the region where there is at least one unit root and would not give a priori plausibility to any stationary models. If used in isolation, though, it puts no limits on c, and thus could allow estimates in which, despite the presence of a unit root, there are still strong initial transients. 3. NO-COINTEGRATION DUMMY OBSERVATIONS Cointegration is the situation where a model has some stable roots and some unit roots. If I B(1) has m unit eigenvalues (with y n 1), none of which are repeated 1, then there are n m linear combinations z γ (t) = γy(t) that are stationary, even though it may well be that every element of the y vector is non-stationary. The single-unit-root prior is consistent with the presence of cointegration, since it favors only the existence of some unit root. A set of n dummy observations that centers on unit-root behavior separately for each element of y can be formed by taking as the j th dummy observation one in which, at the artificial date t j,. (7) y(t j ) = ȳ j λ = y(t j 1) =... = y(t j k),. 1 In the sense that none gives rise to off-diagonal entries in the Jordan decomposition. The literature on cointegration has tended to focus on this case, even though it is hard to see why we should be confident a priori that unit roots will not repeat.

4 4 CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S with the ȳ j in the bracketed vector occurring in the j th position, and the column of the data matrix corresponding to c set to. This dummy observation then reads as, for the j th equation (8) λȳ j = s and for k = j, (9) = s B jjs ȳ j λ + ε j (t j ) B kjs ȳ j + ε k (t j ). It is easy to see that this prior favors B s whose off-diagonal elements are small, and also B s that are close to putting a unit root in the B jj (L) polynomial for each j. This prior works to suppress initial transients, but it does much more than that. It may be useful as an approximate representation of widely shared prior beliefs (that unit roots are present, that cross-variable relations are weak) but it should not be justified solely by appeal to the idea that initial transients are implausible. This kind of dummy observation also puts no limits on c. Thus if one wants to downweight versions of the model in which there are unit roots and c 2 j >> Σ jj, i.e. models in which deterministic trend components are much more important than the error term, then one should combine these no-cointegration dummy observations with dummy observations that favor c =. Note that dummy observation priors can be combined. It has been common in applied work to apply both single-unit-root and no-cointegration dummy observations. 4. THE MINNESOTA PRIOR We are working back in historical time. The use of no-cointegration priors in applied work preceded the use of single-unit-root priors, but preceding them both was the Minnesota Prior. The Minnesota Prior postulates a separate set of dummy observations for each equation, implementing a prior that specifies independent distributions for all coefficients, with the coefficient B jks having mean unless j = k and s = 1, in which case the mean is 1, and variance π1 1 π1 δ(j,k) 2 s π 3, where δ(j, k) is a function equal to 1 if j = k and otherwise. With π 2 < 1, this prior specifies that coefficients on own lags (B jj (s), s = 1,..., k) are likely to be larger in absolute value than coefficients on other variables, and with π 3 >, it specifies that coefficients on more distant lags are likely to be smaller. This prior has usually been implemented, inconsistently, via separate OLS estimates using a distinct set of dummy observations on each equation. As we have already pointed out, the usual ML or posterior mean interpretation of equation-by-equation OLS is not correct when the data matrix (dummy observations or otherwise) is different across equations. If we omit the π 2 term (that is, set it to 1), then own lag coefficients and crossvariable coefficients are treated symmetrically, and the prior can be implemented with system-wide dummy observations. If t ks is the artificial date for the dummy observation applying to the s th lag of the k th variable, one of these dummy observations has the

5 form (1) CONJUGATE DUMMY OBSERVATION PRIORS FOR VAR S 5.. y(t k1 ) = π 1 σ k = y(t k1 1), y(t ks s) = π 1 s π 3σ k,. (11) y(t ks v) = for v = s > 1 and for v > s = 1. The parameter σ k is a measure of the degree of variability in the k th variable. It has most commonly, again somewhat inconsistently, been set by estimating a low-order univariate AR regression for each variable and taking σ k to be the standard deviation of the residual of that regression. It could also be set as the sample standard deviation of the initial conditions for each variable. In a recent paper Sims and Zha (1998) a new approach to variable-by-variable setting of the prior has been proposed that captures the spirit of the Minnesota Prior without the inconsistencies and with nearly the same degree of convenience. The approach of that paper also generalizes to the case of structural VAR s (models with restrictions on Σ), which the Minnesota Prior does not. In this course, we will not have time to go into the details of this new approach. 5. EXERCISE DUE FRIDAY, 12/17 Repeat the VAR estimation and testing that you carried out for the last exercise, this time with a single-unit-root prior with λ = 1 on each system you estimate. Compare the results to those you obtained originally. For each estimated system, compute and plot the actual time series y(t), t = 1,..., T and the projections from initial conditions, E [y(t)], t = 1,..., T. Was there a problem with initial transients to start with? Did the single-unit-root prior fix" it? REFERENCES SIMS, C. A. (2): Using a Likelihood Perspective to Sharpen Econometric Discourse: Three Examples, Journal of Econometrics, 95(2), , edu/~sims/. (revised 1996): Inference for Multivariate Time Series with Trend, Discussion paper, presented at the 1992 American Statistical Association Meetings, http: //sims.princeton.edu/yftp/trends/asapaper.pdf. SIMS, C. A., AND T. ZHA (1998): Bayesian Methods for Dynamic Multivariate Models, International Economic Review..

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS

ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS ECO 513 Fall 2009 C. Sims HIDDEN MARKOV CHAIN MODELS 1. THE CLASS OF MODELS y t {y s, s < t} p(y t θ t, {y s, s < t}) θ t = θ(s t ) P[S t = i S t 1 = j] = h ij. 2. WHAT S HANDY ABOUT IT Evaluating the

More information

Eco517 Fall 2014 C. Sims FINAL EXAM

Eco517 Fall 2014 C. Sims FINAL EXAM Eco517 Fall 2014 C. Sims FINAL EXAM This is a three hour exam. You may refer to books, notes, or computer equipment during the exam. You may not communicate, either electronically or in any other way,

More information

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM Eco517 Fall 2004 C. Sims MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM 1. SOMETHING WE SHOULD ALREADY HAVE MENTIONED A t n (µ, Σ) distribution converges, as n, to a N(µ, Σ). Consider the univariate

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

ECO 513 Fall 2008 C.Sims KALMAN FILTER. s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. u t = r t. u 0 0 t 1 + y t = [ H I ] u t.

ECO 513 Fall 2008 C.Sims KALMAN FILTER. s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. u t = r t. u 0 0 t 1 + y t = [ H I ] u t. ECO 513 Fall 2008 C.Sims KALMAN FILTER Model in the form 1. THE KALMAN FILTER Plant equation : s t = As t 1 + ε t Measurement equation : y t = Hs t + ν t. Var(ε t ) = Ω, Var(ν t ) = Ξ. ε t ν t and (ε t,

More information

(I AL BL 2 )z t = (I CL)ζ t, where

(I AL BL 2 )z t = (I CL)ζ t, where ECO 513 Fall 2011 MIDTERM EXAM The exam lasts 90 minutes. Answer all three questions. (1 Consider this model: x t = 1.2x t 1.62x t 2 +.2y t 1.23y t 2 + ε t.7ε t 1.9ν t 1 (1 [ εt y t = 1.4y t 1.62y t 2

More information

MAKING MACRO MODELS BEHAVE REASONABLY

MAKING MACRO MODELS BEHAVE REASONABLY MAKING MACRO MODELS BEHAVE REASONABLY CHRISTOPHER A. SIMS ABSTRACT. Using the idea of generalized dummy observations, we extend the methods of Del Negro and Schorfheide (DS), who have proposed a way to

More information

COMMENT ON DEL NEGRO, SCHORFHEIDE, SMETS AND WOUTERS COMMENT ON DEL NEGRO, SCHORFHEIDE, SMETS AND WOUTERS

COMMENT ON DEL NEGRO, SCHORFHEIDE, SMETS AND WOUTERS COMMENT ON DEL NEGRO, SCHORFHEIDE, SMETS AND WOUTERS COMMENT ON DEL NEGRO, SCHORFHEIDE, SMETS AND WOUTERS COMMENT ON DEL NEGRO, SCHORFHEIDE, SMETS AND WOUTERS CHRISTOPHER A. SIMS 1. WHY THIS APPROACH HAS BEEN SUCCESSFUL This paper sets out to blend the advantages

More information

Econ 423 Lecture Notes: Additional Topics in Time Series 1

Econ 423 Lecture Notes: Additional Topics in Time Series 1 Econ 423 Lecture Notes: Additional Topics in Time Series 1 John C. Chao April 25, 2017 1 These notes are based in large part on Chapter 16 of Stock and Watson (2011). They are for instructional purposes

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Estimation and Inference Gerald P. Dwyer Trinity College, Dublin January 2013 Who am I? Visiting Professor and BB&T Scholar at Clemson University Federal Reserve Bank of Atlanta

More information

Cointegrated VAR s. Eduardo Rossi University of Pavia. November Rossi Cointegrated VAR s Financial Econometrics / 56

Cointegrated VAR s. Eduardo Rossi University of Pavia. November Rossi Cointegrated VAR s Financial Econometrics / 56 Cointegrated VAR s Eduardo Rossi University of Pavia November 2013 Rossi Cointegrated VAR s Financial Econometrics - 2013 1 / 56 VAR y t = (y 1t,..., y nt ) is (n 1) vector. y t VAR(p): Φ(L)y t = ɛ t The

More information

Testing Restrictions and Comparing Models

Testing Restrictions and Comparing Models Econ. 513, Time Series Econometrics Fall 00 Chris Sims Testing Restrictions and Comparing Models 1. THE PROBLEM We consider here the problem of comparing two parametric models for the data X, defined by

More information

MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1)

MID-TERM EXAM ANSWERS. p t + δ t = Rp t 1 + η t (1.1) ECO 513 Fall 2005 C.Sims MID-TERM EXAM ANSWERS (1) Suppose a stock price p t and the stock dividend δ t satisfy these equations: p t + δ t = Rp t 1 + η t (1.1) δ t = γδ t 1 + φp t 1 + ε t, (1.2) where

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

E 4160 Autumn term Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test

E 4160 Autumn term Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test E 4160 Autumn term 2016. Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test Ragnar Nymoen Department of Economics, University of Oslo 24 October

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Multivariate Time Series Analysis: VAR Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) VAR 01/13 1 / 25 Structural equations Suppose have simultaneous system for supply

More information

Eco517 Fall 2014 C. Sims MIDTERM EXAM

Eco517 Fall 2014 C. Sims MIDTERM EXAM Eco57 Fall 204 C. Sims MIDTERM EXAM You have 90 minutes for this exam and there are a total of 90 points. The points for each question are listed at the beginning of the question. Answer all questions.

More information

ECON 4160, Spring term Lecture 12

ECON 4160, Spring term Lecture 12 ECON 4160, Spring term 2013. Lecture 12 Non-stationarity and co-integration 2/2 Ragnar Nymoen Department of Economics 13 Nov 2013 1 / 53 Introduction I So far we have considered: Stationary VAR, with deterministic

More information

Switching Regime Estimation

Switching Regime Estimation Switching Regime Estimation Series de Tiempo BIrkbeck March 2013 Martin Sola (FE) Markov Switching models 01/13 1 / 52 The economy (the time series) often behaves very different in periods such as booms

More information

APPLIED TIME SERIES ECONOMETRICS

APPLIED TIME SERIES ECONOMETRICS APPLIED TIME SERIES ECONOMETRICS Edited by HELMUT LÜTKEPOHL European University Institute, Florence MARKUS KRÄTZIG Humboldt University, Berlin CAMBRIDGE UNIVERSITY PRESS Contents Preface Notation and Abbreviations

More information

Regression. ECO 312 Fall 2013 Chris Sims. January 12, 2014

Regression. ECO 312 Fall 2013 Chris Sims. January 12, 2014 ECO 312 Fall 2013 Chris Sims Regression January 12, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License What

More information

Vector Autoregression

Vector Autoregression Vector Autoregression Jamie Monogan University of Georgia February 27, 2018 Jamie Monogan (UGA) Vector Autoregression February 27, 2018 1 / 17 Objectives By the end of these meetings, participants should

More information

Simultaneous Equation Models Learning Objectives Introduction Introduction (2) Introduction (3) Solving the Model structural equations

Simultaneous Equation Models Learning Objectives Introduction Introduction (2) Introduction (3) Solving the Model structural equations Simultaneous Equation Models. Introduction: basic definitions 2. Consequences of ignoring simultaneity 3. The identification problem 4. Estimation of simultaneous equation models 5. Example: IS LM model

More information

G. S. Maddala Kajal Lahiri. WILEY A John Wiley and Sons, Ltd., Publication

G. S. Maddala Kajal Lahiri. WILEY A John Wiley and Sons, Ltd., Publication G. S. Maddala Kajal Lahiri WILEY A John Wiley and Sons, Ltd., Publication TEMT Foreword Preface to the Fourth Edition xvii xix Part I Introduction and the Linear Regression Model 1 CHAPTER 1 What is Econometrics?

More information

New Introduction to Multiple Time Series Analysis

New Introduction to Multiple Time Series Analysis Helmut Lütkepohl New Introduction to Multiple Time Series Analysis With 49 Figures and 36 Tables Springer Contents 1 Introduction 1 1.1 Objectives of Analyzing Multiple Time Series 1 1.2 Some Basics 2

More information

ERROR BANDS FOR IMPULSE RESPONSES *

ERROR BANDS FOR IMPULSE RESPONSES * ERROR BANDS FOR IMPULSE RESPONSES * Christopher A. Sims Yale University and Tao Zha University of Saskatchewan August 1994 * Support for this research was provided in part by National Science Foundation

More information

Multivariate Time Series: Part 4

Multivariate Time Series: Part 4 Multivariate Time Series: Part 4 Cointegration Gerald P. Dwyer Clemson University March 2016 Outline 1 Multivariate Time Series: Part 4 Cointegration Engle-Granger Test for Cointegration Johansen Test

More information

Vector autoregressions, VAR

Vector autoregressions, VAR 1 / 45 Vector autoregressions, VAR Chapter 2 Financial Econometrics Michael Hauser WS17/18 2 / 45 Content Cross-correlations VAR model in standard/reduced form Properties of VAR(1), VAR(p) Structural VAR,

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

Econometrics Summary Algebraic and Statistical Preliminaries

Econometrics Summary Algebraic and Statistical Preliminaries Econometrics Summary Algebraic and Statistical Preliminaries Elasticity: The point elasticity of Y with respect to L is given by α = ( Y/ L)/(Y/L). The arc elasticity is given by ( Y/ L)/(Y/L), when L

More information

PROBABILITY MODELS FOR MONETARY POLICY DECISIONS. I.3. Lack of a language to discuss uncertainty about models and parameters.

PROBABILITY MODELS FOR MONETARY POLICY DECISIONS. I.3. Lack of a language to discuss uncertainty about models and parameters. PROBABILITY MODELS FOR MONETARY POLICY DECISIONS CHRISTOPHER A. SIMS ABSTRACT. To be written. I. THE STATE OF CENTRAL BANK POLICY MODELING I.1. Not probability models. I.2. Ad hoc econometrics layered

More information

E 4101/5101 Lecture 9: Non-stationarity

E 4101/5101 Lecture 9: Non-stationarity E 4101/5101 Lecture 9: Non-stationarity Ragnar Nymoen 30 March 2011 Introduction I Main references: Hamilton Ch 15,16 and 17. Davidson and MacKinnon Ch 14.3 and 14.4 Also read Ch 2.4 and Ch 2.5 in Davidson

More information

Economics 308: Econometrics Professor Moody

Economics 308: Econometrics Professor Moody Economics 308: Econometrics Professor Moody References on reserve: Text Moody, Basic Econometrics with Stata (BES) Pindyck and Rubinfeld, Econometric Models and Economic Forecasts (PR) Wooldridge, Jeffrey

More information

PhD/MA Econometrics Examination January 2012 PART A

PhD/MA Econometrics Examination January 2012 PART A PhD/MA Econometrics Examination January 2012 PART A ANSWER ANY TWO QUESTIONS IN THIS SECTION NOTE: (1) The indicator function has the properties: (2) Question 1 Let, [defined as if using the indicator

More information

ECON 4160, Lecture 11 and 12

ECON 4160, Lecture 11 and 12 ECON 4160, 2016. Lecture 11 and 12 Co-integration Ragnar Nymoen Department of Economics 9 November 2017 1 / 43 Introduction I So far we have considered: Stationary VAR ( no unit roots ) Standard inference

More information

Eco504, Part II Spring 2010 C. Sims PITFALLS OF LINEAR APPROXIMATION OF STOCHASTIC MODELS

Eco504, Part II Spring 2010 C. Sims PITFALLS OF LINEAR APPROXIMATION OF STOCHASTIC MODELS Eco504, Part II Spring 2010 C. Sims PITFALLS OF LINEAR APPROXIMATION OF STOCHASTIC MODELS 1. A LIST OF PITFALLS Linearized models are of course valid only locally. In stochastic economic models, this usually

More information

Christopher Dougherty London School of Economics and Political Science

Christopher Dougherty London School of Economics and Political Science Introduction to Econometrics FIFTH EDITION Christopher Dougherty London School of Economics and Political Science OXFORD UNIVERSITY PRESS Contents INTRODU CTION 1 Why study econometrics? 1 Aim of this

More information

The regression model with one stochastic regressor.

The regression model with one stochastic regressor. The regression model with one stochastic regressor. 3150/4150 Lecture 6 Ragnar Nymoen 30 January 2012 We are now on Lecture topic 4 The main goal in this lecture is to extend the results of the regression

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

TESTING FOR CO-INTEGRATION

TESTING FOR CO-INTEGRATION Bo Sjö 2010-12-05 TESTING FOR CO-INTEGRATION To be used in combination with Sjö (2008) Testing for Unit Roots and Cointegration A Guide. Instructions: Use the Johansen method to test for Purchasing Power

More information

Inference when identifying assumptions are doubted. A. Theory B. Applications

Inference when identifying assumptions are doubted. A. Theory B. Applications Inference when identifying assumptions are doubted A. Theory B. Applications 1 A. Theory Structural model of interest: A y t B 1 y t1 B m y tm u t nn n1 u t i.i.d. N0, D D diagonal 2 Bayesian approach:

More information

Inference when identifying assumptions are doubted. A. Theory. Structural model of interest: B 1 y t1. u t. B m y tm. u t i.i.d.

Inference when identifying assumptions are doubted. A. Theory. Structural model of interest: B 1 y t1. u t. B m y tm. u t i.i.d. Inference when identifying assumptions are doubted A. Theory B. Applications Structural model of interest: A y t B y t B m y tm nn n i.i.d. N, D D diagonal A. Theory Bayesian approach: Summarize whatever

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Eco517 Fall 2004 C. Sims MIDTERM EXAM

Eco517 Fall 2004 C. Sims MIDTERM EXAM Eco517 Fall 2004 C. Sims MIDTERM EXAM Answer all four questions. Each is worth 23 points. Do not devote disproportionate time to any one question unless you have answered all the others. (1) We are considering

More information

Using EViews Vox Principles of Econometrics, Third Edition

Using EViews Vox Principles of Econometrics, Third Edition Using EViews Vox Principles of Econometrics, Third Edition WILLIAM E. GRIFFITHS University of Melbourne R. CARTER HILL Louisiana State University GUAY С LIM University of Melbourne JOHN WILEY & SONS, INC

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Økonomisk Kandidateksamen 2005(I) Econometrics 2 January 20, 2005

Økonomisk Kandidateksamen 2005(I) Econometrics 2 January 20, 2005 Økonomisk Kandidateksamen 2005(I) Econometrics 2 January 20, 2005 This is a four hours closed-book exam (uden hjælpemidler). Answer all questions! The questions 1 to 4 have equal weight. Within each question,

More information

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem

Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Lecture 5: Unit Roots, Cointegration and Error Correction Models The Spurious Regression Problem Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Stochastic vs. deterministic

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

Multivariate ARMA Processes

Multivariate ARMA Processes LECTURE 8 Multivariate ARMA Processes A vector y(t) of n elements is said to follow an n-variate ARMA process of orders p and q if it satisfies the equation (1) A 0 y(t) + A 1 y(t 1) + + A p y(t p) = M

More information

Advanced Econometrics

Advanced Econometrics Based on the textbook by Verbeek: A Guide to Modern Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna May 2, 2013 Outline Univariate

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Econometrics Review questions for exam

Econometrics Review questions for exam Econometrics Review questions for exam Nathaniel Higgins nhiggins@jhu.edu, 1. Suppose you have a model: y = β 0 x 1 + u You propose the model above and then estimate the model using OLS to obtain: ŷ =

More information

A Guide to Modern Econometric:

A Guide to Modern Econometric: A Guide to Modern Econometric: 4th edition Marno Verbeek Rotterdam School of Management, Erasmus University, Rotterdam B 379887 )WILEY A John Wiley & Sons, Ltd., Publication Contents Preface xiii 1 Introduction

More information

Introduction to Eco n o m et rics

Introduction to Eco n o m et rics 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Introduction to Eco n o m et rics Third Edition G.S. Maddala Formerly

More information

Dynamic Regression Models (Lect 15)

Dynamic Regression Models (Lect 15) Dynamic Regression Models (Lect 15) Ragnar Nymoen University of Oslo 21 March 2013 1 / 17 HGL: Ch 9; BN: Kap 10 The HGL Ch 9 is a long chapter, and the testing for autocorrelation part we have already

More information

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE -MODULE2 Midterm Exam Solutions - March 2015

FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE -MODULE2 Midterm Exam Solutions - March 2015 FINANCIAL ECONOMETRICS AND EMPIRICAL FINANCE -MODULE2 Midterm Exam Solutions - March 205 Time Allowed: 60 minutes Family Name (Surname) First Name Student Number (Matr.) Please answer all questions by

More information

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation Patrick Breheny February 8 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/27 Introduction Basic idea Standardization Large-scale testing is, of course, a big area and we could keep talking

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

Introduction to Econometrics

Introduction to Econometrics Introduction to Econometrics T H I R D E D I T I O N Global Edition James H. Stock Harvard University Mark W. Watson Princeton University Boston Columbus Indianapolis New York San Francisco Upper Saddle

More information

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting)

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) (overshort example) White noise H 0 : Let Z t be the stationary

More information

1 Teaching notes on structural VARs.

1 Teaching notes on structural VARs. Bent E. Sørensen November 8, 2016 1 Teaching notes on structural VARs. 1.1 Vector MA models: 1.1.1 Probability theory The simplest to analyze, estimation is a different matter time series models are the

More information

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017

Introduction to Regression Analysis. Dr. Devlina Chatterjee 11 th August, 2017 Introduction to Regression Analysis Dr. Devlina Chatterjee 11 th August, 2017 What is regression analysis? Regression analysis is a statistical technique for studying linear relationships. One dependent

More information

BEAR 4.2. Introducing Stochastic Volatility, Time Varying Parameters and Time Varying Trends. A. Dieppe R. Legrand B. van Roye ECB.

BEAR 4.2. Introducing Stochastic Volatility, Time Varying Parameters and Time Varying Trends. A. Dieppe R. Legrand B. van Roye ECB. BEAR 4.2 Introducing Stochastic Volatility, Time Varying Parameters and Time Varying Trends A. Dieppe R. Legrand B. van Roye ECB 25 June 2018 The views expressed in this presentation are the authors and

More information

7. Integrated Processes

7. Integrated Processes 7. Integrated Processes Up to now: Analysis of stationary processes (stationary ARMA(p, q) processes) Problem: Many economic time series exhibit non-stationary patterns over time 226 Example: We consider

More information

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I.

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I. Vector Autoregressive Model Vector Autoregressions II Empirical Macroeconomics - Lect 2 Dr. Ana Beatriz Galvao Queen Mary University of London January 2012 A VAR(p) model of the m 1 vector of time series

More information

USING A LIKELIHOOD PERSPECTIVE TO SHARPEN ECONOMETRIC DISCOURSE: THREE EXAMPLES

USING A LIKELIHOOD PERSPECTIVE TO SHARPEN ECONOMETRIC DISCOURSE: THREE EXAMPLES USING A LIKELIHOOD PERSPECTIVE TO SHARPEN ECONOMETRIC DISCOURSE: THREE EXAMPLES CHRISTOPHER A. SIMS Abstract. This paper discusses a number of areas of inference where dissatisfaction by applied workers

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

Multivariate forecasting with VAR models

Multivariate forecasting with VAR models Multivariate forecasting with VAR models Franz Eigner University of Vienna UK Econometric Forecasting Prof. Robert Kunst 16th June 2009 Overview Vector autoregressive model univariate forecasting multivariate

More information

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8]

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] 1 Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] Insights: Price movements in one market can spread easily and instantly to another market [economic globalization and internet

More information

Vector Autogregression and Impulse Response Functions

Vector Autogregression and Impulse Response Functions Chapter 8 Vector Autogregression and Impulse Response Functions 8.1 Vector Autogregressions Consider two sequences {y t } and {z t }, where the time path of {y t } is affected by current and past realizations

More information

Linear Models 1. Isfahan University of Technology Fall Semester, 2014

Linear Models 1. Isfahan University of Technology Fall Semester, 2014 Linear Models 1 Isfahan University of Technology Fall Semester, 2014 References: [1] G. A. F., Seber and A. J. Lee (2003). Linear Regression Analysis (2nd ed.). Hoboken, NJ: Wiley. [2] A. C. Rencher and

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 IX. Vector Time Series Models VARMA Models A. 1. Motivation: The vector

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

EC408 Topics in Applied Econometrics. B Fingleton, Dept of Economics, Strathclyde University

EC408 Topics in Applied Econometrics. B Fingleton, Dept of Economics, Strathclyde University EC48 Topics in Applied Econometrics B Fingleton, Dept of Economics, Strathclyde University Applied Econometrics What is spurious regression? How do we check for stochastic trends? Cointegration and Error

More information

Economic modelling and forecasting

Economic modelling and forecasting Economic modelling and forecasting 2-6 February 2015 Bank of England he generalised method of moments Ole Rummel Adviser, CCBS at the Bank of England ole.rummel@bankofengland.co.uk Outline Classical estimation

More information

It is easily seen that in general a linear combination of y t and x t is I(1). However, in particular cases, it can be I(0), i.e. stationary.

It is easily seen that in general a linear combination of y t and x t is I(1). However, in particular cases, it can be I(0), i.e. stationary. 6. COINTEGRATION 1 1 Cointegration 1.1 Definitions I(1) variables. z t = (y t x t ) is I(1) (integrated of order 1) if it is not stationary but its first difference z t is stationary. It is easily seen

More information

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models University of Illinois Fall 2016 Department of Economics Roger Koenker Economics 536 Lecture 7 Introduction to Specification Testing in Dynamic Econometric Models In this lecture I want to briefly describe

More information

Linear Models in Econometrics

Linear Models in Econometrics Linear Models in Econometrics Nicky Grant At the most fundamental level econometrics is the development of statistical techniques suited primarily to answering economic questions and testing economic theories.

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

The multiple regression model; Indicator variables as regressors

The multiple regression model; Indicator variables as regressors The multiple regression model; Indicator variables as regressors Ragnar Nymoen University of Oslo 28 February 2013 1 / 21 This lecture (#12): Based on the econometric model specification from Lecture 9

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

Non-Stationary Time Series, Cointegration, and Spurious Regression

Non-Stationary Time Series, Cointegration, and Spurious Regression Econometrics II Non-Stationary Time Series, Cointegration, and Spurious Regression Econometrics II Course Outline: Non-Stationary Time Series, Cointegration and Spurious Regression 1 Regression with Non-Stationarity

More information

Matrix Factorizations

Matrix Factorizations 1 Stat 540, Matrix Factorizations Matrix Factorizations LU Factorization Definition... Given a square k k matrix S, the LU factorization (or decomposition) represents S as the product of two triangular

More information

ECON 4160: Econometrics-Modelling and Systems Estimation Lecture 7: Single equation models

ECON 4160: Econometrics-Modelling and Systems Estimation Lecture 7: Single equation models ECON 4160: Econometrics-Modelling and Systems Estimation Lecture 7: Single equation models Ragnar Nymoen Department of Economics University of Oslo 25 September 2018 The reference to this lecture is: Chapter

More information

Dynamic Regression Models

Dynamic Regression Models Università di Pavia 2007 Dynamic Regression Models Eduardo Rossi University of Pavia Data Generating Process & Models Setup y t denote an (n 1) vector of economic variables generated at time t. The collection

More information

PhD/MA Econometrics Examination. January, 2015 PART A. (Answer any TWO from Part A)

PhD/MA Econometrics Examination. January, 2015 PART A. (Answer any TWO from Part A) PhD/MA Econometrics Examination January, 2015 Total Time: 8 hours MA students are required to answer from A and B. PhD students are required to answer from A, B, and C. PART A (Answer any TWO from Part

More information

Forecasting 1 to h steps ahead using partial least squares

Forecasting 1 to h steps ahead using partial least squares Forecasting 1 to h steps ahead using partial least squares Philip Hans Franses Econometric Institute, Erasmus University Rotterdam November 10, 2006 Econometric Institute Report 2006-47 I thank Dick van

More information

Cointegration Lecture I: Introduction

Cointegration Lecture I: Introduction 1 Cointegration Lecture I: Introduction Julia Giese Nuffield College julia.giese@economics.ox.ac.uk Hilary Term 2008 2 Outline Introduction Estimation of unrestricted VAR Non-stationarity Deterministic

More information

PRIORS FOR THE LONG RUN

PRIORS FOR THE LONG RUN PRIORS FOR THE LONG RUN DOMENICO GIANNONE, MICHELE LENZA, AND GIORGIO E. PRIMICERI Abstract. We propose a class of prior distributions that discipline the long-run behavior of Vector Autoregressions (VARs).

More information

ERROR BANDS FOR IMPULSE RESPONSES

ERROR BANDS FOR IMPULSE RESPONSES Ž. Econometrica, Vol. 67, No. 5 September, 1999, 1113 1155 ERROR BANDS FOR IMPULSE RESPONSES BY CHRISTOPHER A. SIMS AND TAO ZHA 1 We show how correctly to extend known methods for generating error bands

More information

Ninth ARTNeT Capacity Building Workshop for Trade Research "Trade Flows and Trade Policy Analysis"

Ninth ARTNeT Capacity Building Workshop for Trade Research Trade Flows and Trade Policy Analysis Ninth ARTNeT Capacity Building Workshop for Trade Research "Trade Flows and Trade Policy Analysis" June 2013 Bangkok, Thailand Cosimo Beverelli and Rainer Lanz (World Trade Organization) 1 Selected econometric

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information