Image Tag Completion by Noisy Matrix Recovery

Size: px
Start display at page:

Download "Image Tag Completion by Noisy Matrix Recovery"

Transcription

1 Image Tag Completion by Noisy Matrix Recovery Supplementary Document Zheyun Feng, Songhe Feng, Rong Jin, Anil K Jain {fengzhey, rongjin, jain}@csemsuedu, shfeng@bjtueducn Michigan State University, Beijing Jiaotong University Abstract In this supplementary document, we present Detailed proofs of Lemma, Lemma 2, theorem 2, theorem 4 and theorem 5 in the main paper Detailed statistics about the refined datasets Supplementary experimental results, mainly in terms of AR@N and C@N Note all the notations are the same as used in the main paper Detailed Proofs Proof of Lemma Proof We have = P i,j Q i,j 2 Q i,j j P i,j Q i,j 2 Q i,j j= Q i,j P i,j Q i,j Qi,j Qi,j = P Q 2 Proof of Lemma 2 Proof To facilitate our analysis, we rewrite each d i as m d i = d j i, j= where d j i is the image tag vector corresponding to the j-th word sampling for the tag vector of the i-th image To utilize Lemma 2, we define Z i,j as Z i = d j i p i e i,

2 2 Zheyun Feng, Songhe Feng, Rong Jin, Anil K Jain and therefore M = n m Z i,j m To bound U in Lemma 2, we have Z i,j d j i p i d j i 2 2 To bound σ Z, we compute m E [ Z i,j Z ] i,j nm = m nm = m [ E d j i nm dj i ] p i p i max j m [ E d j i p i d j i i ] p n p i,j i p 2 i,j = P n Similarly, we have m E [ Z ] i Z i nm = m [ ] E d j i nm p i d j i p i e i e i = m E [ d i d i p i p i ei e ] i nm n We complete the proof by plugging the bounds for U and σ Z 3 Proof of Theorem 2 Proof We consider any solution Q Since ˆQ is the optimal solution to Eq in the main paper, we have L ˆQ, ˆQ Q, ie m n d i,j ˆQi,j Q i,j + ε ˆQ ˆQ tr, ˆQ Q, i,j where ˆQ tr is a subgradient of ˆQ tr Using the fact that ˆQ tr Q tr, ˆQ Q, we can replace ˆQ tr, ˆQ Q with Q tr, ˆQ Q, which results in the following inequality m n d i,j ˆQi,j Q i,j + ε Q tr, ˆQ Q

3 Image Tag Completion by Noisy Matrix Recovery - Supplementary 3 Define Z i,j = Q i,j / We have m n d i,j ˆQi,j Q i,j = n d i e i, Z = P, Z M, Z m Thus the bound in Eq 8 in the main paper is modified as Since we have j= P i,j ˆQi,j Q i,j + ε Q tr, ˆQ ˆQ Q i,j j= P i,j ˆQi,j Q i,j = P i,j ˆQi,j Q i,j = j= M i,j ˆQi,j Q i,j P i,j ˆQ ˆQ i,j ˆQi,j Q i,j i,j P i,j Q i,j 2 2 Q i,j P i,j 2 2 Define matrix B R n m as B i,j = M i,j / Using the fact [, µ + ] and result from Lemma, we have 2 P ˆQ + ˆQ Q 2 F 2µ + + ε Q tr, ˆQ Q M ˆQ Q tr + P Q 2 F 2 We write the Singular value decomposition of Q as Q = r σ i u i vi, where r is the rank of Q, σ i is the i-th singular value of Q, and u i, v i are the left and right singular vectors of Q Let U R n n r and V R m m r be the orthogonal bases complementary to U and V, respectively Define the linear operators P Q and P Q as P Q Z = UU Z + ZV V UU ZV V, P Q Z = Z P Q Z According to, the subgradient Q tr is given by the set W { } W = UV + U W V : W R n r m r, W = Thus by choosing an appropriate matrix W for the subgradient Q tr, we have Q tr, ˆQ Q P Q ˆQ Q tr + P Q ˆQ Q tr

4 4 Zheyun Feng, Songhe Feng, Rong Jin, Anil K Jain and therefore 2 P ˆQ + ˆQ Q 2 F 2µ + + ε P Q ˆQ Q tr ε P Q ˆQ Q tr + M ˆQ Q tr + P Q 2 F 2 Using the fact we have ε M, P ˆQ + ˆQ Q 2 F µ + 4ε P Q ˆQ Q tr + P Q 2 F We consider two cases In the first case, we assume P ˆQ P Q 2 F, in which the bound in theorem trivially holds In the second case, we have the opposite which implies and therefore P ˆQ > P Q 2 F, ˆQ Q 2 F µ + 4ε P Q ˆQ Q tr, P Q ˆQ Q tr 4εrµ + We complete the proof by plugging the above bound 4 Proof of Theorem 4 Proof Following the same analysis as that for Theorem 2 in the main paper see Section 3 in this supplementary for its proof, we have Using the fact ˆq i [, µ + ], we have p i ˆq i 2 z i p i ˆq i ˆq i ˆq i p i ˆq i 2 2 µ + z 2 p ˆq 2,

5 Image Tag Completion by Noisy Matrix Recovery - Supplementary 5 and therefore p i ˆq 2 µ + z 2 We finally complete the proof by using the fact 5 Proof of Theorem 5 p i ˆq i 2 p ˆq ˆq i Proof We will use the Chernoff bound, ie X,, X m be independent draws from a Bernoulli distribution with PX = = µ We have m P X i + δµ exp δ2 µm, m 3 m P X i δµ exp δ2 µm 2 m Using the Chernoff bound, we have, with a probability 2 exp δ 2 µm /2 X µ 2 δ 2 µ 2 By taking the union bound, we have, with a probability 2e t z 2 t + log m m p 2

6 6 Zheyun Feng, Songhe Feng, Rong Jin, Anil K Jain 2 Statistics about the Refined Datasets Table Statistics for the datasets used in the experiments These datasets are not the original datasets but refined according to our setup Note NUS-WIDE has two types of tags: the one automatically crawled from Flickr and used for model training, and the one manually annotated ESP Game IAPR TC2 MirFlickr NUS-WIDE Number of Images,45 2,985 5,23 2,968 Visual feature dimension 5 Vocabulary size Average tags per image Min/max tags per image 5/5 5/23 4/43 9/5 Average images per tag Min/max images per tag 6/3,439 4/4,752 /78 78/5,58 Number of observed tags m The number of observed tags when training our proposed model throughout the experimental section if without specific explanation

7 Image Tag Completion by Noisy Matrix Recovery - Supplementary 7 3 Supplementary Experimental Results In this section, we further present the experimental results of our proposed TCMR in comparison with the baseline approaches 3 Comparison to the state-of-the-art Tag Completion Methods AR@N 3 2 AR@N a AR@N on Mir Flickr b AR@N on ESP Game AR@N 3 2 c AR@N on NUSWIDE LRES TMC MC FastTag LSR TagProp RKML vknn TCMR C@N C@N C@N LRES TMC MC FastTag LSR TagProp RKML vknn TCMR d C@N on Mir Flickr e C@N on ESP Game f C@N on NUSWIDE Fig Tag completion performance of the proposed method and state-of-the-art baselines on Mir Flickr, ESP Game and NUS-WIDE datasets, reported by AR@N and C@N This figure can be viewed as supplemental to Fig in the main paper

8 8 Zheyun Feng, Songhe Feng, Rong Jin, Anil K Jain 32 Evaluation of Noisy Matrix Recovery AR@N 3 2 a Mir Flickr b ESP Game c IAPR TC2 2 d NUSWIDE Freq LSA tknn LDA LRES plsa TCMR C@N 4 2 e Mir Flickr f ESP Game g IAPR TC h NUSWIDE Freq LSA tknn LDA LRES plsa TCMR Fig 2 Comparison of different topic models and matrix completion algorithms without taking into account the visual feature The top row is evaluated by AR@N, and the bottom row is evaluated by C@N This figure can be viewed as supplemental to Fig 2 in the main paper 33 Sensitivity to the Number of Observed Tags AR@ AR@ LRES MC FastTag LSR TagProp vknn LSA tknn TCMR Number of observed tags m* a AR@5 on IAPR TC Number of observed tags m* b AR@5 on NUS-WIDE Fig 3 Tag completion performance with varied number of observed tags, with reported This figure can be viewed as supplemental to Fig 3 in the main paper

Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning

Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning Supplementary Material Zheyun Feng Rong Jin Anil Jain Department of Computer Science and Engineering, Michigan State University,

More information

Supplementary Material: A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data

Supplementary Material: A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data Supplementary Material: A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data Jinfeng Yi JINFENGY@US.IBM.COM IBM Thomas J. Watson Research Center, Yorktown

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials).

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials). Tail Inequalities William Hunt Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV William.Hunt@mail.wvu.edu Introduction In this chapter, we are interested

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

Noisy Streaming PCA. Noting g t = x t x t, rearranging and dividing both sides by 2η we get

Noisy Streaming PCA. Noting g t = x t x t, rearranging and dividing both sides by 2η we get Supplementary Material A. Auxillary Lemmas Lemma A. Lemma. Shalev-Shwartz & Ben-David,. Any update of the form P t+ = Π C P t ηg t, 3 for an arbitrary sequence of matrices g, g,..., g, projection Π C onto

More information

Supplementary Material for: Spectral Unsupervised Parsing with Additive Tree Metrics

Supplementary Material for: Spectral Unsupervised Parsing with Additive Tree Metrics Supplementary Material for: Spectral Unsupervised Parsing with Additive Tree Metrics Ankur P. Parikh School of Computer Science Carnegie Mellon University apparikh@cs.cmu.edu Shay B. Cohen School of Informatics

More information

Supplementary Material for Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition

Supplementary Material for Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition Supplementary Material for Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition Serhat S. Bucak bucakser@cse.msu.edu Rong Jin rongjin@cse.msu.edu Anil

More information

Short proofs of the Quantum Substate Theorem

Short proofs of the Quantum Substate Theorem Short proofs of the Quantum Substate Theorem Rahul Jain CQT and NUS, Singapore Ashwin Nayak University of Waterloo Classic problem Given a biased coin c Pr(c = H) = 1 - e Pr(c = T) = e Can we generate

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

Kronecker Decomposition for Image Classification

Kronecker Decomposition for Image Classification university of innsbruck institute of computer science intelligent and interactive systems Kronecker Decomposition for Image Classification Sabrina Fontanella 1,2, Antonio Rodríguez-Sánchez 1, Justus Piater

More information

Correlation Autoencoder Hashing for Supervised Cross-Modal Search

Correlation Autoencoder Hashing for Supervised Cross-Modal Search Correlation Autoencoder Hashing for Supervised Cross-Modal Search Yue Cao, Mingsheng Long, Jianmin Wang, and Han Zhu School of Software Tsinghua University The Annual ACM International Conference on Multimedia

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

Lecture 3. Random Fourier measurements

Lecture 3. Random Fourier measurements Lecture 3. Random Fourier measurements 1 Sampling from Fourier matrices 2 Law of Large Numbers and its operator-valued versions 3 Frames. Rudelson s Selection Theorem Sampling from Fourier matrices Our

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

Guaranteed Rank Minimization via Singular Value Projection: Supplementary Material

Guaranteed Rank Minimization via Singular Value Projection: Supplementary Material Guaranteed Rank Minimization via Singular Value Projection: Supplementary Material Prateek Jain Microsoft Research Bangalore Bangalore, India prajain@microsoft.com Raghu Meka UT Austin Dept. of Computer

More information

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION APPENDIX B EIGENVALUES AND SINGULAR VALUE DECOMPOSITION B.1 LINEAR EQUATIONS AND INVERSES Problems of linear estimation can be written in terms of a linear matrix equation whose solution provides the required

More information

Dot product and linear least squares problems

Dot product and linear least squares problems Dot product and linear least squares problems Dot Product For vectors u,v R n we define the dot product Note that we can also write this as u v = u,,u n u v = u v + + u n v n v v n = u v + + u n v n The

More information

EE 381V: Large Scale Learning Spring Lecture 16 March 7

EE 381V: Large Scale Learning Spring Lecture 16 March 7 EE 381V: Large Scale Learning Spring 2013 Lecture 16 March 7 Lecturer: Caramanis & Sanghavi Scribe: Tianyang Bai 16.1 Topics Covered In this lecture, we introduced one method of matrix completion via SVD-based

More information

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces Notes on the framework of Ando and Zhang (2005 Karl Stratos 1 Beyond learning good functions: learning good spaces 1.1 A single binary classification problem Let X denote the problem domain. Suppose we

More information

Dictionary Learning Using Tensor Methods

Dictionary Learning Using Tensor Methods Dictionary Learning Using Tensor Methods Anima Anandkumar U.C. Irvine Joint work with Rong Ge, Majid Janzamin and Furong Huang. Feature learning as cornerstone of ML ML Practice Feature learning as cornerstone

More information

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016 Lecture notes 5 February 9, 016 1 Introduction Random projections Random projections are a useful tool in the analysis and processing of high-dimensional data. We will analyze two applications that use

More information

Notes on Latent Semantic Analysis

Notes on Latent Semantic Analysis Notes on Latent Semantic Analysis Costas Boulis 1 Introduction One of the most fundamental problems of information retrieval (IR) is to find all documents (and nothing but those) that are semantically

More information

arxiv: v5 [math.na] 16 Nov 2017

arxiv: v5 [math.na] 16 Nov 2017 RANDOM PERTURBATION OF LOW RANK MATRICES: IMPROVING CLASSICAL BOUNDS arxiv:3.657v5 [math.na] 6 Nov 07 SEAN O ROURKE, VAN VU, AND KE WANG Abstract. Matrix perturbation inequalities, such as Weyl s theorem

More information

Dimensionality Reduction and Principle Components Analysis

Dimensionality Reduction and Principle Components Analysis Dimensionality Reduction and Principle Components Analysis 1 Outline What is dimensionality reduction? Principle Components Analysis (PCA) Example (Bishop, ch 12) PCA vs linear regression PCA as a mixture

More information

Orthogonal Transformations

Orthogonal Transformations Orthogonal Transformations Tom Lyche University of Oslo Norway Orthogonal Transformations p. 1/3 Applications of Qx with Q T Q = I 1. solving least squares problems (today) 2. solving linear equations

More information

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a]

Lecture 4. P r[x > ce[x]] 1/c. = ap r[x = a] + a>ce[x] P r[x = a] U.C. Berkeley CS273: Parallel and Distributed Theory Lecture 4 Professor Satish Rao September 7, 2010 Lecturer: Satish Rao Last revised September 13, 2010 Lecture 4 1 Deviation bounds. Deviation bounds

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 12 Jan-Willem van de Meent (credit: Yijun Zhao, Percy Liang) DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Linear Dimensionality

More information

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent Unsupervised Machine Learning and Data Mining DS 5230 / DS 4420 - Fall 2018 Lecture 7 Jan-Willem van de Meent DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Dimensionality Reduction Goal:

More information

A Tutorial on Data Reduction. Principal Component Analysis Theoretical Discussion. By Shireen Elhabian and Aly Farag

A Tutorial on Data Reduction. Principal Component Analysis Theoretical Discussion. By Shireen Elhabian and Aly Farag A Tutorial on Data Reduction Principal Component Analysis Theoretical Discussion By Shireen Elhabian and Aly Farag University of Louisville, CVIP Lab November 2008 PCA PCA is A backbone of modern data

More information

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran 1. Let A m n be a matrix of real numbers. The matrix AA T has an eigenvector x with eigenvalue b. Then the eigenvector y of A T A

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

Score Normalization in Multimodal Biometric Systems

Score Normalization in Multimodal Biometric Systems Score Normalization in Multimodal Biometric Systems Karthik Nandakumar and Anil K. Jain Michigan State University, East Lansing, MI Arun A. Ross West Virginia University, Morgantown, WV http://biometrics.cse.mse.edu

More information

Orthonormal Transformations

Orthonormal Transformations Orthonormal Transformations Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 25, 2010 Applications of transformation Q : R m R m, with Q T Q = I 1.

More information

Linear Algebra using Dirac Notation: Pt. 2

Linear Algebra using Dirac Notation: Pt. 2 Linear Algebra using Dirac Notation: Pt. 2 PHYS 476Q - Southern Illinois University February 6, 2018 PHYS 476Q - Southern Illinois University Linear Algebra using Dirac Notation: Pt. 2 February 6, 2018

More information

Computational math: Assignment 1

Computational math: Assignment 1 Computational math: Assignment 1 Thanks Ting Gao for her Latex file 11 Let B be a 4 4 matrix to which we apply the following operations: 1double column 1, halve row 3, 3add row 3 to row 1, 4interchange

More information

Periodicity & State Transfer Some Results Some Questions. Periodic Graphs. Chris Godsil. St John s, June 7, Chris Godsil Periodic Graphs

Periodicity & State Transfer Some Results Some Questions. Periodic Graphs. Chris Godsil. St John s, June 7, Chris Godsil Periodic Graphs St John s, June 7, 2009 Outline 1 Periodicity & State Transfer 2 Some Results 3 Some Questions Unitary Operators Suppose X is a graph with adjacency matrix A. Definition We define the operator H X (t)

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via nonconvex optimization Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa VS model in practice Document and query are represented by term vectors Terms are not necessarily orthogonal to each other Synonymy: car v.s. automobile Polysemy:

More information

(c) Only when AB = BA d) only when AB BA. find the first column of its inverse,

(c) Only when AB = BA d) only when AB BA. find the first column of its inverse, . Find the symmetric and the skew symmetric part of 2 0 3 7 5 9 3 respectively 2. n n n B B, where & B are two matrix above result true (a) lways (b) Never (c) Only when B = B d) only when B B 3. Find

More information

Rank, Trace-Norm & Max-Norm

Rank, Trace-Norm & Max-Norm Rank, Trace-Norm & Max-Norm as measures of matrix complexity Nati Srebro University of Toronto Adi Shraibman Hebrew University Matrix Learning users movies 2 1 4 5 5 4? 1 3 3 5 2 4? 5 3? 4 1 3 5 2 1? 4

More information

Lecture 15 Review of Matrix Theory III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 15 Review of Matrix Theory III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 15 Review of Matrix Theory III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Matrix An m n matrix is a rectangular or square array of

More information

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6]

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] Inner products and Norms Inner product or dot product of 2 vectors u and v in R n : u.v = u 1 v 1 + u 2 v 2 + + u n v n Calculate u.v when u = 1 2 2 0 v = 1 0

More information

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1)

Chapter 2: Linear Programming Basics. (Bertsimas & Tsitsiklis, Chapter 1) Chapter 2: Linear Programming Basics (Bertsimas & Tsitsiklis, Chapter 1) 33 Example of a Linear Program Remarks. minimize 2x 1 x 2 + 4x 3 subject to x 1 + x 2 + x 4 2 3x 2 x 3 = 5 x 3 + x 4 3 x 1 0 x 3

More information

Dimensionality Reduction

Dimensionality Reduction Dimensionality Reduction Given N vectors in n dims, find the k most important axes to project them k is user defined (k < n) Applications: information retrieval & indexing identify the k most important

More information

We will discuss matrix diagonalization algorithms in Numerical Recipes in the context of the eigenvalue problem in quantum mechanics, m A n = λ m

We will discuss matrix diagonalization algorithms in Numerical Recipes in the context of the eigenvalue problem in quantum mechanics, m A n = λ m Eigensystems We will discuss matrix diagonalization algorithms in umerical Recipes in the context of the eigenvalue problem in quantum mechanics, A n = λ n n, (1) where A is a real, symmetric Hamiltonian

More information

Lecture Notes 10: Matrix Factorization

Lecture Notes 10: Matrix Factorization Optimization-based data analysis Fall 207 Lecture Notes 0: Matrix Factorization Low-rank models. Rank- model Consider the problem of modeling a quantity y[i, j] that depends on two indices i and j. To

More information

Random Matrices: Invertibility, Structure, and Applications

Random Matrices: Invertibility, Structure, and Applications Random Matrices: Invertibility, Structure, and Applications Roman Vershynin University of Michigan Colloquium, October 11, 2011 Roman Vershynin (University of Michigan) Random Matrices Colloquium 1 / 37

More information

DATA MINING AND MACHINE LEARNING. Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 4: Linear models for regression and classification Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Linear models for regression Regularized

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Lecture 17: Perfect Codes and Gilbert-Varshamov Bound

Lecture 17: Perfect Codes and Gilbert-Varshamov Bound Lecture 17: Perfect Codes and Gilbert-Varshamov Bound Maximality of Hamming code Lemma Let C be a code with distance 3, then: C 2n n + 1 Codes that meet this bound: Perfect codes Hamming code is a perfect

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

Math , Fall 2012: HW 5 Solutions

Math , Fall 2012: HW 5 Solutions Math 230.0, Fall 202: HW 5 Solutions Due Thursday, October 4th, 202. Problem (p.58 #2). Let X and Y be the numbers obtained in two draws at random from a box containing four tickets labeled, 2, 3, 4. Display

More information

Lecture 4: Purifications and fidelity

Lecture 4: Purifications and fidelity CS 766/QIC 820 Theory of Quantum Information (Fall 2011) Lecture 4: Purifications and fidelity Throughout this lecture we will be discussing pairs of registers of the form (X, Y), and the relationships

More information

Linear algebra for computational statistics

Linear algebra for computational statistics University of Seoul May 3, 2018 Vector and Matrix Notation Denote 2-dimensional data array (n p matrix) by X. Denote the element in the ith row and the jth column of X by x ij or (X) ij. Denote by X j

More information

5 Linear Algebra and Inverse Problem

5 Linear Algebra and Inverse Problem 5 Linear Algebra and Inverse Problem 5.1 Introduction Direct problem ( Forward problem) is to find field quantities satisfying Governing equations, Boundary conditions, Initial conditions. The direct problem

More information

Lecture 4 February 2nd, 2017

Lecture 4 February 2nd, 2017 CS 224: Advanced Algorithms Spring 2017 Prof. Jelani Nelson Lecture 4 February 2nd, 2017 Scribe: Rohil Prasad 1 Overview In the last lecture we covered topics in hashing, including load balancing, k-wise

More information

Document and Topic Models: plsa and LDA

Document and Topic Models: plsa and LDA Document and Topic Models: plsa and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline Topic Models plsa LSA Model Fitting via EM phits: link analysis

More information

. The following is a 3 3 orthogonal matrix: 2/3 1/3 2/3 2/3 2/3 1/3 1/3 2/3 2/3

. The following is a 3 3 orthogonal matrix: 2/3 1/3 2/3 2/3 2/3 1/3 1/3 2/3 2/3 Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. An n n matrix

More information

Homework 1. Yuan Yao. September 18, 2011

Homework 1. Yuan Yao. September 18, 2011 Homework 1 Yuan Yao September 18, 2011 1. Singular Value Decomposition: The goal of this exercise is to refresh your memory about the singular value decomposition and matrix norms. A good reference to

More information

ORIE 4741 Final Exam

ORIE 4741 Final Exam ORIE 4741 Final Exam December 15, 2016 Rules for the exam. Write your name and NetID at the top of the exam. The exam is 2.5 hours long. Every multiple choice or true false question is worth 1 point. Every

More information

Scaling Neighbourhood Methods

Scaling Neighbourhood Methods Quick Recap Scaling Neighbourhood Methods Collaborative Filtering m = #items n = #users Complexity : m * m * n Comparative Scale of Signals ~50 M users ~25 M items Explicit Ratings ~ O(1M) (1 per billion)

More information

Appendix A. Proof to Theorem 1

Appendix A. Proof to Theorem 1 Appendix A Proof to Theorem In this section, we prove the sample complexity bound given in Theorem The proof consists of three main parts In Appendix A, we prove perturbation lemmas that bound the estimation

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

The Informativeness of k-means for Learning Mixture Models

The Informativeness of k-means for Learning Mixture Models The Informativeness of k-means for Learning Mixture Models Vincent Y. F. Tan (Joint work with Zhaoqiang Liu) National University of Singapore June 18, 2018 1/35 Gaussian distribution For F dimensions,

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Phase transition and spontaneous symmetry breaking

Phase transition and spontaneous symmetry breaking Phys60.nb 111 8 Phase transition and spontaneous symmetry breaking 8.1. Questions: Q1: Symmetry: if a the Hamiltonian of a system has certain symmetry, can the system have a lower symmetry? Q: Analyticity:

More information

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Lecture 12: Randomized Least-squares Approximation in Practice, Cont. 12 Randomized Least-squares Approximation in Practice, Cont.

Lecture 12: Randomized Least-squares Approximation in Practice, Cont. 12 Randomized Least-squares Approximation in Practice, Cont. Stat60/CS94: Randomized Algorithms for Matrices and Data Lecture 1-10/14/013 Lecture 1: Randomized Least-squares Approximation in Practice, Cont. Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning:

More information

Morphing. Xiao-Ming Fu

Morphing. Xiao-Ming Fu Morphing Xiao-Ming Fu Outlines Definition Angle, length, area, volume, and curvature Example-Driven Deformations Based on Discrete Shells Affine transformation As-Rigid-As-Possible Shape Interpolation

More information

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Feng Wei 2 University of Michigan July 29, 2016 1 This presentation is based a project under the supervision of M. Rudelson.

More information

Math Fall Final Exam

Math Fall Final Exam Math 104 - Fall 2008 - Final Exam Name: Student ID: Signature: Instructions: Print your name and student ID number, write your signature to indicate that you accept the honor code. During the test, you

More information

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1)

EXERCISE SET 5.1. = (kx + kx + k, ky + ky + k ) = (kx + kx + 1, ky + ky + 1) = ((k + )x + 1, (k + )y + 1) EXERCISE SET 5. 6. The pair (, 2) is in the set but the pair ( )(, 2) = (, 2) is not because the first component is negative; hence Axiom 6 fails. Axiom 5 also fails. 8. Axioms, 2, 3, 6, 9, and are easily

More information

CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery

CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery CS168: The Modern Algorithmic Toolbox Lecture #10: Tensors, and Low-Rank Tensor Recovery Tim Roughgarden & Gregory Valiant May 3, 2017 Last lecture discussed singular value decomposition (SVD), and we

More information

Orthonormal Transformations and Least Squares

Orthonormal Transformations and Least Squares Orthonormal Transformations and Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 30, 2009 Applications of Qx with Q T Q = I 1. solving

More information

Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage

Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage Madeleine Udell Operations Research and Information Engineering Cornell University Based on joint work with Alp Yurtsever (EPFL),

More information

Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications

Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications Yongge Tian China Economics and Management Academy, Central University of Finance and Economics,

More information

Comparative Summarization via Latent Dirichlet Allocation

Comparative Summarization via Latent Dirichlet Allocation Comparative Summarization via Latent Dirichlet Allocation Michal Campr and Karel Jezek Department of Computer Science and Engineering, FAV, University of West Bohemia, 11 February 2013, 301 00, Plzen,

More information

Supplementary Materials for Riemannian Pursuit for Big Matrix Recovery

Supplementary Materials for Riemannian Pursuit for Big Matrix Recovery Supplementary Materials for Riemannian Pursuit for Big Matrix Recovery Mingkui Tan, School of omputer Science, The University of Adelaide, Australia Ivor W. Tsang, IS, University of Technology Sydney,

More information

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing

Semantics with Dense Vectors. Reference: D. Jurafsky and J. Martin, Speech and Language Processing Semantics with Dense Vectors Reference: D. Jurafsky and J. Martin, Speech and Language Processing 1 Semantics with Dense Vectors We saw how to represent a word as a sparse vector with dimensions corresponding

More information

1. Addition: To every pair of vectors x, y X corresponds an element x + y X such that the commutative and associative properties hold

1. Addition: To every pair of vectors x, y X corresponds an element x + y X such that the commutative and associative properties hold Appendix B Y Mathematical Refresher This appendix presents mathematical concepts we use in developing our main arguments in the text of this book. This appendix can be read in the order in which it appears,

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

Math 61CM - Solutions to homework 2

Math 61CM - Solutions to homework 2 Math 61CM - Solutions to homework 2 Cédric De Groote October 5 th, 2018 Problem 1: Let V be the vector space of polynomials of degree at most 5, with coefficients in a field F Let U be the subspace of

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

CS 572: Information Retrieval

CS 572: Information Retrieval CS 572: Information Retrieval Lecture 11: Topic Models Acknowledgments: Some slides were adapted from Chris Manning, and from Thomas Hoffman 1 Plan for next few weeks Project 1: done (submit by Friday).

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

Robust Metric Learning by Smooth Optimization

Robust Metric Learning by Smooth Optimization Robust Metric Learning by Smooth Optimization Kaizhu Huang NLPR, Institute of Automation Chinese Academy of Sciences Beijing, 9 China Rong Jin Dept. of CSE Michigan State University East Lansing, MI 4884

More information

Section 8.1 Objective: Students will be able to solve equations to find angle measures (supplementary and complementary).

Section 8.1 Objective: Students will be able to solve equations to find angle measures (supplementary and complementary). Lincoln Public Schools Math 8 McDougall Littell Middle School Math Course 3 Chapter 8 Items marked A, B, C are increasing in difficulty. Group A questions are the most basic while Group C are the most

More information

The QR Factorization

The QR Factorization The QR Factorization How to Make Matrices Nicer Radu Trîmbiţaş Babeş-Bolyai University March 11, 2009 Radu Trîmbiţaş ( Babeş-Bolyai University) The QR Factorization March 11, 2009 1 / 25 Projectors A projector

More information

Fantope Regularization in Metric Learning

Fantope Regularization in Metric Learning Fantope Regularization in Metric Learning CVPR 2014 Marc T. Law (LIP6, UPMC), Nicolas Thome (LIP6 - UPMC Sorbonne Universités), Matthieu Cord (LIP6 - UPMC Sorbonne Universités), Paris, France Introduction

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa Recap: vector space model Represent both doc and query by concept vectors Each concept defines one dimension K concepts define a high-dimensional space Element

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 3: The polynomial method Part I: Orthogonal Vectors Sebastian Krinninger Organization of lecture No lecture on 26.05. (State holiday) 2 nd exercise

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 6 Non-Negative Matrix Factorization Rainer Gemulla, Pauli Miettinen May 23, 23 Non-Negative Datasets Some datasets are intrinsically non-negative: Counters (e.g., no. occurrences

More information

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017

COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 COMS 4721: Machine Learning for Data Science Lecture 18, 4/4/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University TOPIC MODELING MODELS FOR TEXT DATA

More information

Relational Stacked Denoising Autoencoder for Tag Recommendation. Hao Wang

Relational Stacked Denoising Autoencoder for Tag Recommendation. Hao Wang Relational Stacked Denoising Autoencoder for Tag Recommendation Hao Wang Dept. of Computer Science and Engineering Hong Kong University of Science and Technology Joint work with Xingjian Shi and Dit-Yan

More information

MOTIVES ASSOCIATED TO SUMS OF GRAPHS

MOTIVES ASSOCIATED TO SUMS OF GRAPHS MOTIVES ASSOCIATED TO SUMS OF GRAPHS SPENCER BLOCH 1. Introduction In quantum field theory, the path integral is interpreted perturbatively as a sum indexed by graphs. The coefficient (Feynman amplitude)

More information

ECE 598: Representation Learning: Algorithms and Models Fall 2017

ECE 598: Representation Learning: Algorithms and Models Fall 2017 ECE 598: Representation Learning: Algorithms and Models Fall 2017 Lecture 1: Tensor Methods in Machine Learning Lecturer: Pramod Viswanathan Scribe: Bharath V Raghavan, Oct 3, 2017 11 Introduction Tensors

More information