YARKOVSKY EFFECT IN GENERALIZED PHOTOGRAVITATIONAL 3-BODIES PROBLEM

Size: px
Start display at page:

Download "YARKOVSKY EFFECT IN GENERALIZED PHOTOGRAVITATIONAL 3-BODIES PROBLEM"

Transcription

1 ARKOVSK EFFECT IN GENERALIZED PHOTOGRAVITATIONAL -BODIES PROBLEM Serge V. Ershkov Institute for Time Nature Eplorations M.V. Lomonosov's Moscow State Universit Leninskie gor - Moscow 999 Russia sergej-ershkov@ande.ru Abstract: Here is presented a generaliation of photogravitational restricted -bodies problem to the case of influence of arkovsk effect which is known as reason of additional infinitesimal acceleration of a small bodies in the space due to anisotropic re-emission of absorbed energ from the sun other stellar sources. Asteroid is supposed to move under the influence of gravitational forces from massive bodies which are rotating around their common centre of masses on Kepler s trajectories as well under the influence of pressure of light from both the primaries. Analing the ODE sstem of motion we eplore the eistense of euilibrium points for a small bod asteroid in the case when the -nd primar is non-oblate spheroid. In such a case it is proved the eistence of maimall 56 different non-planar libration points in generalied photogravitational restricted -bodies problem when we take into consideration even a small arkovsk effect. AMS Subject Classification: 7F5 7F7 Ke Words: arkovsk effect ORP-effect photogravitational restricted three bod problem stabilit euilibrium points libration points oblateness

2 . Introduction. The arkovsk effect is a force acting on a rotating bod in space caused b the anisotropic emission of thermal photons which carr momentum Radievskii 954. It is usuall considered in relation to meteoroids or small asteroids about cm to km in diameter as its influence is most significant for these bodies. Such a force is produced b the wa an asteroid absorbs energ from the sun and re-radiates it into space as heat b anisotropic wa. In fact there eists a disbalance of momentum when asteroid at first absorbs the light radiating from the sun but then asteroid re-radiates the heat. Such a disbalance is caused b the rotating of asteroid during period of warming as well as it is caused b the anisotropic cooling of surface & inner laers; the processes above depend on anisotropic heat transfer in the inner laers of asteroid. During thousands of ears such a disbalance forms a negligible but important additional acceleration for a small bodies so-called arkovsk effect. Thus arkovsk effect is small but ver important effect in celestial mechanics as well as in calculating of a proper orbits of asteroids & other small bodies. Besides arkovsk effect is not predictable it could be onl observed & measured b astronomical methods; the main reason is unpredictable character of the rotating of small bodies Rubincam even in the case when there is no an collision between them. If regime of the rotating of asteroid is changing we could observe a generaliation of arkovsk effect i.e. the arkovsk O'Keefe Radievskii Paddack effect or ORP effect Rubincam.

3 . Euations of motion. Let us consider the sstem of ordinar differential euations for photogravitational restricted -bodies problem at given initial conditions Radievskii 95; Shankaran et al.. In according with Shankaran et al. we consider three bodies of masses m₁ m₂ and m such that m₁ > m₂ and m is an infinitesimal mass. The two primaries m₁ and m₂ are sources of radiation; ₁ and ₂ are factors characteriing the radiation effects of the two primaries respectivel {₁ ₂} - ]. We assume that m₂ is an oblate spheroid. The effect of oblateness is denoted b the factor A₂. Let ri i = be the distances between the centre of mass of the bodies m₁ and m₂ and the centre of mass of bod m Shankaran et al.. Now the unit of mass is chosen so that the sum of the masses of finite bodies is eual to. We suppose that m₁ = - μ and m₂ = μ where μ is the ratio of the mass of the smaller primar to the total mass of the primaries and μ /. The unit of distance is taken as the distance between the primaries. The unit of time is chosen so that the gravitational constant is eual to Shankaran et al.. The three dimensional restricted -bodies problem with an oblate primar m₂ and both primaries radiating could be presented in barcentric rotating co-ordinate sstem b the euations of motion below Shankaran et al. ; Douskos et al. 6: n n.

4 4 - where - is the angular velocit of the rotating coordinate sstem and A₂ - is the oblateness coefficient. Here - where AE is the euatorial radius AP is the polar radius and R is the distance between primaries. Besides we should note that - are the distances of infinitesimal mass from the primaries. We neglect the relativistic Ponting-Robertson effect which ma be treated as a perturbation for cosmic dust or for small particles less than cm in diameter see Chernikov Chernikov 97; Kushvah et al. 7 as well as we neglect the effect of variable masses of -bodies Singh et al... r r A r r n A n 5 R AP AE A r r

5 . Modified euations of motion arkovsk effect. Modified euations of motion. for the generalied three dimensional restricted - bodies problem with an oblate primar m₂ both primaries radiating and the infinitesimal mass m under the influence of arkovsk effect should be presented in barcentric rotating co-ordinate sstem in the form below: n t n t. t - where t t t are the projecting of arkovsk effect acceleration t on the appropriate ais O O O. 4. Location of Euilibrium points. The location of euilibrium points for sstem. in general is given b conditions: 4. t t t. 5

6 6 Let us consider the case when the effect of oblateness is absent A₂ = n = see the appropriate epression: It means a significant simplifing of epression. in the sstem of eualities 4.: Besides we assume all euations 4. to be a united sstem of algebraic euations. That s wh we substitute an epression for from -rd euation above to the -nd & the -st euation:. 4.. A n

7 7 Moreover we obtain from the -d euation of sstem 4. that planar euilibrium points eist onl if { = = } simultaneousl. But the case = is ver rare specific condition for asteroid which has unpredictable character of the regime of rotating during a flight through the space Rubincam ; the same is obtained for the case =. Therefore we will consider onl non-planar euilibrium points. So we obtain from the -st & -d euations of sstem 4.: Hence we finall obtain the sstem of algebraic euations for meanings of { } which determine the location of euilibrium points 4.:

8 8 - where The last sstem 4.4 could be presented as below: - where the maimal polnomial order of euations is eual to 6 6 = 56: indeed the order of -st polnomial euation is eual to 6 in regard to variables ; the order of -nd polnomial euation is also eual to 6 in regard to. So 4.4 is the polnomial sstem of euations of 56-th order which has maimall 56 different roots we should especiall note that each of them strongl depends on various parameters { μ ₁ ₂ ; }. Such a sstem of polnomial euations could be solved onl b numerical methods in general it is valid for polnomial euation of order > 5. Besides analsing the euations of sstem 4. we should note that a case of arkovsk effect is negligible determines the eistence of uasi-planar euilibrium points in which conditions { } are valid simultaneousl.. 6 6

9 9 To give some estimation or numerical results we should take into consideration the negligible character of arkovsk effect { } in the last sstem of euation of 56-th order. Such a simplification let us obtain the result below see 4.: If we substitute the appropriate meanings of coordinates for triangular libration points L₄ and L₅ in 4.5 when arkovsk effect euals to ero we will obtain that all the eualities are valid in terms of generalied photogravitational restricted -bodies problem Xuetang et al. 99. Each of euations of sstem 4.5 has 7-th order in regard to variables so 4.5 is the polnomial sstem of euations of 49-th order which has maimall 49 different roots. That s wh let us make the net step for simplifing of the sstem 4.5:

10 Each of euations of sstem 4.6 has -d order in regard to variables so 4.6 is the polnomial sstem of euations of 6-th order which has maimall 6 different roots. Such a sstem of polnomial euations could be also solved onl b numerical methods it is valid for polnomial euation of order > 5. Let us present the solution which differ from the libration points L₄ and L₅ due to arkovsk effect as below: - where ₀ ₀ the appropriate meanings of coordinates of the triangular libration points L₄ and L₅ in generalied photogravitational restricted -bodies problem when = = = Xuetang et al. 99. So from 4.6 we obtain Δ Δ : The strongest simplifing of sstem 4.4 is possible when arkovsk effect is ero = = =. In such a case it has been proved the eistence of maimall 9 different euilibrium points {L₁ L₉} in photogravitational restricted -bodies problem Xuetang et al. 99..

11 5. Conclusion. It has been proved the eistence of maimall 56 different non-planar euilibrium points in generalied photogravitational restricted -bodies problem when we take into consideration even a small arkovsk effect in the case the -nd primar is non-oblate spheroid. This result is different both from classical restricted -bodies problem and generalied photogravitational restricted -bodies problem. Stabilit of such a points is an open problem in celestial mechanics for the case of non-ero arkovsk effect Radievskii 95. This model ma be applied to eamine the dnamic behaviour of small rotating objects such as meteoroids or small asteroids about cm to km in diameter. For the meteoroids less than cm in diameter we should additionall take into consideration the relativistic Ponting-Robertson effect which ma be treated as a perturbation for cosmic dust see Chernikov Chernikov 97; Kushvah et al. 7. arkovsk effect does not make an significant influence in regard to the meteoroids more than km in diameter Radievskii 954. Acknowledgements I am thankful to CNews Russia project Science & Technolog Forum branch Gravitation - for valuable discussions in preparing this manuscript. Especiall I am thankful to Dr. P.Fedotov Col. L.Vladimirov Dr. A.Kulikov for valuable suggestions in preliminar discussions of this manuscript. References:

12 Chernikov A 97. The Photogravitational Restricted Three-Bod Problem. Soviet Astronom Vol. 4 p.76. Douskos CN & Markellos VV 6. Out-of-plane euilibrium points in the restricted three bod problem with oblateness. A&A Vol. 446 pp Kushvah BS Sharma JP and Ishwar B 7. Nonlinear stabilit in the generalised photogravitational restricted three bod problem with Ponting-Robertson drag. Astrophs Space Sci Vol. No. -4 pp Radievskii VV 95. The restricted problem of three bodies taking account of light pressure. Akad. Nauk. USSR AstronJournal Vol. 7 p. 5. Radievskii VV 954. A mechanism for the disintegration of asteroids and meteorites. Doklad Akademii Nauk SSSR 97: Rubincam David P. Radiative spin-up and spin-down of small asteroids Icarus 48. Shankaran Sharma JP and Ishwar B. Out-of-plane euilibrium points and stabilit in the generalised photogravitational restricted three bod problem. Astrophs Space Sci Vol. No. pp Singh J Leke O. Stabilit of the photogravitational restricted three-bod problem with variable masses. Astrophs Space Sci 6: 5 4. Xuetang Zh Lihong 99. Photogravitationall Restricted Three-Bod Problem and Coplanar Libration Point. Chinese Phs. Lett. 99 Vol. pp.6-64.

The main paradox of KAM-theory for restricted 3-bodies problem

The main paradox of KAM-theory for restricted 3-bodies problem The main paradox of KAM-theory for restricted 3-bodies problem Sergey V. Ershkov Institute for Time Nature Explorations M.V. Lomonosov's Moscow State University Leninskie gory 1-1 Moscow 119991 Russia

More information

Periodic orbits around the collinear libration points

Periodic orbits around the collinear libration points Available online at www.tjnsa.com J. Nonlinear Sci. Appl. XX, XX XX Research Article Periodic orbits around the collinear libration points Elbaz I. Abouelmagd a,b, Faris Alzahrani b, Aatef Hobin b, J.

More information

Interior Resonance Periodic Orbits in Photogravitational Restricted Three-body Problem

Interior Resonance Periodic Orbits in Photogravitational Restricted Three-body Problem Advances in Astrophysics, Vol., No. 1, February 017 https://dx.doi.org/10.606/adap.017.1004 5 Interior Resonance Periodic Orbits in Photogravitational Restricted Three-body Problem Nishanth Pushparaj and

More information

Conservation of Linear Momentum for a Differential Control Volume

Conservation of Linear Momentum for a Differential Control Volume Conservation of Linear Momentum for a Differential Control Volume When we applied the rate-form of the conservation of mass equation to a differential control volume (open sstem in Cartesian coordinates,

More information

Stability of Collinear Equilibrium Points in Robe s Generalised Restricted Three Body Problem

Stability of Collinear Equilibrium Points in Robe s Generalised Restricted Three Body Problem Stability of Collinear Equilibrium Points in Robe s Generalised Restrited Three Body Problem K.T. Singh a, B.S. Kushvah b and B. Ishwar (a) Leturer in Mathematis M.B. College, Imphal (Manipur), (b) J.R.F

More information

Existence and stability of collinear equilibrium points in elliptic restricted three body problem with radiating primary and triaxial secondary

Existence and stability of collinear equilibrium points in elliptic restricted three body problem with radiating primary and triaxial secondary Modelling, Measurement and Control A Vol. 9, No., March, 08, pp. -8 Journal homepage: http://iieta.org/journals/mmc/mmc_a Existence and stability of collinear equilibrium points in elliptic restricted

More information

Location of collinear equilibrium points in the generalised photogravitational elliptic restricted three body problem

Location of collinear equilibrium points in the generalised photogravitational elliptic restricted three body problem MultiCraft International Journal of Engineering, Science and Technology Vol., No.,, pp. - INTERNTIONL JOURNL OF ENGINEERING, SCIENCE ND TECHNOLOGY www.ijest-ng.com MultiCraft Limited. ll rights reserved

More information

THE DYNAMICS OF THE GRAVITATIONAL CAPTURE PROBLEM

THE DYNAMICS OF THE GRAVITATIONAL CAPTURE PROBLEM THE DYNAMICS OF THE GRAVITATIONAL CAPTURE PROBLEM Ernesto Vieira Neto Faculdade de Engenharia de Guaratinguetá - UNESP e-mail: ernesto@feg.unesp.br Antônio Fernando Bertachini de Almeida Prado Instituto

More information

Infinitesimal Rotations

Infinitesimal Rotations Universit of Connecticut DigitalCommons@UConn Chemistr Education Materials Department of Chemistr Januar 007 Infinitesimal Rotations Carl W. David Universit of Connecticut, Carl.David@uconn.edu Follow

More information

Stability of the Moons orbits in Solar system (especially of Earth s Moon) in the restricted three-body problem (R3BP, celestial mechanics)

Stability of the Moons orbits in Solar system (especially of Earth s Moon) in the restricted three-body problem (R3BP, celestial mechanics) Stability of the Moons orbits in Solar syste especially of Earth s Moon in the restricted three-body proble BP celestial echanics Sergey V. Ershkov Institute for Tie Nature Explorations M.V. Loonosov's

More information

A NOTE ON THE DYNAMICS AROUND THE L 1,2 LAGRANGE POINTS OF THE EARTH MOON SYSTEM IN A COMPLETE SOLAR SYSTEM MODEL

A NOTE ON THE DYNAMICS AROUND THE L 1,2 LAGRANGE POINTS OF THE EARTH MOON SYSTEM IN A COMPLETE SOLAR SYSTEM MODEL IAA-AAS-DCoSS1-8-8 A NOTE ON THE DYNAMICS AROUND THE L 1,2 LAGRANGE POINTS OF THE EARTH MOON SYSTEM IN A COMPLETE SOLAR SYSTEM MODEL Lian Yijun, Gerard Góme, Josep J. Masdemont, Tang Guojian INTRODUCTION

More information

1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM

1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM 1.6 ELECTRONIC STRUCTURE OF THE HYDROGEN ATOM 23 How does this wave-particle dualit require us to alter our thinking about the electron? In our everda lives, we re accustomed to a deterministic world.

More information

INSTRUCTIONS TO CANDIDATES:

INSTRUCTIONS TO CANDIDATES: NATIONAL NIVERSITY OF SINGAPORE FINAL EXAMINATION FOR THE DEGREE OF B.ENG ME 444 - DYNAMICS AND CONTROL OF ROBOTIC SYSTEMS October/November 994 - Time Allowed: 3 Hours INSTRCTIONS TO CANDIDATES:. This

More information

1.1 The Equations of Motion

1.1 The Equations of Motion 1.1 The Equations of Motion In Book I, balance of forces and moments acting on an component was enforced in order to ensure that the component was in equilibrium. Here, allowance is made for stresses which

More information

SMALL bodies of the solar system, such as Phobos, cannot

SMALL bodies of the solar system, such as Phobos, cannot INSTITUTO SUPERIOR TÉCNICO, LISBON, PORTUGAL, JUNE 013 1 Controlled Approach Strategies on Small Celestial Bodies Using Approimate Analtical Solutions of the Elliptical Three-Bod Problem: Application to

More information

Dynamical aspects of multi-round horseshoe-shaped homoclinic orbits in the RTBP

Dynamical aspects of multi-round horseshoe-shaped homoclinic orbits in the RTBP Dnamical aspects of multi-round horseshoe-shaped homoclinic orbits in the RTBP E. Barrabés, J.M. Mondelo, M. Ollé December, 28 Abstract We consider the planar Restricted Three-Bod problem and the collinear

More information

About existence of stationary points for the Arnold-Beltrami-Childress (ABC) flow

About existence of stationary points for the Arnold-Beltrami-Childress (ABC) flow bout eistence of stationary points for the rnold-eltrami-hildress () flow Sergey V. Ershkov Institute for Time Nature Eplorations M.V. Lomonosov's Moscow State University Leninskie gory - Moscow 999 Russia

More information

RestrictedThreeBodyProblemwithAlbedoEffectwhenSmallerPrimaryisanOblateSpheroid

RestrictedThreeBodyProblemwithAlbedoEffectwhenSmallerPrimaryisanOblateSpheroid Global Journal of Science Frontier Research: F Mathematics and Decision Sciences Volume 17 Issue 5 Version 1.0 Year 017 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global

More information

Chapter 18 KINETICS OF RIGID BODIES IN THREE DIMENSIONS. The two fundamental equations for the motion of a system of particles .

Chapter 18 KINETICS OF RIGID BODIES IN THREE DIMENSIONS. The two fundamental equations for the motion of a system of particles . hapter 18 KINETIS F RIID DIES IN THREE DIMENSINS The to fundamental equations for the motion of a sstem of particles ΣF = ma ΣM = H H provide the foundation for three dimensional analsis, just as the do

More information

Consideration of Shock Waves in Airbag Deployment Simulations

Consideration of Shock Waves in Airbag Deployment Simulations Consideration of Shock Waves in Airbag Deploment Simulations Doris Rieger BMW Group ABSTRACT When the inflation process of a simple flat airbag was simulated with the MADYMO gas flow module, the resulting

More information

ON THE INTERPRETATION OF THE LAGRANGE MULTIPLIERS IN THE CONSTRAINT FORMULATION OF CONTACT PROBLEMS; OR WHY ARE SOME MULTIPLIERS ALWAYS ZERO?

ON THE INTERPRETATION OF THE LAGRANGE MULTIPLIERS IN THE CONSTRAINT FORMULATION OF CONTACT PROBLEMS; OR WHY ARE SOME MULTIPLIERS ALWAYS ZERO? Proceedings of the ASME 214 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 214 August 17-2, 214, Buffalo, New York, USA DETC214-3479

More information

5.3 Rigid Bodies in Three-Dimensional Force Systems

5.3 Rigid Bodies in Three-Dimensional Force Systems 5.3 Rigid odies in Three-imensional Force Sstems 5.3 Rigid odies in Three-imensional Force Sstems Eample 1, page 1 of 5 1. For the rigid frame shown, determine the reactions at the knife-edge supports,,.

More information

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis LECTURE 3: FLOWS NONLINEAR DYNAMICS AND CHAOS Patrick E McSharr Sstems Analsis, Modelling & Prediction Group www.eng.o.ac.uk/samp patrick@mcsharr.net Tel: +44 83 74 Numerical integration Stabilit analsis

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 REVIEW Arrangement of Electrons in Atoms Teacher Notes and Answers Chapter 4 SECTION 1 SHORT ANSWER 1. In order for an electron to be ejected from a metal surface, the electron must be struck

More information

Chapter 3. Theory of measurement

Chapter 3. Theory of measurement Chapter. Introduction An energetic He + -ion beam is incident on thermal sodium atoms. Figure. shows the configuration in which the interaction one is determined b the crossing of the laser-, sodium- and

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #4 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

Resonance in the Motion of a Geocentric Satellite due to Poynting-Robertson Drag

Resonance in the Motion of a Geocentric Satellite due to Poynting-Robertson Drag Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Applications and Applied Mathematics: An International Journal (AAM) Vol. 13 Issue 1 (June 2018) pp. 173 189 Resonance in the Motion

More information

VISCO-ELASTIC FLUID FLOW WITH HEAT AND MASS TRASNFER IN A VERTICAL CHANNEL THROUGH A POROUS MEDIUM

VISCO-ELASTIC FLUID FLOW WITH HEAT AND MASS TRASNFER IN A VERTICAL CHANNEL THROUGH A POROUS MEDIUM Volume 2, No. 1, Januar 214 Journal of Global Research in Mathematical Archives RESEARCH PAPER Available online at http://www.jgrma.info VISCO-ELASTIC FLUID FLOW WITH HEAT AND MASS TRASNFER IN A VERTICAL

More information

Force Couple Systems = Replacement of a Force with an Equivalent Force and Moment (Moving a Force to Another Point)

Force Couple Systems = Replacement of a Force with an Equivalent Force and Moment (Moving a Force to Another Point) orce Couple Sstems = eplacement of a orce with an Equivalent orce and oment (oving a orce to Another Point) The force acting on a bod has two effects: The first one is the tendenc to push or pull the bod

More information

Exercise solutions: concepts from chapter 7

Exercise solutions: concepts from chapter 7 f () = -N F = +N f (1) = +4N Fundamentals of Structural Geolog 1) In the following eercise we consider some of the phsical quantities used in the stud of particle dnamics and review their relationships

More information

Solution 11. Kinetics of rigid body(newton s Second Law)

Solution 11. Kinetics of rigid body(newton s Second Law) Solution () urpose and Requirement Solution Kinetics of rigid bod(newton s Second Law) In rob, kinematics stud regarding acceleration of mass center should be done before Newton s second law is used to

More information

Foundations of Astrophysics

Foundations of Astrophysics Foundations of Astrophysics Barbara Ryden The Ohio State University Bradley M. Peterson The Ohio State University Preface xi 1 Early Astronomy 1 1.1 The Celestial Sphere 1 1.2 Coordinate Systems on a Sphere

More information

Modelling of dynamics of mechanical systems with regard for constraint stabilization

Modelling of dynamics of mechanical systems with regard for constraint stabilization IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Modelling of dnamics of mechanical sstems with regard for constraint stabilization o cite this article: R G Muharlamov 018 IOP

More information

nm nm

nm nm The Quantum Mechanical Model of the Atom You have seen how Bohr s model of the atom eplains the emission spectrum of hdrogen. The emission spectra of other atoms, however, posed a problem. A mercur atom,

More information

The main paradox of KAM-theory for restricted three-body problem (R3BP, celestial mechanics)

The main paradox of KAM-theory for restricted three-body problem (R3BP, celestial mechanics) The main paadox of KAM-theoy fo esticted thee-body poblem (R3BP celestial mechanics) Segey V. Eshkov Institute fo Time Natue Exploations M.V. Lomonosov's Moscow State Univesity Leninskie goy 1-1 Moscow

More information

Phys 322 Lecture 21. Chapter 8 Polarization

Phys 322 Lecture 21. Chapter 8 Polarization Phs 3 Lecture 1 Chapter 8 Polarization Plane of polarization Transverse M wave B Plane of polarization - plane defined b vector and k: Plane of polarization z: z t ˆi z, t ˆi coskz t, z Linearl (plane)

More information

arxiv: v1 [astro-ph.ep] 29 Dec 2015

arxiv: v1 [astro-ph.ep] 29 Dec 2015 Astrophysics and Space Science manuscript No. (will be inserted by the editor) Unveiling the influence of the radiation pressure in nature of orbits in the photogravitational restricted three-body problem

More information

Ala-Arg-Pro-Tyr-Asn-Phe-Cpa-Leu-NH 2

Ala-Arg-Pro-Tyr-Asn-Phe-Cpa-Leu-NH 2 Applied Spectroscop Ala-Arg-Pro-Tr-Asn-Phe-Cpa-Leu-NH 2 Cpa Ala Pro Guillermo Mona What is Spectroscop? Without going into latin or greek, spectroscop is the stud of the interactions between light and

More information

THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY. V. A. Sharifulin.

THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY. V. A. Sharifulin. THE HEATED LAMINAR VERTICAL JET IN A LIQUID WITH POWER-LAW TEMPERATURE DEPENDENCE OF DENSITY 1. Introduction V. A. Sharifulin Perm State Technical Universit, Perm, Russia e-mail: sharifulin@perm.ru Water

More information

Mechanics Departmental Exam Last updated November 2013

Mechanics Departmental Exam Last updated November 2013 Mechanics Departmental Eam Last updated November 213 1. Two satellites are moving about each other in circular orbits under the influence of their mutual gravitational attractions. The satellites have

More information

520 Chapter 9. Nonlinear Differential Equations and Stability. dt =

520 Chapter 9. Nonlinear Differential Equations and Stability. dt = 5 Chapter 9. Nonlinear Differential Equations and Stabilit dt L dθ. g cos θ cos α Wh was the negative square root chosen in the last equation? (b) If T is the natural period of oscillation, derive the

More information

Simultaneous Orthogonal Rotations Angle

Simultaneous Orthogonal Rotations Angle ELEKTROTEHNIŠKI VESTNIK 8(1-2): -11, 2011 ENGLISH EDITION Simultaneous Orthogonal Rotations Angle Sašo Tomažič 1, Sara Stančin 2 Facult of Electrical Engineering, Universit of Ljubljana 1 E-mail: saso.tomaic@fe.uni-lj.si

More information

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph.

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph. . Zeros Eample 1. At the right we have drawn the graph of the polnomial = ( 1) ( 2) ( 4). Argue that the form of the algebraic formula allows ou to see right awa where the graph is above the -ais, where

More information

Transformation of kinematical quantities from rotating into static coordinate system

Transformation of kinematical quantities from rotating into static coordinate system Transformation of kinematical quantities from rotating into static coordinate sstem Dimitar G Stoanov Facult of Engineering and Pedagog in Sliven, Technical Universit of Sofia 59, Bourgasko Shaussee Blvd,

More information

Analysis of Periodic Orbits with Smaller Primary As Oblate Spheroid

Analysis of Periodic Orbits with Smaller Primary As Oblate Spheroid Kalpa Publications in Computing Volume 2, 2017, Pages 38 50 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Computing Analysis

More information

Research Article Chaotic Attractor Generation via a Simple Linear Time-Varying System

Research Article Chaotic Attractor Generation via a Simple Linear Time-Varying System Discrete Dnamics in Nature and Societ Volume, Article ID 836, 8 pages doi:.//836 Research Article Chaotic Attractor Generation via a Simple Linear Time-Varing Sstem Baiu Ou and Desheng Liu Department of

More information

The Circular Restricted Four-body Problem With Triaxial Primaries and Variable Infinitesimal Mass

The Circular Restricted Four-body Problem With Triaxial Primaries and Variable Infinitesimal Mass Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Applications and Applied Mathematics: An International Journal (AAM) Vol. 13, Issue 2 (December 2018), pp. 818 838 The Circular Restricted

More information

Vibrational Power Flow Considerations Arising From Multi-Dimensional Isolators. Abstract

Vibrational Power Flow Considerations Arising From Multi-Dimensional Isolators. Abstract Vibrational Power Flow Considerations Arising From Multi-Dimensional Isolators Rajendra Singh and Seungbo Kim The Ohio State Universit Columbus, OH 4321-117, USA Abstract Much of the vibration isolation

More information

Periodic Orbits in the Photogravitational Elliptic Restricted Three-Body Problem

Periodic Orbits in the Photogravitational Elliptic Restricted Three-Body Problem 54 Advances in Astrophysics, Vol., No., August 8 https://dx.doi.org/.66/adap.8.4 Periodic Orbits in the Photogravitational Elliptic Restricted Three-Body Problem Y. SHARON RUTH, RAM KRISHAN SHARMA Department

More information

Problem Set #1 Chapter 21 10, 22, 24, 43, 47, 63; Chapter 22 7, 10, 36. Chapter 21 Problems

Problem Set #1 Chapter 21 10, 22, 24, 43, 47, 63; Chapter 22 7, 10, 36. Chapter 21 Problems Problem Set #1 Chapter 1 10,, 4, 43, 47, 63; Chapter 7, 10, 36 Chapter 1 Problems 10. (a) T T m g m g (b) Before the charge is added, the cork balls are hanging verticall, so the tension is T 1 mg (0.10

More information

I xx + I yy + I zz = (y 2 + z 2 )dm + (x 2 + y 2 )dm. (x 2 + z 2 )dm + (x 2 + y 2 + z 2 )dm = 2

I xx + I yy + I zz = (y 2 + z 2 )dm + (x 2 + y 2 )dm. (x 2 + z 2 )dm + (x 2 + y 2 + z 2 )dm = 2 9196_1_s1_p095-0987 6/8/09 1:09 PM Page 95 010 Pearson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copright laws as the currentl 1 1. Show that the

More information

Indian National Physics Olympiad 2017

Indian National Physics Olympiad 2017 Indian National Phsics Olmpiad 2017 Date: 29 th Januar 2017 Solutions Roll Number: 1 7 0 0-0 0 0 0-0 0 0 0 Time : 09:00-12:00 (3 hours) Maimum Marks: 75 I permit/do not permit (strike out one) HBCSE to

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

Sample Solutions for Assignment 3.

Sample Solutions for Assignment 3. AMath 383, Autumn Sample Solutions for Assignment 3. Reading: Chs. 4-5.. Eercise 7 of Chapter 3. If $X is invested toda at 3% interest compounded continuousl, then in ears it will be worth Xe (.3 ) = Xe.6.

More information

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 6 Astronomy Today 7th Edition Chaisson/McMillan Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout

More information

A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3:1 RESONANCE. Érica C. Nogueira, Othon C. Winter

A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3:1 RESONANCE. Érica C. Nogueira, Othon C. Winter A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3: RESONANCE Érica C. Nogueira, Othon C. Winter Grupo de Dinâmica Orbital e Planetologia UNESP -- Guaratinguetá -- Brazil Antonio F.B. de

More information

STRAND: GRAPHS Unit 5 Growth and Decay

STRAND: GRAPHS Unit 5 Growth and Decay CMM Subject Support Strand: GRAPHS Unit 5 Growth and Deca: Tet STRAND: GRAPHS Unit 5 Growth and Deca TEXT Contents Section 5. Modelling Population 5. Models of Growth and Deca 5. Carbon Dating 5.4 Rate

More information

Conservation of Linear Momentum

Conservation of Linear Momentum Conservation of Linear Momentum Once we have determined the continuit equation in di erential form we proceed to derive the momentum equation in di erential form. We start b writing the integral form of

More information

A space probe to Jupiter

A space probe to Jupiter Problem 3 Page 1 Problem 3 A space probe to Jupiter We consider in this problem a method frequently used to accelerate space probes in the desired direction. The space probe flies by a planet, and can

More information

TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS

TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS Annelisie Aiex Corrêa 1, Gerard Gómez 2, Teresinha J. Stuchi 3 1 DMC/INPE - São José dos Campos, Brazil 2 MAiA/UB - Barcelona,

More information

VISUAL PHYSICS ONLINE KINEMATICS DESCRIBING MOTION

VISUAL PHYSICS ONLINE KINEMATICS DESCRIBING MOTION VISUAL PHYSICS ONLINE KINEMATICS DESCRIBING MOTION The language used to describe motion is called kinematics. Surprisingl, ver few words are needed to full the describe the motion of a Sstem. Warning:

More information

New approach to study the van der Pol equation for large damping

New approach to study the van der Pol equation for large damping Electronic Journal of Qualitative Theor of Differential Equations 2018, No. 8, 1 10; https://doi.org/10.1422/ejqtde.2018.1.8 www.math.u-szeged.hu/ejqtde/ New approach to stud the van der Pol equation for

More information

Dynamics of multiple pendula without gravity

Dynamics of multiple pendula without gravity Chaotic Modeling and Simulation (CMSIM) 1: 57 67, 014 Dnamics of multiple pendula without gravit Wojciech Szumiński Institute of Phsics, Universit of Zielona Góra, Poland (E-mail: uz88szuminski@gmail.com)

More information

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #8 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

1 HOMOGENEOUS TRANSFORMATIONS

1 HOMOGENEOUS TRANSFORMATIONS HOMOGENEOUS TRANSFORMATIONS Purpose: The purpose of this chapter is to introduce ou to the Homogeneous Transformation. This simple 4 4 transformation is used in the geometr engines of CAD sstems and in

More information

39. (a) Use trigonometric substitution to verify that. 40. The parabola y 2x divides the disk into two

39. (a) Use trigonometric substitution to verify that. 40. The parabola y 2x divides the disk into two 35. Prove the formula A r for the area of a sector of a circle with radius r and central angle. [Hint: Assume 0 and place the center of the circle at the origin so it has the equation. Then is the sum

More information

Linear stability and resonances in the generalized photogravitational Chermnykh-like problem with a disc

Linear stability and resonances in the generalized photogravitational Chermnykh-like problem with a disc MNRAS 436, 1741 1749 (013) Advance Access publication 013 October 11 doi:10.1093/mnras/stt169 Linear stability and resonances in the generalized photogravitational Chermnykh-like problem with a disc Ram

More information

9.2 - Our Solar System

9.2 - Our Solar System 9.2 - Our Solar System Scientists describe our solar system as the Sun and all the planets and other celestial objects, such as moons, comets, and asteroids, that are held by the Sun s gravity and orbit

More information

5.2 Solving Linear-Quadratic Systems

5.2 Solving Linear-Quadratic Systems Name Class Date 5. Solving Linear-Quadratic Sstems Essential Question: How can ou solve a sstem composed of a linear equation in two variables and a quadratic equation in two variables? Resource Locker

More information

Review before final exam. Guide how to identify type of the problem

Review before final exam. Guide how to identify type of the problem Review before final eam. Guide how to identif tpe of the problem Guide how to identif tpe of the problem The question is about? sas average acceleration or if the acceleration is constant a=dv/dt ma be

More information

The Coupled Three-Body Problem and Ballistic Lunar Capture

The Coupled Three-Body Problem and Ballistic Lunar Capture The Coupled Three-Bod Problem and Ballistic Lunar Capture Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) Control and Dnamical Sstems California Institute of Technolog Three Bod

More information

Differentiation Techniques

Differentiation Techniques C H A P T E R Differentiation Techniques Objectives To differentiate functions having negative integer powers. To understand and use the chain rule. To differentiate rational powers. To find second derivatives

More information

An electron can be liberated from a surface due to particle collisions an electron and a photon.

An electron can be liberated from a surface due to particle collisions an electron and a photon. Quantum Theory and the Atom the Bohr Atom The story so far... 1. Einstein argued that light is a photon (particle) and each photon has a discrete amount of energy associated with it governed by Planck's

More information

Effect of Perturbations in the Coriolis and Centrifugal Forces on the Stability of L 4 in the Relativistic R3BP

Effect of Perturbations in the Coriolis and Centrifugal Forces on the Stability of L 4 in the Relativistic R3BP J. Astrophys. Astr. 04 5, 70 7 c Indian Academy of Sciences Effect of Perturbations in the Coriolis and Centrifugal Forces on the Stability of L 4 in the Relativistic RBP Jagadish Singh & Nakone Bello,

More information

Celestial Mechanics I. Introduction Kepler s Laws

Celestial Mechanics I. Introduction Kepler s Laws Celestial Mechanics I Introduction Kepler s Laws Goals of the Course The student will be able to provide a detailed account of fundamental celestial mechanics The student will learn to perform detailed

More information

The Larmor Formula (Chapters 18-19)

The Larmor Formula (Chapters 18-19) 2017-02-28 Dispersive Media, Lecture 12 - Thomas Johnson 1 The Larmor Formula (Chapters 18-19) T. Johnson Outline Brief repetition of emission formula The emission from a single free particle - the Larmor

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dnamical Sstems and Space Mission Design Wang Koon, Martin Lo, Jerrold Marsden and Shane Ross Wang Sang Koon Control and Dnamical Sstems, Caltech koon@cds.caltech.edu Acknowledgements H. Poincaré, J. Moser

More information

The first change comes in how we associate operators with classical observables. In one dimension, we had. p p ˆ

The first change comes in how we associate operators with classical observables. In one dimension, we had. p p ˆ VI. Angular momentum Up to this point, we have been dealing primaril with one dimensional sstems. In practice, of course, most of the sstems we deal with live in three dimensions and 1D quantum mechanics

More information

(2.5) 1. Solve the following compound inequality and graph the solution set.

(2.5) 1. Solve the following compound inequality and graph the solution set. Intermediate Algebra Practice Final Math 0 (7 th ed.) (Ch. -) (.5). Solve the following compound inequalit and graph the solution set. 0 and and > or or (.7). Solve the following absolute value inequalities.

More information

CALCULUS 4 QUIZ #3 REVIEW Part 2 / SPRING 09

CALCULUS 4 QUIZ #3 REVIEW Part 2 / SPRING 09 CACUUS QUIZ #3 REVIEW Part / SPRING 09 (.) Determine the following about maima & minima of functions of variables. (a.) Complete the square for f( ) = + and locate all absolute maima & minima.. ( ) ( )

More information

Examples and counterexamples for Markus-Yamabe and LaSalle global asymptotic stability problems Anna Cima, Armengol Gasull and Francesc Mañosas

Examples and counterexamples for Markus-Yamabe and LaSalle global asymptotic stability problems Anna Cima, Armengol Gasull and Francesc Mañosas Proceedings of the International Workshop Future Directions in Difference Equations. June 13-17, 2011, Vigo, Spain. PAGES 89 96 Examples and counterexamples for Markus-Yamabe and LaSalle global asmptotic

More information

LECTURE NOTES - VIII. Prof. Dr. Atıl BULU

LECTURE NOTES - VIII. Prof. Dr. Atıl BULU LECTURE NOTES - VIII «LUID MECHNICS» Istanbul Technical Universit College of Civil Engineering Civil Engineering Department Hdraulics Division CHPTER 8 DIMENSIONL NLYSIS 8. INTRODUCTION Dimensional analsis

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems JU 18/HL Dnamics and control of mechanical sstems Date Da 1 (3/5) 5/5 Da (7/5) Da 3 (9/5) Da 4 (11/5) Da 5 (14/5) Da 6 (16/5) Content Revie of the basics of mechanics. Kinematics of rigid bodies coordinate

More information

Multi-body modeling for fluid sloshing dynamics investigation in fast spinning rockets

Multi-body modeling for fluid sloshing dynamics investigation in fast spinning rockets DOI:.9/EUCASS7-47 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) Multi-bod modeling for fluid sloshing dnamics investigation in fast spinning rockets Loreno Bucci, Michèle Lavagna

More information

Derivatives of Multivariable Functions

Derivatives of Multivariable Functions Chapter 0 Derivatives of Multivariable Functions 0. Limits Motivating Questions In this section, we strive to understand the ideas generated b the following important questions: What do we mean b the limit

More information

C) x m A) 260 sq. m B) 26 sq. m C) 40 sq. m D) 364 sq. m. 7) x x - (6x + 24) = -4 A) 0 B) all real numbers C) 4 D) no solution

C) x m A) 260 sq. m B) 26 sq. m C) 40 sq. m D) 364 sq. m. 7) x x - (6x + 24) = -4 A) 0 B) all real numbers C) 4 D) no solution Sample Departmental Final - Math 46 Perform the indicated operation. Simplif if possible. 1) 7 - - 2-2 + 3 2 - A) + - 2 B) - + 4-2 C) + 4-2 D) - + - 2 Solve the problem. 2) The sum of a number and its

More information

Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II. Newton s second law applied to a control volume Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

More information

Gravitation. Kepler s Law. BSc I SEM II (UNIT I)

Gravitation. Kepler s Law. BSc I SEM II (UNIT I) Gravitation Kepler s Law BSc I SEM II (UNIT I) P a g e 2 Contents 1) Newton s Law of Gravitation 3 Vector representation of Newton s Law of Gravitation 3 Characteristics of Newton s Law of Gravitation

More information

Radiation from a current sheet at the interface between a conventional medium and anisotropic negative refractive medium

Radiation from a current sheet at the interface between a conventional medium and anisotropic negative refractive medium Bull Mater Sci, Vol 3, No 4, August 9, pp 437 44 Indian Academ of Sciences Radiation from a current sheet at the interface between a conventional medium and anisotropic negative refractive medium YUAN

More information

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video SECTION and Decreasing Functions and the First Derivative Test 79 Section and Decreasing Functions and the First Derivative Test Determine intervals on which a unction is increasing or decreasing Appl

More information

Regular n-gon as a model of discrete gravitational system. Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia,

Regular n-gon as a model of discrete gravitational system. Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia, Regular n-gon as a model of discrete gravitational system Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia, E-mail: hegem@mail.ru Introduction A system of N points, each having mass m, forming a planar regular

More information

Beyond Janus & Epimetheus: Momentum Trading Among Co-Orbiting Satellite Groups

Beyond Janus & Epimetheus: Momentum Trading Among Co-Orbiting Satellite Groups Beyond Janus & Epimetheus: Momentum Trading Among Co-Orbiting Satellite Groups DOUG BALCOM U NIVERSITY OF WASHINGTON APPLIED MATHEMATICS Special Thanks to Sasha Malinsky Janus and Epimetheus: Momentum

More information

Brightly Shining Black Holes. Julian Krolik Johns Hopkins University

Brightly Shining Black Holes. Julian Krolik Johns Hopkins University Brightly Shining Black Holes Julian Krolik Johns Hopkins University The Popular Picture of Black Holes The darkest objects in the Universe Popular View more Truthy than True The Closest Real Black Hole

More information

INTRODUCTION TO DIFFERENTIAL EQUATIONS

INTRODUCTION TO DIFFERENTIAL EQUATIONS INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminolog. Initial-Value Problems.3 Differential Equations as Mathematical Models CHAPTER IN REVIEW The words differential and equations certainl

More information

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( )

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( ) Phsics Solutions to Chapter 5 5.. Model: Use the charge model. Solve: (a) In the process of charging b rubbing, electrons are removed from one material and transferred to the other because the are relativel

More information

8Revision of Chapters 1 7

8Revision of Chapters 1 7 8 of hapters 7 8 Technolog-free questions State the maimal domain and range of each of the following: a f = + f = b c f = d h = e f = 5 + Find the inverse of the function with the rule f = + and sketch

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

Pan Pearl River Delta Physics Olympiad 2005

Pan Pearl River Delta Physics Olympiad 2005 1 Jan. 29, 25 Morning Session (9 am 12 pm) Q1 (5 Two identical worms of length L are ling on a smooth and horizontal surface. The mass of the worms is evenl distributed along their bod length. The starting

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information