A Event has occurred

Size: px
Start display at page:

Download "A Event has occurred"

Transcription

1 Statistics and probability: Probability Event: a possible outcome or set of possible outcomes of an experiment or observation. Typically denoted by a capital letter: A, B etc. E.g. The result of a coin toss Probability of an event A: denoted by P(A). Measured on a scale between 0 and 1 inclusive. If A is impossible P(A) = 0, if A is certain then P(A)=1. E.g. P(result of a coin toss is heads). If there a fixed number of equally likely outcomes is the fraction of the outcomes that are in A. E.g. for a coin toss there are two possible outcomes, Heads or Tails, so P(result of a coin toss is heads) = 1/2. Intuitive idea: P(A) is the typical fraction of times A would occur if an experiment were repeated very many times. Event has not occurred A Event has occurred Probability of a statement S: P(S) denotes degree of belief that S is true. E.g. P(tomorrow it will rain). Probability theory gives a consistent way of reasoning about random events or uncertain propositions. Conditional probability: P(A B) means the probability of A given that B has happened or is true. e.g. P(result of coin toss is heads the coin is fair) =1/2 P(Tomorrow is Tuesday it is Monday) = 1 P(card is a heart it is a red suit) = 1/2 Probabilities are always conditional on something, for example prior knowledge, but often this is left implicit when it is irrelevant or assumed to be obvious from the context. In terms of P(B) and P(A and B) we have gives the probability of an event in the B set. Given that the event is in B, is the probability of also being in A. It is the fraction of the outcomes that are also in :

2 Statistics and probability: 1-2 Rules of probability The rules of probability generalize the rules of logic in a consistent way. You can check the rules are consistent with normal logic when P(A)=1 or 0 (true or false). 1. Complement Rule Denote all events that are not A as A c. Since either A or not A must happen, P(A) + P(A c ) = 1. Hence or P(Event happens) = 1 - P(Event doesn't happen) E.g. when throwing a fair die, P(not 6) = 1 1/6 = 5/6. 2. Multiplication Rule We can re-arrange the definition of the conditional probability to obtain equivalent expressions for : { You can often think of as being the probability of first getting with probability, and then getting with probability This is the same as first getting with probability and then getting with probability E.g. Drawing two random cards from a pack without replacement, the probability of getting two aces is Special Multiplication Rule If two events A and B are independent then P(A B) = P(A) and P(B A) = P(B): knowing that A has occurred does not affect the probability that B has occurred and vice versa. In that case P(A and B) = P(A B) = P(A) P(B)

3 Statistics and probability: 1-3 Probabilities for any number of independent events can be multiplied to get the joint probability. For example if you toss a fair coin twice, the outcome of the first throw shouldn t affect the outcome of the second throw, so the throws are independent. E.g. A fair coin is tossed twice, the chance of getting a head and then a tail is P(H 1 and T 2 ) = P(H 1 )P(T 2 ) = ½ x ½ = ¼. E.g. A die is thrown 3 times. The probability of getting the first six on the last throw is P(not 6)P(not 6)P(6) = 5/6 x 5/6 x 1/6 = 25/216 = Addition Rule For any two events A and B: P(A or B) = P(A B) = P(A) + P(B) - P(A and B) = P(A) + P(B) - P(A B) + - = Note: A or B = includes the possibility that both A and B occur. E.g. Throwing a fair die, let events be A = get an odd number B = get a 5 or 6 This is consistent, since (* +)

4 Statistics and probability: 1-4 Alternative: Note that = = c So we could also calculate ( ) using - = E.g. As before, throwing a fair die let results of interest be A = get an odd number, B = get a 5 or 6 Then ={2,4,6}, = {1,2,3,4} so {2,4}. Hence (* +) This alternative form has the advantage of generalizing easily to lots of possible events: e.g. if there are three alternative routes A, B, or C to work, the probability of me not being able to get to work is the probability of all three being blocked. So the probability of me being able to get to work is P(A clear or B clear or C clear) = 1 P(A blocked and B blocked and C blocked). Special Addition Rule If, the events are mutually exclusive, so We will often consider mutually exclusive sets of outcomes, in which case the addition rule is very simple to apply: In general if several events A 1, A 2,..., A k are mutually exclusive (i.e. at most one of them can happen in a single experiment) then E.g. Throwing a fair die, P(getting 4,5 or 6) = P(4)+P(5)+P(6) = 1/6+1/6+1/6=1/2.

5 Statistics and probability: 1-5 Useful Results Total Probability A 1 A 3 A 5 A 2 A 4 If A 1, A 2,..., A k form a partition (a mutually exclusive list of all possible outcomes) and B is any event then Proof: This follows since P(B) = P(B A 1 )P(A 1 ) + P(B A 2 )P(A 2 ) P(B A k )P(A k ) = P(B A 1 ) + P(B A 2 ) P(B A k ) = P(B A 1 or B A 2 or.. + or B A k ) = P(B (A 1 or A 2 or A k )) = P(B) Bayes Theorem The multiplication rule gives. Bayes theorem follows by diving through by (assuming ): This is an incredibly simple, useful and important result. If you have a model that tells you how likely X is given Y, Bayes theorem allows you to calculate the probability of Y if you observe X. This is the key to learning about your model from statistical data. Note: often the Total Probability rule is often used to evaluate P(B):

6 Statistics and probability: 1-6 Example: evidence in court The cars in a city are 90% black and 10% grey. A witness to a bank robbery briefly sees the escape car, and says it is grey. Testing the witness under similar conditions shows the witness correctly identifies the colour 80% of the time (in either direction). What is the probability that the car was actually grey? Solution: Let G = car is grey, B=car is black, W = Witness says car is grey. Bayes theorem gives: Use total probability rule to write Hence : Even though the witness is quite reliable, the high prior probability that the car is black makes this significantly more likely despite what the witness reported. Example: coin tosses An fair coin is tossed 7 times, and comes up heads all 7 times. What is the probability that the 8 th toss is tails? You meet a man in a bar who offers to bet on the outcome of a coin toss being heads. Being suspicious you think there s a 50% chance the coin is totally biased (has two heads!), but 50% that it is an honest bet. The man tosses the coin 7 times and it comes up heads all 7 times. What is the probability that the 8 th toss is a tail? Solution: A fair coin is by definition unbiased, and each toss is independent and with P(heads)=1/2. So the 8 th toss of a fair coin is still P(tails)= 1/2. Let B = coin is biased, F= coin is fair ( ), 7H = seeing seven heads in first seven tosses. Know,, hence So So very likely biased. Let be getting a tail on the 8 th toss. Using the total probability rule: Note that means the probability of A given both B and C.

7 Statistics and probability: 1-7 Example: three-card swindle Suppose there are three cards: A red card that is red on both sides, A white card that is white on both sides, and A mixed card that is red on one side and white on the other. All the cards are placed into a hat and one is pulled at random and placed on a table. The side facing up is red. What is the probability that the other side is also red? Solution: Let R=red card, W = white card, M = mixed card. For a random draw P(R)=P(W)=P(M)=1/3. Let SR = see a red face. P(SR) is the probability of getting the red card plus 1/2 the probability of the mixed card. The probability we want is P(R SR) since having the red card is the only way for the other side also to be red. This is Intuition: 2/3 of the three red faces are on the red card. Reliability of a system General approach: bottom-up analysis. Need to break down the system into subsystems just containing elements in series or just containing elements in parallel. Find the reliability of each of these subsystems and then repeat the process at the next level up. Series subsystem: in the diagram p i = probability that element i fails, so 1 - p i = probability that it does not fail. p 1 p 2 p 3 p n The system only works if all n elements work. Failures of different elements are assumed to be independent (so the probability of Element 1 failing does alter after connection to the system).

8 Statistics and probability: 1-8 i.e. P(System does not fail) = P(Element 1 doesn't fail and Element 2 doesn't fail and... and Element n doesn't fail) = P(Element 1 doesn't fail)p(element 2 doesn't fail)... P(Element n doesn't fail) [Special multiplication rule; independence of failures] = (1-p 1 )(1-p 2 )... (1-p n ) = ( 1 ) n j 1 p j Parallel subsystem: the subsystem only fails if all the elements fail. i.e. P(System fails) = P(Element 1 fails and Element 2 fails and... and Element n fails) = P(Element 1 fails)p(element 2 fails)... P(Element n fails) [Independence of failures] = p 1 p 2... p n = p j n j 1 p 1 p 2 p n Example: reliability of a system The reliability of a critical system has to be determined. An assessment has already been made of the reliability of components making up the system. The probabilities of failure of the various components in the next year are indicated in the diagram below. It can be assumed that components fail independently of one another * (a) What is the probability that the system does not fail in the next year? (b) Find the probability that within one year the system does not fail but component * does fail.

9 Statistics and probability: 1-9 (a) What is the probability that the system does not fail in the next year? Solution Subsystem 1: P(Subsystem 1 doesn't fail) = (1-0.05)(1-0.03) = P(Subsystem 1 fails) = Subsystem 2: (two units of subsystem 1) P(Subsystem 2 fails) = x = Subsystem 3: P(Subsystem 3 fails) = 0.1 x 0.1 = 0.01 System (summarised): P(System doesn't fail) = (1-0.02)( )(1-0.01) = (b) Find P(System does not fail and component * does fail) Solution Let B = event that the system does not fail Let C = event that component * does fail We need to find P(B and C). Now, P(C) = 0.1. Also, P(B C) = P(system does not fail given component * has failed); now if component * has failed, Subsystem 3 has probability of failing of 0.1 instead of 0.01, so that the final reliability diagram becomes: P(B C) = (1-0.02) x ( x10-3 )(1-0.1) = P(B and C) = P(B C) P(C) = x 0.1 =

10 Statistics and probability: 1-10 Combinatorics Permutations - ways of ordering k items: k! Factorials: for a positive integer k, k! = k(k-1)(k-2) e.g. 3! = 3 x 2 x 1 = 6. By definition, 0! = 1. The first item can be chosen in k ways, the second in k-1 ways, the third, in k-2 ways, etc., giving k! possible orders. e.g. ABC can be arranged as ABC, ACB, BAC, BCA, CAB and CBA, a total of 3! = 6 ways. Ways of choosing k things from n, irrespective of ordering: Binomial coefficient: for integers n and k where n k 0: Sometimes this is also called n choose k. Other notations include and variants. Justification: Choosing k things from n there are n ways to choose the first item, n-1 ways to choose the second. and (n-k+1) ways to choose the last, so ways. This is the number of different orderings of k things drawn from n. But there k! orderings of k things, so only 1/k! of these is a distinct set, giving the distinct sets. E.g. There are 3!/(2! x 1!) = 3 ways to choose 2 letters from 3 letters ABC: AB, BC and AC. E.g. in the National Lottery, the numbers of ways of choosing 6 numbers from 49 (1, 2,..., 49) is: So the probability of winning with a given random ticket is about 1/(14 million). E.g. Tossing a fair coin 10 times, the probability of getting exactly 5 heads (in any order) is

11 Statistics and probability: 1-11 Calculating factorials and Many calculators have a factorial button, but they become very large very quickly:, so be careful they do not overflow. Some calculators have a button for calculating more manually using or you can calculate it directly using factorials or Beware that it can also become very large for large n and k, for example there are ways to choose 50 items from 100. For computer users: In MatLab the function is called nchoosek, in other systems like Maple and Mathematica it is called binomial. Postscript I assume most people are familiar with a standard pack of cards. For those that are not, the standard pack is 52 different cards. Each card has a `number (one of 13 possibilities Ace,2,3 10, Jack, Queen, King) and a suit (Hearts, Diamonds, Spades, Clubs). Hearts and Diamonds are red, Spades and Clubs are black. The pack consists of all the possible combinations, so there are four Aces, one in each suit, four 3s, one in each suit, etc, a total of cards. If a card is picked at random it has probability ¼ of being in any given suite, and a probability 1/13 of being any given number.

Statistics for Engineers Lecture 2

Statistics for Engineers Lecture 2 Statistics for Engineers Lecture 2 Antony Lewis http://cosmologist.info/teaching/stat/ Summary from last time Complements Rule: P A c = 1 P(A) Multiplication Rule: P A B = P A P B A = P B P(A B) Special

More information

Statistics for Engineers

Statistics for Engineers Statistics for Engineers Antony Lewis http://cosmologist.info/teaching/stat/ Starter question Have you previously done any statistics? 1. Yes 2. No 54% 46% 1 2 BOOKS Chatfield C, 1989. Statistics for

More information

Permutation. Permutation. Permutation. Permutation. Permutation

Permutation. Permutation. Permutation. Permutation. Permutation Conditional Probability Consider the possible arrangements of the letters A, B, and C. The possible arrangements are: ABC, ACB, BAC, BCA, CAB, CBA. If the order of the arrangement is important then we

More information

Probability Year 10. Terminology

Probability Year 10. Terminology Probability Year 10 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

Probability Year 9. Terminology

Probability Year 9. Terminology Probability Year 9 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

Topic 3: Introduction to Probability

Topic 3: Introduction to Probability Topic 3: Introduction to Probability 1 Contents 1. Introduction 2. Simple Definitions 3. Types of Probability 4. Theorems of Probability 5. Probabilities under conditions of statistically independent events

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

Discrete Probability. Chemistry & Physics. Medicine

Discrete Probability. Chemistry & Physics. Medicine Discrete Probability The existence of gambling for many centuries is evidence of long-running interest in probability. But a good understanding of probability transcends mere gambling. The mathematics

More information

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then 1.1 Probabilities Def n: A random experiment is a process that, when performed, results in one and only one of many observations (or outcomes). The sample space S is the set of all elementary outcomes

More information

Lecture 3: Probability

Lecture 3: Probability Lecture 3: Probability 28th of October 2015 Lecture 3: Probability 28th of October 2015 1 / 36 Summary of previous lecture Define chance experiment, sample space and event Introduce the concept of the

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space I. Vocabulary: A. Outcomes: the things that can happen in a probability experiment B. Sample Space (S): all possible outcomes C. Event (E): one outcome D. Probability of an Event (P(E)): the likelihood

More information

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD .0 Introduction: The theory of probability has its origin in the games of chance related to gambling such as tossing of a coin, throwing of a die, drawing cards from a pack of cards etc. Jerame Cardon,

More information

Chapter 2.5 Random Variables and Probability The Modern View (cont.)

Chapter 2.5 Random Variables and Probability The Modern View (cont.) Chapter 2.5 Random Variables and Probability The Modern View (cont.) I. Statistical Independence A crucially important idea in probability and statistics is the concept of statistical independence. Suppose

More information

PROBABILITY.

PROBABILITY. PROBABILITY PROBABILITY(Basic Terminology) Random Experiment: If in each trial of an experiment conducted under identical conditions, the outcome is not unique, but may be any one of the possible outcomes,

More information

Statistics Primer. A Brief Overview of Basic Statistical and Probability Principles. Essential Statistics for Data Analysts Using Excel

Statistics Primer. A Brief Overview of Basic Statistical and Probability Principles. Essential Statistics for Data Analysts Using Excel Statistics Primer A Brief Overview of Basic Statistical and Probability Principles Liberty J. Munson, PhD 9/19/16 Essential Statistics for Data Analysts Using Excel Table of Contents What is a Variable?...

More information

Introduction and basic definitions

Introduction and basic definitions Chapter 1 Introduction and basic definitions 1.1 Sample space, events, elementary probability Exercise 1.1 Prove that P( ) = 0. Solution of Exercise 1.1 : Events S (where S is the sample space) and are

More information

Probability the chance that an uncertain event will occur (always between 0 and 1)

Probability the chance that an uncertain event will occur (always between 0 and 1) Quantitative Methods 2013 1 Probability as a Numerical Measure of the Likelihood of Occurrence Probability the chance that an uncertain event will occur (always between 0 and 1) Increasing Likelihood of

More information

Chapter 2 Class Notes

Chapter 2 Class Notes Chapter 2 Class Notes Probability can be thought of in many ways, for example as a relative frequency of a long series of trials (e.g. flips of a coin or die) Another approach is to let an expert (such

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter One Jesse Crawford Department of Mathematics Tarleton State University (Tarleton State University) Chapter One Notes 1 / 71 Outline 1 A Sketch of Probability and

More information

7.1 What is it and why should we care?

7.1 What is it and why should we care? Chapter 7 Probability In this section, we go over some simple concepts from probability theory. We integrate these with ideas from formal language theory in the next chapter. 7.1 What is it and why should

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Combinatorics and probability

Combinatorics and probability Combinatorics and probability Maths 4 th ESO José Jaime Noguera 1 Organizing data: tree diagrams Draw the tree diagram for the problem: You have 3 seats and three people Andrea (A), Bob (B) and Carol (C).

More information

Section F Ratio and proportion

Section F Ratio and proportion Section F Ratio and proportion Ratio is a way of comparing two or more groups. For example, if something is split in a ratio 3 : 5 there are three parts of the first thing to every five parts of the second

More information

STAT 516: Basic Probability and its Applications

STAT 516: Basic Probability and its Applications Lecture 3: Conditional Probability and Independence Prof. Michael September 29, 2015 Motivating Example Experiment ξ consists of rolling a fair die twice; A = { the first roll is 6 } amd B = { the sum

More information

AMS7: WEEK 2. CLASS 2

AMS7: WEEK 2. CLASS 2 AMS7: WEEK 2. CLASS 2 Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Friday April 10, 2015 Probability: Introduction Probability:

More information

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 4.1-1

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 4.1-1 Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by Mario F. Triola 4.1-1 4-1 Review and Preview Chapter 4 Probability 4-2 Basic Concepts of Probability 4-3 Addition

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad MAT2377 Ali Karimnezhad Version September 9, 2015 Ali Karimnezhad Comments These slides cover material from Chapter 1. In class, I may use a blackboard. I recommend reading these slides before you come

More information

Lecture 3. Probability and elements of combinatorics

Lecture 3. Probability and elements of combinatorics Introduction to theory of probability and statistics Lecture 3. Probability and elements of combinatorics prof. dr hab.inż. Katarzyna Zakrzewska Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 2: Random Experiments. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 2: Random Experiments. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 2: Random Experiments Prof. Vince Calhoun Reading This class: Section 2.1-2.2 Next class: Section 2.3-2.4 Homework: Assignment 1: From the

More information

6.2 Introduction to Probability. The Deal. Possible outcomes: STAT1010 Intro to probability. Definitions. Terms: What are the chances of?

6.2 Introduction to Probability. The Deal. Possible outcomes: STAT1010 Intro to probability. Definitions. Terms: What are the chances of? 6.2 Introduction to Probability Terms: What are the chances of?! Personal probability (subjective) " Based on feeling or opinion. " Gut reaction.! Empirical probability (evidence based) " Based on experience

More information

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3.

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3,

More information

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM Topic Concepts Degree of Importance References NCERT Book Vol. II Probability (i) Conditional Probability *** Article 1.2 and 1.2.1 Solved Examples 1 to 6 Q. Nos

More information

Introduction to Probability with MATLAB Spring 2014

Introduction to Probability with MATLAB Spring 2014 Introduction to Probability with MATLAB Spring 2014 Lecture 1 / 12 Jukka Kohonen Department of Mathematics and Statistics University of Helsinki About the course https://wiki.helsinki.fi/display/mathstatkurssit/introduction+to+probability%2c+fall+2013

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Lecture 3 : Probability II. Jonathan Marchini

Lecture 3 : Probability II. Jonathan Marchini Lecture 3 : Probability II Jonathan Marchini Puzzle 1 Pick any two types of card that can occur in a normal pack of shuffled playing cards e.g. Queen and 6. What do you think is the probability that somewhere

More information

If the objects are replaced there are n choices each time yielding n r ways. n C r and in the textbook by g(n, r).

If the objects are replaced there are n choices each time yielding n r ways. n C r and in the textbook by g(n, r). Caveat: Not proof read. Corrections appreciated. Combinatorics In the following, n, n 1, r, etc. will denote non-negative integers. Rule 1 The number of ways of ordering n distinguishable objects (also

More information

UNIT 5 ~ Probability: What Are the Chances? 1

UNIT 5 ~ Probability: What Are the Chances? 1 UNIT 5 ~ Probability: What Are the Chances? 1 6.1: Simulation Simulation: The of chance behavior, based on a that accurately reflects the phenomenon under consideration. (ex 1) Suppose we are interested

More information

Chapter 4 Probability

Chapter 4 Probability 4-1 Review and Preview Chapter 4 Probability 4-2 Basic Concepts of Probability 4-3 Addition Rule 4-4 Multiplication Rule: Basics 4-5 Multiplication Rule: Complements and Conditional Probability 4-6 Counting

More information

Example. If 4 tickets are drawn with replacement from ,

Example. If 4 tickets are drawn with replacement from , Example. If 4 tickets are drawn with replacement from 1 2 2 4 6, what are the chances that we observe exactly two 2 s? Exactly two 2 s in a sequence of four draws can occur in many ways. For example, (

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 4-1 Overview 4-2 Fundamentals 4-3 Addition Rule Chapter 4 Probability 4-4 Multiplication Rule:

More information

Problem # Number of points 1 /20 2 /20 3 /20 4 /20 5 /20 6 /20 7 /20 8 /20 Total /150

Problem # Number of points 1 /20 2 /20 3 /20 4 /20 5 /20 6 /20 7 /20 8 /20 Total /150 Name Student ID # Instructor: SOLUTION Sergey Kirshner STAT 516 Fall 09 Practice Midterm #1 January 31, 2010 You are not allowed to use books or notes. Non-programmable non-graphic calculators are permitted.

More information

(a) Fill in the missing probabilities in the table. (b) Calculate P(F G). (c) Calculate P(E c ). (d) Is this a uniform sample space?

(a) Fill in the missing probabilities in the table. (b) Calculate P(F G). (c) Calculate P(E c ). (d) Is this a uniform sample space? Math 166 Exam 1 Review Sections L.1-L.2, 1.1-1.7 Note: This review is more heavily weighted on the new material this week: Sections 1.5-1.7. For more practice problems on previous material, take a look

More information

n N CHAPTER 1 Atoms Thermodynamics Molecules Statistical Thermodynamics (S.T.)

n N CHAPTER 1 Atoms Thermodynamics Molecules Statistical Thermodynamics (S.T.) CHAPTER 1 Atoms Thermodynamics Molecules Statistical Thermodynamics (S.T.) S.T. is the key to understanding driving forces. e.g., determines if a process proceeds spontaneously. Let s start with entropy

More information

UNIT Explain about the partition of a sampling space theorem?

UNIT Explain about the partition of a sampling space theorem? UNIT -1 1. Explain about the partition of a sampling space theorem? PARTITIONS OF A SAMPLE SPACE The events B1, B2. B K represent a partition of the sample space 'S" if (a) So, when the experiment E is

More information

Module 8 Probability

Module 8 Probability Module 8 Probability Probability is an important part of modern mathematics and modern life, since so many things involve randomness. The ClassWiz is helpful for calculating probabilities, especially those

More information

Motivation. Stat Camp for the MBA Program. Probability. Experiments and Outcomes. Daniel Solow 5/10/2017

Motivation. Stat Camp for the MBA Program. Probability. Experiments and Outcomes. Daniel Solow 5/10/2017 Stat Camp for the MBA Program Daniel Solow Lecture 2 Probability Motivation You often need to make decisions under uncertainty, that is, facing an unknown future. Examples: How many computers should I

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2 Probability Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application. However, probability models underlie

More information

CHAPTER - 16 PROBABILITY Random Experiment : If an experiment has more than one possible out come and it is not possible to predict the outcome in advance then experiment is called random experiment. Sample

More information

Chapter 3 : Conditional Probability and Independence

Chapter 3 : Conditional Probability and Independence STAT/MATH 394 A - PROBABILITY I UW Autumn Quarter 2016 Néhémy Lim Chapter 3 : Conditional Probability and Independence 1 Conditional Probabilities How should we modify the probability of an event when

More information

2. AXIOMATIC PROBABILITY

2. AXIOMATIC PROBABILITY IA Probability Lent Term 2. AXIOMATIC PROBABILITY 2. The axioms The formulation for classical probability in which all outcomes or points in the sample space are equally likely is too restrictive to develop

More information

STA Module 4 Probability Concepts. Rev.F08 1

STA Module 4 Probability Concepts. Rev.F08 1 STA 2023 Module 4 Probability Concepts Rev.F08 1 Learning Objectives Upon completing this module, you should be able to: 1. Compute probabilities for experiments having equally likely outcomes. 2. Interpret

More information

Chapter 7: Section 7-1 Probability Theory and Counting Principles

Chapter 7: Section 7-1 Probability Theory and Counting Principles Chapter 7: Section 7-1 Probability Theory and Counting Principles D. S. Malik Creighton University, Omaha, NE D. S. Malik Creighton University, Omaha, NE Chapter () 7: Section 7-1 Probability Theory and

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

Conditional Probability

Conditional Probability Conditional Probability When we obtain additional information about a probability experiment, we want to use the additional information to reassess the probabilities of events given the new information.

More information

14 - PROBABILITY Page 1 ( Answers at the end of all questions )

14 - PROBABILITY Page 1 ( Answers at the end of all questions ) - PROBABILITY Page ( ) Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES

BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES BASICS OF PROBABILITY CHAPTER-1 CS6015-LINEAR ALGEBRA AND RANDOM PROCESSES COMMON TERMS RELATED TO PROBABILITY Probability is the measure of the likelihood that an event will occur Probability values are

More information

Conditional Probability. CS231 Dianna Xu

Conditional Probability. CS231 Dianna Xu Conditional Probability CS231 Dianna Xu 1 Boy or Girl? A couple has two children, one of them is a girl. What is the probability that the other one is also a girl? Assuming 50/50 chances of conceiving

More information

Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II

Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II Week 4 Classical Probability, Part II Week 4 Objectives This week we continue covering topics from classical probability. The notion of conditional probability is presented first. Important results/tools

More information

MATH MW Elementary Probability Course Notes Part I: Models and Counting

MATH MW Elementary Probability Course Notes Part I: Models and Counting MATH 2030 3.00MW Elementary Probability Course Notes Part I: Models and Counting Tom Salisbury salt@yorku.ca York University Winter 2010 Introduction [Jan 5] Probability: the mathematics used for Statistics

More information

Probability & Random Variables

Probability & Random Variables & Random Variables Probability Probability theory is the branch of math that deals with random events, processes, and variables What does randomness mean to you? How would you define probability in your

More information

Conditional Probability & Independence. Conditional Probabilities

Conditional Probability & Independence. Conditional Probabilities Conditional Probability & Independence Conditional Probabilities Question: How should we modify P(E) if we learn that event F has occurred? Definition: the conditional probability of E given F is P(E F

More information

Topic 5 Basics of Probability

Topic 5 Basics of Probability Topic 5 Basics of Probability Equally Likely Outcomes and the Axioms of Probability 1 / 13 Outline Equally Likely Outcomes Axioms of Probability Consequences of the Axioms 2 / 13 Introduction A probability

More information

Discrete Probability

Discrete Probability Discrete Probability Mark Muldoon School of Mathematics, University of Manchester M05: Mathematical Methods, January 30, 2007 Discrete Probability - p. 1/38 Overview Mutually exclusive Independent More

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

Intermediate Math Circles November 8, 2017 Probability II

Intermediate Math Circles November 8, 2017 Probability II Intersection of Events and Independence Consider two groups of pairs of events Intermediate Math Circles November 8, 017 Probability II Group 1 (Dependent Events) A = {a sales associate has training} B

More information

Conditional Probability & Independence. Conditional Probabilities

Conditional Probability & Independence. Conditional Probabilities Conditional Probability & Independence Conditional Probabilities Question: How should we modify P(E) if we learn that event F has occurred? Definition: the conditional probability of E given F is P(E F

More information

CMPT 882 Machine Learning

CMPT 882 Machine Learning CMPT 882 Machine Learning Lecture Notes Instructor: Dr. Oliver Schulte Scribe: Qidan Cheng and Yan Long Mar. 9, 2004 and Mar. 11, 2004-1 - Basic Definitions and Facts from Statistics 1. The Binomial Distribution

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER 2 2017/2018 DR. ANTHONY BROWN 5.1. Introduction to Probability. 5. Probability You are probably familiar with the elementary

More information

P(A) = Definitions. Overview. P - denotes a probability. A, B, and C - denote specific events. P (A) - Chapter 3 Probability

P(A) = Definitions. Overview. P - denotes a probability. A, B, and C - denote specific events. P (A) - Chapter 3 Probability Chapter 3 Probability Slide 1 Slide 2 3-1 Overview 3-2 Fundamentals 3-3 Addition Rule 3-4 Multiplication Rule: Basics 3-5 Multiplication Rule: Complements and Conditional Probability 3-6 Probabilities

More information

Topic 4 Probability. Terminology. Sample Space and Event

Topic 4 Probability. Terminology. Sample Space and Event Topic 4 Probability The Sample Space is the collection of all possible outcomes Experimental outcome An outcome from a sample space with one characteristic Event May involve two or more outcomes simultaneously

More information

5.5 PROBABILITY AS A THEORETICAL CONCEPT

5.5 PROBABILITY AS A THEORETICAL CONCEPT 5.5 PROAILIY AS A EOREICAL CONCEP So far, we have solved probability problems by estimating the required probability after conducting some sort of experiment and collecting data. ut probability may be

More information

Probability theory basics

Probability theory basics Probability theory basics Michael Franke Basics of probability theory: axiomatic definition, interpretation, joint distributions, marginalization, conditional probability & Bayes rule. Random variables:

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Basic Probability Learning Objectives In this lecture(s), you learn: Basic probability concepts Conditional probability To use Bayes Theorem to revise probabilities

More information

PROBABILITY CHAPTER LEARNING OBJECTIVES UNIT OVERVIEW

PROBABILITY CHAPTER LEARNING OBJECTIVES UNIT OVERVIEW CHAPTER 16 PROBABILITY LEARNING OBJECTIVES Concept of probability is used in accounting and finance to understand the likelihood of occurrence or non-occurrence of a variable. It helps in developing financial

More information

Today we ll discuss ways to learn how to think about events that are influenced by chance.

Today we ll discuss ways to learn how to think about events that are influenced by chance. Overview Today we ll discuss ways to learn how to think about events that are influenced by chance. Basic probability: cards, coins and dice Definitions and rules: mutually exclusive events and independent

More information

Module 1. Probability

Module 1. Probability Module 1 Probability 1. Introduction In our daily life we come across many processes whose nature cannot be predicted in advance. Such processes are referred to as random processes. The only way to derive

More information

10.1. Randomness and Probability. Investigation: Flip a Coin EXAMPLE A CONDENSED LESSON

10.1. Randomness and Probability. Investigation: Flip a Coin EXAMPLE A CONDENSED LESSON CONDENSED LESSON 10.1 Randomness and Probability In this lesson you will simulate random processes find experimental probabilities based on the results of a large number of trials calculate theoretical

More information

MATH STUDENT BOOK. 12th Grade Unit 9

MATH STUDENT BOOK. 12th Grade Unit 9 MATH STUDENT BOOK 12th Grade Unit 9 Unit 9 COUNTING PRINCIPLES MATH 1209 COUNTING PRINCIPLES INTRODUCTION 1. PROBABILITY DEFINITIONS, SAMPLE SPACES, AND PROBABILITY ADDITION OF PROBABILITIES 11 MULTIPLICATION

More information

12.1. Randomness and Probability

12.1. Randomness and Probability CONDENSED LESSON. Randomness and Probability In this lesson, you Simulate random processes with your calculator Find experimental probabilities based on the results of a large number of trials Calculate

More information

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio 4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Wrong is right. Thelonious Monk 4.1 Three Definitions of

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-345-01: Probability and Statistics for Engineers Fall 2012 Contents 0 Administrata 2 0.1 Outline....................................... 3 1 Axiomatic Probability 3

More information

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0?

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0? MATH 382 Conditional Probability Dr. Neal, WKU We now shall consider probabilities of events that are restricted within a subset that is smaller than the entire sample space Ω. For example, let Ω be the

More information

Lecture 3 Probability Basics

Lecture 3 Probability Basics Lecture 3 Probability Basics Thais Paiva STA 111 - Summer 2013 Term II July 3, 2013 Lecture Plan 1 Definitions of probability 2 Rules of probability 3 Conditional probability What is Probability? Probability

More information

If all the outcomes are equally likely, then the probability an event A happening is given by this formula:

If all the outcomes are equally likely, then the probability an event A happening is given by this formula: Understanding Probability Probability Scale and Formula PROBIBILITY Probability is a measure of how likely an event is to happen. A scale is used from zero to one, as shown below. Examples The probability

More information

Binomial Probability. Permutations and Combinations. Review. History Note. Discuss Quizzes/Answer Questions. 9.0 Lesson Plan

Binomial Probability. Permutations and Combinations. Review. History Note. Discuss Quizzes/Answer Questions. 9.0 Lesson Plan 9.0 Lesson Plan Discuss Quizzes/Answer Questions History Note Review Permutations and Combinations Binomial Probability 1 9.1 History Note Pascal and Fermat laid out the basic rules of probability in a

More information

STA 2023 EXAM-2 Practice Problems. Ven Mudunuru. From Chapters 4, 5, & Partly 6. With SOLUTIONS

STA 2023 EXAM-2 Practice Problems. Ven Mudunuru. From Chapters 4, 5, & Partly 6. With SOLUTIONS STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6 With SOLUTIONS Mudunuru, Venkateswara Rao STA 2023 Spring 2016 1 1. A committee of 5 persons is to be formed from 6 men and 4 women. What

More information

Part 3: Parametric Models

Part 3: Parametric Models Part 3: Parametric Models Matthew Sperrin and Juhyun Park August 19, 2008 1 Introduction There are three main objectives to this section: 1. To introduce the concepts of probability and random variables.

More information

Determining Probabilities. Product Rule for Ordered Pairs/k-Tuples:

Determining Probabilities. Product Rule for Ordered Pairs/k-Tuples: Determining Probabilities Product Rule for Ordered Pairs/k-Tuples: Determining Probabilities Product Rule for Ordered Pairs/k-Tuples: Proposition If the first element of object of an ordered pair can be

More information

Chapter 7 Wednesday, May 26th

Chapter 7 Wednesday, May 26th Chapter 7 Wednesday, May 26 th Random event A random event is an event that the outcome is unpredictable. Example: There are 45 students in this class. What is the probability that if I select one student,

More information

M378K In-Class Assignment #1

M378K In-Class Assignment #1 The following problems are a review of M6K. M7K In-Class Assignment # Problem.. Complete the definition of mutual exclusivity of events below: Events A, B Ω are said to be mutually exclusive if A B =.

More information

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y Presentation on Theory of Probability Meaning of Probability: Chance of occurrence of any event In practical life we come across situation where the result are uncertain Theory of probability was originated

More information