Output Feedback Control of a Class of Nonlinear Systems: A Nonseparation Principle Paradigm

Size: px
Start display at page:

Download "Output Feedback Control of a Class of Nonlinear Systems: A Nonseparation Principle Paradigm"

Transcription

1 70 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 47, NO 0, OCTOBER 00 [7] F Martinelli, C Shu, and J R Perins, On the optimality of myopic production controls for single-server, continuous-flow manufacturing systems, IEEE Trans Automat Contr, vol 46, pp 69 73, Aug 00 [8] F Martinelli and P Valigi, The impact of finite buffers on the scheduling of a single machine two part-type manufacturing system: The optimal policy, Dipartimento di Ingegneria Elettronica e dell Informazione, Università di Perugia, Perugia, Italy, Tech Rep RDIEI-0-00, 00 Output Feedbac Control of a Class of Nonlinear Systems: A Nonseparation Principle Paradigm Chunjiang Qian and Wei Lin Abstract This note considers the problem of global stabilization by output feedbac, for a family of nonlinear systems that are dominated by a triangular system satisfying linear growth condition The problem has remained unsolved due to the violation of the commonly assumed conditions in the literature Using a feedbac domination design method which is not based on the separation principle, we explicitly construct a linear output compensator maing the closed-loop system globally exponentially stable Index Terms Global robust stabilization, linear growth condition, nonlinear systems, nonseparation principle design, output feedbac I INTRODUCTION AND DISCUSSION One of the important problems in the field of nonlinear control is global stabilization by output feedbac Unlie in the case of linear systems, global stabilizability by state feedbac plus observability do not imply global stabilizability by output feedbac, and therefore, the so-called separation principle usually does not hold for nonlinear systems Perhaps for this reason, the problem is exceptionally challenging and much more difficult than the global stabilization by state feedbac Over the years, several papers have investigated global stabilization of nonlinear systems using output feedbac and obtained some interesting results For example, for a class of detectable bilinear systems [4] or affine and nonaffine systems with stable-free dynamics [9], [0], global stabilization via output feedbac was proved to be solvable using the input saturation technique [9], [0] In [7], a necessary and sufficient condition was given for a nonlinear system to be equivalent to an observable linear system perturbed by a vector field that depends only on the output and input of the system As a consequence, global stabilization by output feedbac is achievable for a class of nonlinear systems that are diffeomorphic to a system in the nonlinear observer form [7], [8], and [5] In [], counterexamples were given indicating that global stabilization of minimum-phase nonlinear systems via output feedbac is Manuscript received August, 00; revised March, 00 Recommended by Associate Editor J M A Scherpen This wor was supported in part by the National Science Foundation under Grants ECS , ECS-99068, DMS , and DMS C Qian is with the Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 7849 USA W Lin is with the Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 4406 USA ( linwei@nonlinearcwruedu) Digital Object Identifier 009/TAC usually impossible, without introducing extra growth conditions on the unmeasurable states of the system Since then, much subsequent research wor has been focused on the output feedbac stabilization of nonlinear systems under various structural or growth conditions One of the common assumptions is that nonlinear systems should be in an output feedbac form [] or a triangular form with certain growth conditions [5], [3], [4], [], [3] The other condition is that the system can nonlinearly depend on the output of the system but is linear in the unmeasurable states [] The latter was relaxed recently in [3] by only imposing the global Lipschitz-lie condition on the unmeasurable states In this note, we consider a class of single-input single-output (SISO) time-varying systems _x = x + (t; x; u) _x = x 3 + (t; x; u) _xn = u + n(t; x; u) y = x () where x =(x ; ;xn) T IR n, u IR and y IR are the system state, input, and output, respectively The mappings i: IRIR n IR! IR, i =; ;n, are continuous and satisfy the following condition Assumption : For i =; ;n, there is a constant c 0 such that j i (t; x; u)j c(jx j + + jx i j): () Under this hypothesis, it has been shown in [4] that global exponential stabilization of nonlinear systems () is possible using linear state feedbac The objective of this note is to prove that the same growth condition, namely Assumption, guarantees the existence of a linear output dynamic compensator _ = M + Ny; M IR nn ; N IR n u = ; IR n (3) such that the closed-loop system () (3) is globally exponentially stable (GES) at the equilibrium (x; ) =(0; 0) It must be pointed out that systems () satisfying Assumption represent an important class of nonlinear systems that cannot be dealt with by existing output feedbac control schemes such as those reported in [4], [], [], and [3] To mae this point clearer, in what follows we examine three seemingly simple but nontrivial examples The first example is a planar system of the form _x = x + ln( + u x x ) +u x _x = u + x ( 0 cos(x u)) y = x (4) which obviously satisfies Assumption However, it is not in an output feedbac form (see, eg, []) nor satisfies the structural or growth conditions in [4], [], and [3] Therefore, global stabilization of the planar system (4) by output feedbac appears to be open and unsolvable by existing design methods Notably, due to a nontriangular structure, uniformly observability of nontriangular systems lie (4) cannot be guaranteed in general In particular, the lac of a lower-triangular structure maes the conventional observer-controller based output feedbac design not feasible /0$ IEEE

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 47, NO 0, OCTOBER 00 7 The next example illustrates that a nonlinear system () with Assumption, eg, _x = x _x = u + x sin x y = x (5) may fail to satisfy the global Lipschitz-lie condition given in [3] Consequently, global stabilization of (5) via output feedbac cannot be solved by the approach of [3] In fact, it is easy to verify that x sin x is not global Lipschitz with respect to the unmeasurable state x, although Assumption holds For this type of nonlinear systems, most of the existing results on output feedbac stabilization are not applicable and a Luenberger-type observer, which consists of a copy of (5) plus an error correction term, does not seem to wor because convergence of the error dynamics is hard to prove Finally, in the case when the system under consideration involves parametric uncertainty, the problem of output feedbac stabilization becomes even more challenging Few results are available in the literature dealing with nonlinear systems with uncertainty that is associated with the unmeasurable states For instance, consider the uncertain system _x = x + d (t)x _x = u + d (t) ln( + x 4 ) sin x y = x (6) which satisfies Assumption, where jd i(t)j, i =;, are unnown continuous functions with nown bounds (equal to one in the present case) When d (t) 0, global stabilization of the uncertain system (6) can be easily solved using output feedbac However, when d (t) 6= 0, all the existing methods cannot be used because the presence of d (t) maes the design of a nonlinear observer extremely difficult The examples discussed thus far have indicated that nonlinear systems () with Assumption cover a class of nonlinear systems whose global stabilization by output feedbac does not seem to be solvable by any existing design method, and therefore is worth of investigation The main contribution of the note is the development of a feedbac domination design approach that enables one to explicitly construct a linear dynamic output compensator (3), globally exponentially stabilizing the entire family of nonlinear systems () under the growth condition () It must be pointed out that our output feedbac control scheme is not based on the separation principle That is, instead of constructing the observer and controller separately, we couple the high-gain linear observer design together with the controller construction An obvious advantage of our design method is that the precise nowledge of the nonlinearities or uncertainties of the systems needs not to be nown What really needed is the information of the bounding function of the uncertainties, ie, the constant c in () This feature maes it possible to stabilize a family of nonlinear systems using a single output feedbac compensator In other words, the proposed output feedbac controller has a universal property In the case of cascade systems, our design method can deal with an entire family of finite-dimensional minimum-phase nonlinear systems whose dimensions of the zero-dynamics are unnown II OUTPUT FEEDBAC DESIGN In [4], it was proved that a class of nonlinear systems satisfying Assumption is globally exponentially stabilizable by linear state feedbac When dealing with the problem of global stabilization via output feedbac, stronger conditions such as lower-triangular structure, differentiability of the vector field (t; x; u) =( (); ; ()) T and the global Lipschitz condition were assumed [4] In this section, we prove that Assumption suffices to guarantee the existence of a globally stabilizing output feedbac controller This is done by using a feedbac domination design which explicitly constructs a linear output feedbac control law In contrast to the nonlinear output feedbac controller obtained in [4], the dynamic output compensator we propose is linear with a simple structure (3) Theorem : Under Assumption, there exists a linear output feedbac controller (3) maing the uncertain nonlinear system () globally exponentially stable Proof: The proof consists of two parts First of all, we design a linear high-gain observer motivated by [], [5], without using the information of the system nonlinearities, ie, i(t; x; u); i =; ;n: This results in an error dynamics containing some extra terms that prevent convergence of the high-gain observer We then construct an output controller based on a feedbac domination design to tae care of the extra terms arising from the observer design This is accomplished by choosing, step-by-step, the gain parameters of the observer and the virtual controllers in a delicate manner At the last step, a linear output dynamic compensator can be obtained, maing the closed-loop system globally exponentially stable Part I Design of a Linear High-Gain Observer We begin with by designing the following linear observer _^x =^x + La (x 0 ^x ) _^x n0 =^x n + L n0 a n0(x 0 ^x ) _^x n = u + L n a n (x 0 ^x ) () where L is a gain parameter to be determined later, and a j > 0 and j =; ; n; are coefficients of the Hurwitz polynomial p(s) = s n + a s n0 + + a n0s + a n Define " i =(x i 0 ^x i )=L i0, i =; ;n A simple calculation gives where " = _" = LA" + " " " n A = (t; x; u) L (t; x; u) L n0 n(t; x; u) 0a 0 0a n0 0 0a n 0 0 : () Clearly, A is a Hurwitz matrix Therefore, there is a positive definite matrix P = P T > 0 such that A T P + PA = 0I:

3 7 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 47, NO 0, OCTOBER 00 Consider the Lyapunov function V 0(") = (n +)" T P" By Assumption, there is a real constant c > 0, which is independent of L, such that _V 0(") =0(n +)L" +(n +)" T P 0(n +)L" (t; x; u) (t; x; u) Ḷ n(t; x; u) L n0 + c " jx j + L jx j + + L n0 jx nj : Recall that x i = ^x i + L i0 " i Hence L i0 x i L i0 ^x i + j" i j; i =; ;n: With this in mind, it is not difficult to deduce that _V 0 (") 0 (n +)L 0 c p n " + c " j^x j + L j^x j + + L n0 j^x nj p n 0 (n +)L0 c n 0 c " + c ^x + L ^x + + L n0 ^x n : (3) Part II Construction of an Output Feedbac Controller Initial Step: Construct the Lyapunov function V ("; ^x )=V 0 (")+ (^x =) A direct calculation gives _V 0 (n +)L 0 p n + n c " + c ^x + L ^x + + +^x (^x + La " ) 0 nl 0 p n + n c " + c L ^x + + L n0 ^x n L n0 ^x n +^x ^x + 4 La ^x + c ^x : Let L c and define =^x 0 ^x 3 with ^x 3 being a virtual control Observe that c ^x L ^x ; c L ^x c L + c L ^x3 : With this in mind, we have _V ("; ^x ) 0 nl 0 p n + n c " + c L 4 ^x L n0 ^x n + c L Choosing the virtual controller results in + c L ^x3 +^x +^x ^x 3 + L 4 a + ^x 3 = 0Lb ^x ; b := n + 4 a + > 0 _V 0 nl 0 p n + n c " 0 nl 0 c b ^x ^x : (4) +c L 4 ^x L n0 ^x n + c L +^x : (5) Inductive Step: Suppose at step, there exist a smooth Lyapunov function V ("; ; ; ) which is positive definite and proper, and a set of virtual controllers ^x 3 ; ; ^x 3 +, defined by x 3 = 0, = ^x 0 x 3 and ^x 3 i = 0Lb i0 i0 i =^x i 0 ^x 3 i ; i =; ;+ with b i > 0 being independent of the gain constant L, such that _V 0 (n +0 )L 0 p n + n c " 0 j= L j0 (n +0 )L 0 c b j j + c L + ^x L n0 ^x n + c L + + L (0) + : (6) Now, consider the Lyapunov function V + ("; ; ; + ) = V ("; ; ; )+ L +; Observe that =^x + Lb 0^x 0 + L b 0 b 0^x 0 Then, it is straightforward to show that d dt L + = L + ^x + + L + a + " + Lb i= + =^x + 0 ^x 3 +: + + L 0 b 0 b 0 b ^x i ^x i+ + L i a i " = L + ^x + + L + a + " + i= i+ 0 Lb i i + L i a i " L 0i+ b b i = L + ^x + + L + d 0" + L + d + L d + + Ld + + (7) where d 0; ;d + ; are suitable real numbers that are independent of the gain constant L, and d + > 0 Putting (6) and (7) together, we have _V + 0 (n +0 )L 0 p n + n c " 0 j= L j0 (n +0 )L 0 cb j j + c L +4 ^x c L c ^x3 L+ L n0 ^x n + + L L + ^x d 0 L 0 " + d L 0 + d L d 0 L d + L 0 + d + + c L L 0 +

4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 47, NO 0, OCTOBER (n 0 )L 0 p n + n c " 0 (n 0 )L 0 c b 00 (n 0 )L 0 c b + c L +4 ^x c L c ^x3 L+ + L + ^x L 0 L n0 ^x n + + L + + L 0 d0 4 + d d + (d +) + d + + : 4 4 (8) From the previous inequality, it follows that the linear controller with ^x 3 + = 0Lb + + b + = n 0 + d d d 0 + (d +) + d + + > being independent of L, renders _V + 0 (n 0 )L 0 p n + n c " 0 (n 0 )L 0 c b 00 (n 0 )L 0 c b c L +4 ^x L L n0 ^x n + c L L + + : (9) This completes the inductive argument Using the inductive argument step by step, at the nth step one can design the linear controller u = 0 Lb n n = 0 Lb n (^x n + Lb n0 (^x n0 + + Lb (^x + Lb ^x ) ) (0) with b i > 0, i =; ;nbeing real numbers independent of the gain parameter L, such that _V n 0 L 0 p n + n c " 0 L 0 c b 00 L n04 L 0 cb n0 n0 0 L n0 L n () where V n is a positive definite and proper function defined by V n ("; ; ; n )=V 0 (")+ n i= L (i0) i : If we choose the gain constant L > L 3 := maxf; ( p n + (n=))c, c b ; ;c b n0g, the right-hand side of () becomes negative definite Therefore, the closed-loop system is globally exponentially stable Remar : The novelty of Theorem is two-fold: on one hand, in contrast to the common observer design that usually uses a copy of (), we design only a linear observer () for the uncertain nonlinear system () Such a construction, under Assumption, avoids dealing with difficult issues caused by the uncertainties or nonlinearities of the system On the other hand, the gain parameter L of the observer () is designed in such a way that it depends on the parameters At the last step, the design of the controller u is slightly different from that of inductive argument, because all the jun terms (eg, ^x, j n) in (6) have already been canceled at Step n 0 of the controller [ie, b i;i=; ;n, in (0)] In fact, the observer and controller designs in Theorem are heavily coupled with each other This is substantially different from most of the existing wor where the designed observer itself can asymptotically recover the state of the controlled plant, regardless of the design of the controller, ie, the controller design is independent of the observer design nown as the separation principle Theorem has an interesting consequence on output feedbac stabilization of a family of time-varying nonlinear systems in the form a ; (t; y) 0 0 _x = x + u a n0; (t; y) a n0; (t; y) 0 a n; (t; y) a n; (t; y) a n; n(t; y) y = x () where a i; j (t; y), = ; ;i, i = ; ;n, are unnown continuous functions uniformly bounded by a nown constant Obviously, Assumption holds for () Thus, we have the following result Corollary 3: For the uncertain time-varying nonlinear system (), there is a linear dynamic output compensator (3), such that the closed-loop system () and (3) is globally exponentially stable Note that this corollary has recovered the output feedbac stabilization theorem in [], for the time-invariant triangular system _x = x + a ; (y)y _x = x 3 + _x n = u + = n = a ; (y)x a n; (y)x y = x (3) with globally bounded a i; j (y) s (see []) In the rest of this section, we use examples to illustrate applications of Theorem Example 4: Consider a continuous but nonsmooth planar system of the form _x = x + x sin x _x = u + x =3 x =3 y = x : (4) Due to the presence of (t; x ;x )=x sin x, system (4) is not in a lower-triangular form Moreover, (t; x ;x ) = x =3 x =3 is only a non-lipschitz continuous function Neither the differentiability nor the global Lipschitz condition [4], [3] is fulfilled As a result, global output feedbac stabilization of (4) cannot be solved by the methods proposed in [4] and [3] On the other hand, it is easy to verify that j (x ;x )j jx j j (x ;x )j jx j + jx j: That is, Assumption holds By Theorem, the output feedbac controller _^x =^x + L(y 0 ^x ) _^x = u + L (y 0 ^x ) u = 0Lb (^x + Lb ^x ) (5) with a suitable choice of the parameters L, b and b (eg, b ==4, b = 0 and L 00), globally exponentially stabilizes system (4) The simulation shown in Fig demonstrates the GES property of the closed-loop system (4) and (5)

5 74 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 47, NO 0, OCTOBER 00 to transform (7) into Fig Transient responses of (4) and (5) with (x (0); x (0), ^x (0), ^x (0)) = (5; 50; ; 000) Example 5: Consider the three-dimensional system with uncertainty x x 3 _x = x + +u + x 3 _x = x 3 + x sin x _x 3 = u + d(t) ln( + jx x 3 j) y = x (6) where the unnown function d(t) is continuous, belonging to a nown compact set (eg, =[0; ]) Since (t; x ;x ;u) (x )=x sin x, j (x )j jx j Note that, however, there is no smooth gain function c(x ) 0 satisfying j (x ) 0 (^x )jc(x )jx 0 ^x j; 8 x IR; ^x IR ie, the global Lipschitz condition required in [3] does not hold and, therefore, the existing output feedbac control schemes such as [], [4], and [3] cannot be applied to (6) On the other hand, (4) is globally exponentially stabilizable by the linear output feedbac controller () (0) as Assumption is obviously satisfied Example 6: Consider a single-lin robot arm system introduced, for instance, in [6] The state-space model is described by _z = z _z = J N z 3 0 F (t) z 0 z 0 mgd cos z J J J _z 3 = z 4 _z 4 = u + J J N z 0 J N z 3 0 F (t) z 4 J y = z (7) where J ;J ;;N;m;g;dare nown parameters, and F (t) and F (t) are viscous friction coefficients that may vary continuously with time Suppose F (t) and F (t) are unnown but bounded by nown constants The control objective is to globally stabilize the equilibrium (z ;z ;z 3 ;z 4 )=(0; 0; mgdn=;0) by measurement feedbac In the current case, z the lin displacement of the system is measurable and, therefore, can be used for feedbac design To solve the problem, we introduce a change of coordinates x = z ; x = z ; x 3 = mgd z3 0 ; x 4 = J N J J N z4 and a prefeedbac v = J N u 0 mgd J J _x = x _x = x 3 0 F (t) x 0 x 0 mgd (cos x 0 ) J J J _x 3 = x 4 _x 4 = v + J J N x 0 F(t) x3 0 x 4 J N J y = x : (8) Since F (t) and F (t) are unnown, most of the existing results are not applicable to the output feedbac stabilization problem of (8) Observe that Assumption holds for (8) because j cos x 0 j jx j F (t) J x c jx j F (t) J x 4 c jx 4j; for constants c ;c : Using Theorem, it is easy to construct a linear dynamic output compensator of the form () (0), solving the global stabilization problem for (8) We end this section by pointing out when Assumption fails to be satisfied, global stabilization of () by output feedbac may be impossible For instance, the nonlinear system _x =x _x =x 3 _x 3 =u + x 3 y =x (9) is not globally stabilizable by any continuous dynamic output compensator This fact can be proved using an argument similar to the one in [] III UNIVERSAL OUTPUT FEEDBAC STABILIZATION From the design procedure of Theorem, it is clear that there is a single linear output feedbac controller (3) maing the entire family of nonlinear systems () simultaneously exponentially stable, as long as they satisfy Assumption with the same bound c This is a nice feature of our output feedbac control scheme, due to the use of the feedbac domination design For example, it is easy to see that the output feedbac controller (5) designed for the planar system (4) also globally exponentially stabilizes the following system: _x = x + (x + x sin(ux)) 4 _x = u + x sin(ux ) y = x (3) which was proved to be globally stabilizable by linear state feedbac [4] However, the problem of output feedbac stabilization was not solved in [4] because (3) violates the growth conditions (B) (B) of [4] The universal stabilization idea above can be extended to a family of C 0 minimum-phase nonlinear systems Specifically, consider m cascade systems with the same relative degree r _z = F (z )+G (t; z ;x ;u) _x = x + (t; z ;x ;u) _x i = x i+ + i (t; z ;x ;u) _x r = u + n(t; z ;x ;u); y = x ; =; ;m (3)

6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 47, NO 0, OCTOBER where z IR s and s is an unnown nonnegative integer Theorem 3: Suppose for each individual system (3), _z = F (z ) is GES at z =0and jg (t; z ;x ;u)j c jx j j i (t; z ;x ;u)j c (z + jx j + + jx i j); =; ;m: Then, there is a universal linear output feedbac controller _ = M + Ny; M IR rr ; N IR r u = ; IR r (33) that simultaneously exponentially stabilizes the m cascade systems (3) Proof: Since _z = F (z ) is globally exponentially stable, by the converse theorem there is a positive definite and proper function V (z ) such that This, in turn, (z F (z ) 0z (z ^c z with ^c > 0: F (z )+G (t; z ;x ;u) z + c ^c jx j ; =; ;m: (34) Now, one can construct a single r-dimensional observer () with the gain parameter L to be determined later and a Lyapunov function V0(" )=(r + )(" ) T P" with " i = x i 0 ^x i L i0 ;i =; r: Similar to the proof of Theorem, there is a real constant ~c > 0 satisfying _V (z )+ _ V0(" ) z + c ^c jx j 0 (r +)L" +~c " z + jx j + jx j L By the completion of squares, it is easy to see that + + jx r j L r0 : (35) ~c " z (~c ) " + 4 z (36) ~c " jx j j L j0 ~c " j^x j j L j0 +~c " j" j j ~c " +~c (^x j ) L (j0) +~c " j" j j: (37) Substituting (36) and (37) into (35) yields _V (z )+ V0(" _ ) 0 z 0 (r +)L" + (~c ) +~c p r + r ~c " +(c ^c ) ^x +~c ^x + L ^x + + L r0 ^x r 0 z 0 (r +)L 0 (c) 0 c p r 0 r c " r + c j= L j0 ^x j (38) where c is a uniform constant defined as c := max (c ^c ) +~c ; =; ;m : Observe that (38) is almost identical to inequality (3) in the proof of Theorem Using a recursive design procedure similar to the one in Theorem, we can obtain at the rth step the following globally exponentially stabilizing controller: u = 0Lb r (^x r + Lb r0(^x r0 + + Lb(^x + Lb^x) ) (39) where b i > 0, i = ; ;r, are real numbers independent of the gain parameter L, and L>L 3 := maxf; c +( p r +(r=))c; cb; ;cbr0g Because (38) holds uniformly for the m systems with a common constant c > 0, it is not difficult to prove that the feedbac control law (39) together with the single r-dimensional observer () stabilizes the m systems (3) simultaneously IV CONCLUSION We have presented a new output feedbac control scheme for a class of nonlinear systems whose global stabilization problem via output feedbac cannot be handled by existing methods The proposed output dynamic compensator is linear and can stabilize simultaneously a family of nonlinear systems which are dominated by a chain of integrators perturbed by a triangular vector field with linear growth condition Moreover, the result can also be applied to a finite number of globally exponentially minimum-phase systems (say, for instance, m controlled plants), in which the dimensions of the zero dynamics can be different and unnown REFERENCES [] G Besancon, State affine systems and observer-based control, in Proc NOLCOS 98, vol, July 998, pp [] H halil and F Esfandiari, Semiglobal stabilization of a class of nonlinear systems using output feedbac, IEEE Trans Automat Contr, vol 38, pp 4 45, Sept 993 [3] H halil and A Saberi, Adaptive stabilization of a class of nonlinear systems using high-gain feedbac, IEEE Trans Automat Contr, vol 3, pp , Nov 987 [4] J P Gauthier and I upa, A separation principle for bilinear systems with dissipative drift, IEEE Trans Automat Contr, vol 37, pp , Dec 99 [5] J P Gauthier, H Hammouri, and S Othman, A simple observer for nonlinear systems, applications to bioreactocrs, IEEE Trans Automat Contr, vol 37, pp , June 99 [6] A Isidori, Nonlinear Control Systems, 3rd ed New Yor: Springer- Verlag, 995 [7] A J rener and A Isidori, Linearization by output injection and nonlinear observer, Syst Control Lett, vol 3, pp 47 5, 983 [8] A J rener and W Responde, Nonlinear observers with linearizable error dynamics, SIAM J Control Optim, vol 3, pp 97 6, 985 [9] W Lin, Input saturation and global stabilization of nonlinear systems via state and output feedbac, IEEE Trans Automat Contr, vol 40, pp , Apr 995 [0], Bounded smooth state feedbac and a global separation principle for nonaffine nonlinear systems, Syst Control Lett, vol 6, pp 4 53, 995 [] R Marino and P Tomei, Dynamic output feedbac linearization and global stabilization, Syst Control Lett, vol 7, pp 5, 99 [] F Mazenc, L Praly, and W D Dayawansa, Global stabilization by output feedbac: Examples and counterexamples, Syst Control Lett, vol 3, pp 9 5, 994 [3] L Praly, Asymptotic stabilization via output feedbac for lower triangular systems with output dependent incremental rate, in Proc 40th IEEE Conf Decision and Control, Orlando, FL, 00, pp [4] J Tsinias, A theorem on global stabilization of nonlinear systems by linear feedbac, Syst Control Lett, vol 7, pp , 99 [5] X H Xia and W B Gao, Nonlinear observer design by observer error linearization, SIAM J Control Optim, vol 7, pp 99 6, 989

Disturbance Attenuation for a Class of Nonlinear Systems by Output Feedback

Disturbance Attenuation for a Class of Nonlinear Systems by Output Feedback Disturbance Attenuation for a Class of Nonlinear Systems by Output Feedback Wei in Chunjiang Qian and Xianqing Huang Submitted to Systems & Control etters /5/ Abstract This paper studies the problem of

More information

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY Bo Yang, Student Member, IEEE, and Wei Lin, Senior Member, IEEE (1.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 5, MAY Bo Yang, Student Member, IEEE, and Wei Lin, Senior Member, IEEE (1. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 50, NO 5, MAY 2005 619 Robust Output Feedback Stabilization of Uncertain Nonlinear Systems With Uncontrollable and Unobservable Linearization Bo Yang, Student

More information

Adaptive Control of Nonlinearly Parameterized Systems: The Smooth Feedback Case

Adaptive Control of Nonlinearly Parameterized Systems: The Smooth Feedback Case IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 47, NO 8, AUGUST 2002 1249 Adaptive Control of Nonlinearly Parameterized Systems: The Smooth Feedback Case Wei Lin, Senior Member, IEEE, and Chunjiang Qian,

More information

IN THIS PAPER, we investigate the output feedback stabilization

IN THIS PAPER, we investigate the output feedback stabilization IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 51, NO 9, SEPTEMBER 2006 1457 Recursive Observer Design, Homogeneous Approximation, and Nonsmooth Output Feedback Stabilization of Nonlinear Systems Chunjiang

More information

Hao Lei Wei Lin,1. Dept. of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA

Hao Lei Wei Lin,1. Dept. of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA UNIVERSA OUTPUT FEEDBACK CONTRO OF NONINEAR SYSTEMS WITH UNKNOWN GROWTH RATE Hao ei Wei in, Dept of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 446, USA

More information

Global Practical Output Regulation of a Class of Nonlinear Systems by Output Feedback

Global Practical Output Regulation of a Class of Nonlinear Systems by Output Feedback Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain, December 2-5, 2005 ThB09.4 Global Practical Output Regulation of a Class of Nonlinear

More information

Bo Yang Wei Lin,1. Dept. of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA

Bo Yang Wei Lin,1. Dept. of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA FINITE-TIME STABILIZATION OF NONSMOOTHLY STABILIZABLE SYSTEMS Bo Yang Wei Lin,1 Dept of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA Abstract:

More information

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate www.scichina.com info.scichina.com www.springerlin.com Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate WEI Chen & CHEN ZongJi School of Automation

More information

A Universal Control Approach for a Family of Uncertain Nonlinear Systems

A Universal Control Approach for a Family of Uncertain Nonlinear Systems Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 5 Seville, Spain, December -5, 5 A Universal Control Approach for a Family of Uncertain Nonlinear Systems

More information

Output Feedback Control for a Class of Nonlinear Systems

Output Feedback Control for a Class of Nonlinear Systems International Journal of Automation and Computing 3 2006 25-22 Output Feedback Control for a Class of Nonlinear Systems Keylan Alimhan, Hiroshi Inaba Department of Information Sciences, Tokyo Denki University,

More information

Adaptive and Robust Controls of Uncertain Systems With Nonlinear Parameterization

Adaptive and Robust Controls of Uncertain Systems With Nonlinear Parameterization IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 0, OCTOBER 003 87 Adaptive and Robust Controls of Uncertain Systems With Nonlinear Parameterization Zhihua Qu Abstract Two classes of partially known

More information

Lyapunov Stability of Linear Predictor Feedback for Distributed Input Delays

Lyapunov Stability of Linear Predictor Feedback for Distributed Input Delays IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL. 56 NO. 3 MARCH 2011 655 Lyapunov Stability of Linear Predictor Feedback for Distributed Input Delays Nikolaos Bekiaris-Liberis Miroslav Krstic In this case system

More information

Global stabilization of feedforward systems with exponentially unstable Jacobian linearization

Global stabilization of feedforward systems with exponentially unstable Jacobian linearization Global stabilization of feedforward systems with exponentially unstable Jacobian linearization F Grognard, R Sepulchre, G Bastin Center for Systems Engineering and Applied Mechanics Université catholique

More information

Nonlinear Discrete-Time Observer Design with Linearizable Error Dynamics

Nonlinear Discrete-Time Observer Design with Linearizable Error Dynamics 622 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 4, APRIL 2003 Nonlinear Discrete-Time Observer Design with Linearizable Error Dynamics MingQing Xiao, Nikolaos Kazantzis, Costas Kravaris, Arthur

More information

IN THIS paper we will consider nonlinear systems of the

IN THIS paper we will consider nonlinear systems of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 1, JANUARY 1999 3 Robust Stabilization of Nonlinear Systems Pointwise Norm-Bounded Uncertainties: A Control Lyapunov Function Approach Stefano Battilotti,

More information

Output Regulation of Uncertain Nonlinear Systems with Nonlinear Exosystems

Output Regulation of Uncertain Nonlinear Systems with Nonlinear Exosystems Output Regulation of Uncertain Nonlinear Systems with Nonlinear Exosystems Zhengtao Ding Manchester School of Engineering, University of Manchester Oxford Road, Manchester M3 9PL, United Kingdom zhengtaoding@manacuk

More information

Robust Stabilization of Non-Minimum Phase Nonlinear Systems Using Extended High Gain Observers

Robust Stabilization of Non-Minimum Phase Nonlinear Systems Using Extended High Gain Observers 28 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 11-13, 28 WeC15.1 Robust Stabilization of Non-Minimum Phase Nonlinear Systems Using Extended High Gain Observers Shahid

More information

Finite-Time Convergent Observer for A Class of Nonlinear Systems Using Homogeneous Method

Finite-Time Convergent Observer for A Class of Nonlinear Systems Using Homogeneous Method 2 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July, 2 Finite-Time Convergent Observer for A Class of Nonlinear Systems Using Homogeneous Method Weisong Tian, Chunjiang

More information

Observer design for a general class of triangular systems

Observer design for a general class of triangular systems 1st International Symposium on Mathematical Theory of Networks and Systems July 7-11, 014. Observer design for a general class of triangular systems Dimitris Boskos 1 John Tsinias Abstract The paper deals

More information

Global Finite-Time Stabilization by Output Feedback for Planar Systems Without Observable Linearization

Global Finite-Time Stabilization by Output Feedback for Planar Systems Without Observable Linearization IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 6, JUNE 005 885 Global Finite-Time Stabilization by Output Feedback for Planar Systems Without Observable Linearization Chunjiang Qian and Ji Li Abstract

More information

IN recent years, controller design for systems having complex

IN recent years, controller design for systems having complex 818 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART B: CYBERNETICS, VOL 29, NO 6, DECEMBER 1999 Adaptive Neural Network Control of Nonlinear Systems by State and Output Feedback S S Ge, Member,

More information

MANY adaptive control methods rely on parameter estimation

MANY adaptive control methods rely on parameter estimation 610 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 52, NO 4, APRIL 2007 Direct Adaptive Dynamic Compensation for Minimum Phase Systems With Unknown Relative Degree Jesse B Hoagg and Dennis S Bernstein Abstract

More information

Output Input Stability and Minimum-Phase Nonlinear Systems

Output Input Stability and Minimum-Phase Nonlinear Systems 422 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 3, MARCH 2002 Output Input Stability and Minimum-Phase Nonlinear Systems Daniel Liberzon, Member, IEEE, A. Stephen Morse, Fellow, IEEE, and Eduardo

More information

Small Gain Theorems on Input-to-Output Stability

Small Gain Theorems on Input-to-Output Stability Small Gain Theorems on Input-to-Output Stability Zhong-Ping Jiang Yuan Wang. Dept. of Electrical & Computer Engineering Polytechnic University Brooklyn, NY 11201, U.S.A. zjiang@control.poly.edu Dept. of

More information

1 The Observability Canonical Form

1 The Observability Canonical Form NONLINEAR OBSERVERS AND SEPARATION PRINCIPLE 1 The Observability Canonical Form In this Chapter we discuss the design of observers for nonlinear systems modelled by equations of the form ẋ = f(x, u) (1)

More information

IN THIS paper, we study the problem of asymptotic stabilization

IN THIS paper, we study the problem of asymptotic stabilization IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 49, NO 11, NOVEMBER 2004 1975 Nonlinear Control of Feedforward Systems With Bounded Signals Georgia Kaliora and Alessandro Astolfi Abstract The stabilization

More information

Stability of Switched Linear Hyperbolic Systems by Lyapunov Techniques

Stability of Switched Linear Hyperbolic Systems by Lyapunov Techniques 2196 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 8, AUGUST 2014 Stability of Switched Linear Hyperbolic Systems by Lyapunov Techniques Christophe Prieur, Antoine Girard, Emmanuel Witrant Abstract

More information

OUTPUT FEEDBACK STABILIZATION FOR COMPLETELY UNIFORMLY OBSERVABLE NONLINEAR SYSTEMS. H. Shim, J. Jin, J. S. Lee and Jin H. Seo

OUTPUT FEEDBACK STABILIZATION FOR COMPLETELY UNIFORMLY OBSERVABLE NONLINEAR SYSTEMS. H. Shim, J. Jin, J. S. Lee and Jin H. Seo OUTPUT FEEDBACK STABILIZATION FOR COMPLETELY UNIFORMLY OBSERVABLE NONLINEAR SYSTEMS H. Shim, J. Jin, J. S. Lee and Jin H. Seo School of Electrical Engineering, Seoul National University San 56-, Shilim-Dong,

More information

Global Output Feedback Stabilization of a Class of Upper-Triangular Nonlinear Systems

Global Output Feedback Stabilization of a Class of Upper-Triangular Nonlinear Systems 9 American Control Conference Hyatt Regency Riverfront St Louis MO USA June - 9 FrA4 Global Output Feedbac Stabilization of a Class of Upper-Triangular Nonlinear Systems Cunjiang Qian Abstract Tis paper

More information

SINCE the 1959 publication of Otto J. M. Smith s Smith

SINCE the 1959 publication of Otto J. M. Smith s Smith IEEE TRANSACTIONS ON AUTOMATIC CONTROL 287 Input Delay Compensation for Forward Complete and Strict-Feedforward Nonlinear Systems Miroslav Krstic, Fellow, IEEE Abstract We present an approach for compensating

More information

Strong Lyapunov Functions for Systems Satisfying the Conditions of La Salle

Strong Lyapunov Functions for Systems Satisfying the Conditions of La Salle 06 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 6, JUNE 004 Strong Lyapunov Functions or Systems Satisying the Conditions o La Salle Frédéric Mazenc and Dragan Ne sić Abstract We present a construction

More information

Stability Analysis and Synthesis for Scalar Linear Systems With a Quantized Feedback

Stability Analysis and Synthesis for Scalar Linear Systems With a Quantized Feedback IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 48, NO 9, SEPTEMBER 2003 1569 Stability Analysis and Synthesis for Scalar Linear Systems With a Quantized Feedback Fabio Fagnani and Sandro Zampieri Abstract

More information

PERIODIC signals are commonly experienced in industrial

PERIODIC signals are commonly experienced in industrial IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 2, MARCH 2007 369 Repetitive Learning Control of Nonlinear Continuous-Time Systems Using Quasi-Sliding Mode Xiao-Dong Li, Tommy W. S. Chow,

More information

Globally Stabilizing Adaptive Control Design for Nonlinearly-Parameterized Systems REFERENCES

Globally Stabilizing Adaptive Control Design for Nonlinearly-Parameterized Systems REFERENCES IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 5, NO. 6, JUNE 26 73 an indicator of performance deterioration. Yet in general this might not be true. For example, consider the problem of the minimization

More information

Robust Output Feedback Control for a Class of Nonlinear Systems with Input Unmodeled Dynamics

Robust Output Feedback Control for a Class of Nonlinear Systems with Input Unmodeled Dynamics International Journal of Automation Computing 5(3), July 28, 37-312 DOI: 117/s11633-8-37-5 Robust Output Feedback Control for a Class of Nonlinear Systems with Input Unmodeled Dynamics Ming-Zhe Hou 1,

More information

Semi-global Robust Output Regulation for a Class of Nonlinear Systems Using Output Feedback

Semi-global Robust Output Regulation for a Class of Nonlinear Systems Using Output Feedback 2005 American Control Conference June 8-10, 2005. Portland, OR, USA FrC17.5 Semi-global Robust Output Regulation for a Class of Nonlinear Systems Using Output Feedback Weiyao Lan, Zhiyong Chen and Jie

More information

IN this paper, we consider the capacity of sticky channels, a

IN this paper, we consider the capacity of sticky channels, a 72 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 1, JANUARY 2008 Capacity Bounds for Sticky Channels Michael Mitzenmacher, Member, IEEE Abstract The capacity of sticky channels, a subclass of insertion

More information

MODERN technologies are increasingly demanding

MODERN technologies are increasingly demanding IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 3, MARCH 2005 299 n-bit Stabilization of n-dimensional Nonlinear Systems in Feedforward Form Claudio De Persis, Member, IEEE Abstract A methodology

More information

Filter Design for Linear Time Delay Systems

Filter Design for Linear Time Delay Systems IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001 2839 ANewH Filter Design for Linear Time Delay Systems E. Fridman Uri Shaked, Fellow, IEEE Abstract A new delay-dependent filtering

More information

Nonlinear Observers for Autonomous Lipschitz Continuous Systems

Nonlinear Observers for Autonomous Lipschitz Continuous Systems IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 48, NO 3, MARCH 2003 451 Nonlinear Observers for Autonomous Lipschitz Continuous Systems Gerhard Kreisselmeier and Robert Engel Abstract This paper considers

More information

Output Feedback Stabilization with Prescribed Performance for Uncertain Nonlinear Systems in Canonical Form

Output Feedback Stabilization with Prescribed Performance for Uncertain Nonlinear Systems in Canonical Form Output Feedback Stabilization with Prescribed Performance for Uncertain Nonlinear Systems in Canonical Form Charalampos P. Bechlioulis, Achilles Theodorakopoulos 2 and George A. Rovithakis 2 Abstract The

More information

Adaptive backstepping for trajectory tracking of nonlinearly parameterized class of nonlinear systems

Adaptive backstepping for trajectory tracking of nonlinearly parameterized class of nonlinear systems Adaptive backstepping for trajectory tracking of nonlinearly parameterized class of nonlinear systems Hakim Bouadi, Felix Antonio Claudio Mora-Camino To cite this version: Hakim Bouadi, Felix Antonio Claudio

More information

Nonlinear Control Design for Linear Differential Inclusions via Convex Hull Quadratic Lyapunov Functions

Nonlinear Control Design for Linear Differential Inclusions via Convex Hull Quadratic Lyapunov Functions Nonlinear Control Design for Linear Differential Inclusions via Convex Hull Quadratic Lyapunov Functions Tingshu Hu Abstract This paper presents a nonlinear control design method for robust stabilization

More information

Optimal Control of Switching Surfaces

Optimal Control of Switching Surfaces Optimal Control of Switching Surfaces Y. Wardi, M. Egerstedt, M. Boccadoro, and E. Verriest {ywardi,magnus,verriest}@ece.gatech.edu School of Electrical and Computer Engineering Georgia Institute of Technology

More information

EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS. N. Ceccarelli, M. Di Marco, A. Garulli, A.

EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS. N. Ceccarelli, M. Di Marco, A. Garulli, A. EXPERIMENTAL ANALYSIS OF COLLECTIVE CIRCULAR MOTION FOR MULTI-VEHICLE SYSTEMS N. Ceccarelli, M. Di Marco, A. Garulli, A. Giannitrapani DII - Dipartimento di Ingegneria dell Informazione Università di Siena

More information

Passivity-based Stabilization of Non-Compact Sets

Passivity-based Stabilization of Non-Compact Sets Passivity-based Stabilization of Non-Compact Sets Mohamed I. El-Hawwary and Manfredi Maggiore Abstract We investigate the stabilization of closed sets for passive nonlinear systems which are contained

More information

STATE OBSERVERS FOR NONLINEAR SYSTEMS WITH SMOOTH/BOUNDED INPUT 1

STATE OBSERVERS FOR NONLINEAR SYSTEMS WITH SMOOTH/BOUNDED INPUT 1 K Y B E R N E T I K A V O L U M E 3 5 ( 1 9 9 9 ), N U M B E R 4, P A G E S 3 9 3 4 1 3 STATE OBSERVERS FOR NONLINEAR SYSTEMS WITH SMOOTH/BOUNDED INPUT 1 Alfredo Germani and Costanzo Manes It is known

More information

554 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 2, FEBRUARY and such that /$ IEEE

554 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 2, FEBRUARY and such that /$ IEEE 554 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 2, FEBRUARY 2010 REFERENCES [1] M. Fliess, J. Levine, P. Martin, and P. Rouchon, Flatness and defect of nonlinear systems: Introductory theory and

More information

Robust Output Feedback Stabilization of a Class of Nonminimum Phase Nonlinear Systems

Robust Output Feedback Stabilization of a Class of Nonminimum Phase Nonlinear Systems Proceedings of the 26 American Control Conference Minneapolis, Minnesota, USA, June 14-16, 26 FrB3.2 Robust Output Feedback Stabilization of a Class of Nonminimum Phase Nonlinear Systems Bo Xie and Bin

More information

Stability Analysis of Linear Systems with Time-varying State and Measurement Delays

Stability Analysis of Linear Systems with Time-varying State and Measurement Delays Proceeding of the th World Congress on Intelligent Control and Automation Shenyang, China, June 29 - July 4 24 Stability Analysis of Linear Systems with ime-varying State and Measurement Delays Liang Lu

More information

Regional Input-to-State Stability for Nonlinear Model Predictive Control

Regional Input-to-State Stability for Nonlinear Model Predictive Control 1548 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 9, SEPTEMBER 2006 Regional Input-to-State Stability for Nonlinear Model Predictive Control L. Magni, D. M. Raimondo, and R. Scattolini Abstract

More information

On integral-input-to-state stabilization

On integral-input-to-state stabilization On integral-input-to-state stabilization Daniel Liberzon Dept. of Electrical Eng. Yale University New Haven, CT 652 liberzon@@sysc.eng.yale.edu Yuan Wang Dept. of Mathematics Florida Atlantic University

More information

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions

H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL 11, NO 2, APRIL 2003 271 H State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Functions Doo Jin Choi and PooGyeon

More information

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY invertible, that is (1) In this way, on, and on, system (3) becomes

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY invertible, that is (1) In this way, on, and on, system (3) becomes IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013 1269 Sliding Mode and Active Disturbance Rejection Control to Stabilization of One-Dimensional Anti-Stable Wave Equations Subject to Disturbance

More information

Technical Notes and Correspondence

Technical Notes and Correspondence 1108 IEEE RANSACIONS ON AUOMAIC CONROL, VOL. 47, NO. 7, JULY 2002 echnical Notes and Correspondence Stability Analysis of Piecewise Discrete-ime Linear Systems Gang Feng Abstract his note presents a stability

More information

1 Introduction 198; Dugard et al, 198; Dugard et al, 198) A delay matrix in such a lower triangular form is called an interactor matrix, and almost co

1 Introduction 198; Dugard et al, 198; Dugard et al, 198) A delay matrix in such a lower triangular form is called an interactor matrix, and almost co Multivariable Receding-Horizon Predictive Control for Adaptive Applications Tae-Woong Yoon and C M Chow y Department of Electrical Engineering, Korea University 1, -a, Anam-dong, Sungbu-u, Seoul 1-1, Korea

More information

OUTPUT-FEEDBACK CONTROL FOR NONHOLONOMIC SYSTEMS WITH LINEAR GROWTH CONDITION

OUTPUT-FEEDBACK CONTROL FOR NONHOLONOMIC SYSTEMS WITH LINEAR GROWTH CONDITION J Syst Sci Complex 4: 86 874 OUTPUT-FEEDBACK CONTROL FOR NONHOLONOMIC SYSTEMS WITH LINEAR GROWTH CONDITION Guiling JU Yuiang WU Weihai SUN DOI:.7/s44--8447-z Received: 8 December 8 / Revised: 5 June 9

More information

BUMPLESS SWITCHING CONTROLLERS. William A. Wolovich and Alan B. Arehart 1. December 27, Abstract

BUMPLESS SWITCHING CONTROLLERS. William A. Wolovich and Alan B. Arehart 1. December 27, Abstract BUMPLESS SWITCHING CONTROLLERS William A. Wolovich and Alan B. Arehart 1 December 7, 1995 Abstract This paper outlines the design of bumpless switching controllers that can be used to stabilize MIMO plants

More information

The Rationale for Second Level Adaptation

The Rationale for Second Level Adaptation The Rationale for Second Level Adaptation Kumpati S. Narendra, Yu Wang and Wei Chen Center for Systems Science, Yale University arxiv:1510.04989v1 [cs.sy] 16 Oct 2015 Abstract Recently, a new approach

More information

Stabilization of discrete-time linear systems with saturating actuators using sliding modes: application to a twin-rotor system

Stabilization of discrete-time linear systems with saturating actuators using sliding modes: application to a twin-rotor system 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) Orlando, FL, USA, December 12-15, 2011 1 Stabilization of discrete-time linear systems with saturating actuators

More information

Any domain of attraction for a linear constrained system is a tracking domain of attraction

Any domain of attraction for a linear constrained system is a tracking domain of attraction Any domain of attraction for a linear constrained system is a tracking domain of attraction Franco Blanchini, Stefano Miani, Dipartimento di Matematica ed Informatica Dipartimento di Ingegneria Elettrica,

More information

THE DESIGN of stabilizing feedback control laws for

THE DESIGN of stabilizing feedback control laws for IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997 473 Robust Feedback Stabilization of Chemical Reactors F. Viel, F. Jadot, and G. Bastin Abstract This paper deals the temperature stabilization

More information

Smooth Profile Generation for a Tile Printing Machine

Smooth Profile Generation for a Tile Printing Machine IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 3, JUNE 2003 471 Smooth Profile Generation for a Tile Printing Machine Corrado Guarino Lo Bianco and Roberto Zanasi, Associate Member, IEEE Abstract

More information

1030 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011

1030 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011 1030 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 56, NO 5, MAY 2011 L L 2 Low-Gain Feedback: Their Properties, Characterizations Applications in Constrained Control Bin Zhou, Member, IEEE, Zongli Lin,

More information

A Complete Stability Analysis of Planar Discrete-Time Linear Systems Under Saturation

A Complete Stability Analysis of Planar Discrete-Time Linear Systems Under Saturation 710 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL 48, NO 6, JUNE 2001 A Complete Stability Analysis of Planar Discrete-Time Linear Systems Under Saturation Tingshu

More information

Designing Stable Inverters and State Observers for Switched Linear Systems with Unknown Inputs

Designing Stable Inverters and State Observers for Switched Linear Systems with Unknown Inputs Designing Stable Inverters and State Observers for Switched Linear Systems with Unknown Inputs Shreyas Sundaram and Christoforos N. Hadjicostis Abstract We present a method for estimating the inputs and

More information

Fuzzy control of a class of multivariable nonlinear systems subject to parameter uncertainties: model reference approach

Fuzzy control of a class of multivariable nonlinear systems subject to parameter uncertainties: model reference approach International Journal of Approximate Reasoning 6 (00) 9±44 www.elsevier.com/locate/ijar Fuzzy control of a class of multivariable nonlinear systems subject to parameter uncertainties: model reference approach

More information

SAMPLING arises simultaneously with input and output delays

SAMPLING arises simultaneously with input and output delays IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, MAY 2012 1141 Nonlinear Stabilization Under Sampled Delayed Measurements, With Inputs Subject to Delay Zero-Order Hold Iasson Karafyllis Miroslav

More information

FOR OVER 50 years, control engineers have appreciated

FOR OVER 50 years, control engineers have appreciated IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 7, JULY 2004 1081 Further Results on Robustness of (Possibly Discontinuous) Sample Hold Feedback Christopher M. Kellett, Member, IEEE, Hyungbo Shim,

More information

THE DESIGN OF ACTIVE CONTROLLER FOR THE OUTPUT REGULATION OF LIU-LIU-LIU-SU CHAOTIC SYSTEM

THE DESIGN OF ACTIVE CONTROLLER FOR THE OUTPUT REGULATION OF LIU-LIU-LIU-SU CHAOTIC SYSTEM THE DESIGN OF ACTIVE CONTROLLER FOR THE OUTPUT REGULATION OF LIU-LIU-LIU-SU CHAOTIC SYSTEM Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University

More information

Stabilization of Higher Periodic Orbits of Discrete-time Chaotic Systems

Stabilization of Higher Periodic Orbits of Discrete-time Chaotic Systems ISSN 749-3889 (print), 749-3897 (online) International Journal of Nonlinear Science Vol.4(27) No.2,pp.8-26 Stabilization of Higher Periodic Orbits of Discrete-time Chaotic Systems Guoliang Cai, Weihuai

More information

x i2 j i2 ε + ε i2 ε ji1 ε j i1

x i2 j i2 ε + ε i2 ε ji1 ε j i1 T-S Fuzzy Model with Linear Rule Consequence and PDC Controller: A Universal Framewor for Nonlinear Control Systems Hua O. Wang Jing Li David Niemann Laboratory for Intelligent and Nonlinear Control (LINC)

More information

An Iteration-Domain Filter for Controlling Transient Growth in Iterative Learning Control

An Iteration-Domain Filter for Controlling Transient Growth in Iterative Learning Control 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 WeC14.1 An Iteration-Domain Filter for Controlling Transient Growth in Iterative Learning Control Qing Liu and Douglas

More information

ANALYSIS AND SYNTHESIS OF DISTURBANCE OBSERVER AS AN ADD-ON ROBUST CONTROLLER

ANALYSIS AND SYNTHESIS OF DISTURBANCE OBSERVER AS AN ADD-ON ROBUST CONTROLLER ANALYSIS AND SYNTHESIS OF DISTURBANCE OBSERVER AS AN ADD-ON ROBUST CONTROLLER Hyungbo Shim (School of Electrical Engineering, Seoul National University, Korea) in collaboration with Juhoon Back, Nam Hoon

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XIII - Nonlinear Observers - A. J. Krener

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XIII - Nonlinear Observers - A. J. Krener NONLINEAR OBSERVERS A. J. Krener University of California, Davis, CA, USA Keywords: nonlinear observer, state estimation, nonlinear filtering, observability, high gain observers, minimum energy estimation,

More information

ENERGY DECAY ESTIMATES FOR LIENARD S EQUATION WITH QUADRATIC VISCOUS FEEDBACK

ENERGY DECAY ESTIMATES FOR LIENARD S EQUATION WITH QUADRATIC VISCOUS FEEDBACK Electronic Journal of Differential Equations, Vol. 00(00, No. 70, pp. 1 1. ISSN: 107-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp ENERGY DECAY ESTIMATES

More information

Reduced order observer design for nonlinear systems

Reduced order observer design for nonlinear systems Applied Mathematics Letters 19 (2006) 936 941 www.elsevier.com/locate/aml Reduced order observer design for nonlinear systems V. Sundarapandian Department of Instrumentation and Control Engineering, SRM

More information

IMECE NEW APPROACH OF TRACKING CONTROL FOR A CLASS OF NON-MINIMUM PHASE LINEAR SYSTEMS

IMECE NEW APPROACH OF TRACKING CONTROL FOR A CLASS OF NON-MINIMUM PHASE LINEAR SYSTEMS Proceedings of IMECE 27 ASME International Mechanical Engineering Congress and Exposition November -5, 27, Seattle, Washington,USA, USA IMECE27-42237 NEW APPROACH OF TRACKING CONTROL FOR A CLASS OF NON-MINIMUM

More information

OUTPUT REGULATION OF RÖSSLER PROTOTYPE-4 CHAOTIC SYSTEM BY STATE FEEDBACK CONTROL

OUTPUT REGULATION OF RÖSSLER PROTOTYPE-4 CHAOTIC SYSTEM BY STATE FEEDBACK CONTROL International Journal in Foundations of Computer Science & Technology (IJFCST),Vol., No., March 01 OUTPUT REGULATION OF RÖSSLER PROTOTYPE-4 CHAOTIC SYSTEM BY STATE FEEDBACK CONTROL Sundarapandian Vaidyanathan

More information

Nonlinear Observers: A Circle Criterion Design and Robustness Analysis

Nonlinear Observers: A Circle Criterion Design and Robustness Analysis Nonlinear Observers: A Circle Criterion Design and Robustness Analysis Murat Arcak 1 arcak@ecse.rpi.edu Petar Kokotović 2 petar@ece.ucsb.edu 1 Department of Electrical, Computer and Systems Engineering

More information

Robust Stability. Robust stability against time-invariant and time-varying uncertainties. Parameter dependent Lyapunov functions

Robust Stability. Robust stability against time-invariant and time-varying uncertainties. Parameter dependent Lyapunov functions Robust Stability Robust stability against time-invariant and time-varying uncertainties Parameter dependent Lyapunov functions Semi-infinite LMI problems From nominal to robust performance 1/24 Time-Invariant

More information

ADAPTIVE FEEDBACK LINEARIZING CONTROL OF CHUA S CIRCUIT

ADAPTIVE FEEDBACK LINEARIZING CONTROL OF CHUA S CIRCUIT International Journal of Bifurcation and Chaos, Vol. 12, No. 7 (2002) 1599 1604 c World Scientific Publishing Company ADAPTIVE FEEDBACK LINEARIZING CONTROL OF CHUA S CIRCUIT KEVIN BARONE and SAHJENDRA

More information

A new low-and-high gain feedback design using MPC for global stabilization of linear systems subject to input saturation

A new low-and-high gain feedback design using MPC for global stabilization of linear systems subject to input saturation A new low-and-high gain feedbac design using MPC for global stabilization of linear systems subject to input saturation Xu Wang 1 Håvard Fjær Grip 1; Ali Saberi 1 Tor Arne Johansen Abstract In this paper,

More information

Converse Lyapunov theorem and Input-to-State Stability

Converse Lyapunov theorem and Input-to-State Stability Converse Lyapunov theorem and Input-to-State Stability April 6, 2014 1 Converse Lyapunov theorem In the previous lecture, we have discussed few examples of nonlinear control systems and stability concepts

More information

Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Parameterized Fuzzy Approximators

Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Parameterized Fuzzy Approximators IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001 315 Adaptive Control of a Class of Nonlinear Systems with Nonlinearly Parameterized Fuzzy Approximators Hugang Han, Chun-Yi Su, Yury Stepanenko

More information

458 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 3, MAY 2008

458 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 16, NO. 3, MAY 2008 458 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL 16, NO 3, MAY 2008 Brief Papers Adaptive Control for Nonlinearly Parameterized Uncertainties in Robot Manipulators N V Q Hung, Member, IEEE, H D

More information

An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted pendulum

An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted pendulum 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 FrA.5 An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted

More information

KINETIC ENERGY SHAPING IN THE INVERTED PENDULUM

KINETIC ENERGY SHAPING IN THE INVERTED PENDULUM KINETIC ENERGY SHAPING IN THE INVERTED PENDULUM J. Aracil J.A. Acosta F. Gordillo Escuela Superior de Ingenieros Universidad de Sevilla Camino de los Descubrimientos s/n 49 - Sevilla, Spain email:{aracil,

More information

Dynamic backstepping control for pure-feedback nonlinear systems

Dynamic backstepping control for pure-feedback nonlinear systems Dynamic backstepping control for pure-feedback nonlinear systems ZHANG Sheng *, QIAN Wei-qi (7.6) Computational Aerodynamics Institution, China Aerodynamics Research and Development Center, Mianyang, 6,

More information

IN THIS PAPER, we consider a class of continuous-time recurrent

IN THIS PAPER, we consider a class of continuous-time recurrent IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 51, NO. 4, APRIL 2004 161 Global Output Convergence of a Class of Continuous-Time Recurrent Neural Networks With Time-Varying Thresholds

More information

HIGHER ORDER SLIDING MODES AND ARBITRARY-ORDER EXACT ROBUST DIFFERENTIATION

HIGHER ORDER SLIDING MODES AND ARBITRARY-ORDER EXACT ROBUST DIFFERENTIATION HIGHER ORDER SLIDING MODES AND ARBITRARY-ORDER EXACT ROBUST DIFFERENTIATION A. Levant Institute for Industrial Mathematics, 4/24 Yehuda Ha-Nachtom St., Beer-Sheva 843, Israel Fax: +972-7-232 and E-mail:

More information

Control for stability and Positivity of 2-D linear discrete-time systems

Control for stability and Positivity of 2-D linear discrete-time systems Manuscript received Nov. 2, 27; revised Dec. 2, 27 Control for stability and Positivity of 2-D linear discrete-time systems MOHAMMED ALFIDI and ABDELAZIZ HMAMED LESSI, Département de Physique Faculté des

More information

WE PROPOSE a new approach to robust control of robot

WE PROPOSE a new approach to robust control of robot IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 1, FEBRUARY 1998 69 An Optimal Control Approach to Robust Control of Robot Manipulators Feng Lin and Robert D. Brandt Abstract We present a new

More information

IN SIGNAL processing theory, a linear, time-invariant (LTI),

IN SIGNAL processing theory, a linear, time-invariant (LTI), 106 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 53, NO. 1, JANUARY 2006 A Note on Impulse Response for Continuous, Linear, Time-Invariant, Continuous-Time Systems Maurizio Ciampa,

More information

A NONLINEAR TRANSFORMATION APPROACH TO GLOBAL ADAPTIVE OUTPUT FEEDBACK CONTROL OF 3RD-ORDER UNCERTAIN NONLINEAR SYSTEMS

A NONLINEAR TRANSFORMATION APPROACH TO GLOBAL ADAPTIVE OUTPUT FEEDBACK CONTROL OF 3RD-ORDER UNCERTAIN NONLINEAR SYSTEMS Copyright 00 IFAC 15th Triennial World Congress, Barcelona, Spain A NONLINEAR TRANSFORMATION APPROACH TO GLOBAL ADAPTIVE OUTPUT FEEDBACK CONTROL OF RD-ORDER UNCERTAIN NONLINEAR SYSTEMS Choon-Ki Ahn, Beom-Soo

More information

Output Regulation of the Arneodo Chaotic System

Output Regulation of the Arneodo Chaotic System Vol. 0, No. 05, 00, 60-608 Output Regulation of the Arneodo Chaotic System Sundarapandian Vaidyanathan R & D Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi-Alamathi Road, Avadi, Chennai-600

More information

Immersion and Invariance: A New Tool for Stabilization and Adaptive Control of Nonlinear Systems

Immersion and Invariance: A New Tool for Stabilization and Adaptive Control of Nonlinear Systems 590 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 4, APRIL 2003 Immersion and Invariance: A New Tool for Stabilization and Adaptive Control of Nonlinear Systems Alessandro Astolfi, Senior Member,

More information

Minimum-Phase Property of Nonlinear Systems in Terms of a Dissipation Inequality

Minimum-Phase Property of Nonlinear Systems in Terms of a Dissipation Inequality Minimum-Phase Property of Nonlinear Systems in Terms of a Dissipation Inequality Christian Ebenbauer Institute for Systems Theory in Engineering, University of Stuttgart, 70550 Stuttgart, Germany ce@ist.uni-stuttgart.de

More information

L -Bounded Robust Control of Nonlinear Cascade Systems

L -Bounded Robust Control of Nonlinear Cascade Systems L -Bounded Robust Control of Nonlinear Cascade Systems Shoudong Huang M.R. James Z.P. Jiang August 19, 2004 Accepted by Systems & Control Letters Abstract In this paper, we consider the L -bounded robust

More information

Stability Analysis for Switched Systems with Sequence-based Average Dwell Time

Stability Analysis for Switched Systems with Sequence-based Average Dwell Time 1 Stability Analysis for Switched Systems with Sequence-based Average Dwell Time Dianhao Zheng, Hongbin Zhang, Senior Member, IEEE, J. Andrew Zhang, Senior Member, IEEE, Steven W. Su, Senior Member, IEEE

More information