Camera Calibration. (Trucco, Chapter 6) -Toproduce an estimate of the extrinsic and intrinsic camera parameters.

Size: px
Start display at page:

Download "Camera Calibration. (Trucco, Chapter 6) -Toproduce an estimate of the extrinsic and intrinsic camera parameters."

Transcription

1 Camera Calibration (Trucco, Chapter 6) What is the goal of camera calibration? -Toproduce an estimate of the extrinsic and intrinsic camera parameters. Procedure -Given the correspondences beteen a set of point features in the orld (X, Y, Z ) and their projections in an image (x im, y im ), compute the intrinsic and extrinsic camera parameters. x im pixel frame P y im Camera Frame Yc X c Z c center of perspective projection optical axis y o x,oy image plane frame x principal point World Frame Y X Z Establishing the correspondences -Calibration methods rely on one or more images of a calibration pattern: () a 3D object of knon geometry. (2) it is located in a knon position in space. (3) it is generating image features hich can be located accurately.

2 -2- -Consider the above calibration pattern: *itconsists of to orthogonal grids. *equally spaced black squares dran on hite, perpendicular planes. *assume that the orld reference frame is centered at the loer left corner of the left grid, ith axes parallel to the three directions identified by the calibration pattern. * given the size of the planes, their angle, the number of squares etc. (all knon by construction), the coordinates of each vertex can be computed in the orld reference frame using trigonometry. *the projection of the vertices on the image can be found by intersecting the edge lines of the corresponding square sides (or through corner detection).

3 -3- Methods () Direct parameter calibration. Direct recovery of the intrinsic and extrinsic camera parameters. (2) Camera parameters through the projection matrix M = M in M ex = m m 2 m 3 m 2 m 22 m 32 m 3 m 23 m 33 m 4 m 24 m 34 (2.) Estimate the elements of the projection matrix. (2.2) Compute the intrinsic/extrinsic as closed-form functions of the entries of the projection matrix.

4 -4- Method : Direct Parameter Calibration -Weassume that the orld reference frame is knon (e.g., the origin is the middle loer corner of the calibration pattern). Revie of basic equations -From orld coordinates to camera coordinates (note that e have changed the order of rotation/translation): P c = R(P T )or P c = RP RT or P c = RP T -Inthe rest of this discussion, I ill replace T ith T : X c Y c Z c = r r 2 r 3 r 2 r 22 r 32 r 3 r 23 r 33 X Y Z + T x T y T z -From camera coordinates to pixel coordinates: x im = x/s x + o x = f s x X c Z c + o x y im = y/s y + o y = f s y Y c Z c + o y -Relating orld coordinates to pixel coordinates: x im o x = f /s x r X + r 2 Y + r 3 Z + T x r 3 X + r 32 Y + r 33 Z + T z y im o y = f /s y r 2 X + r 22 Y + r 23 Z + T y r 3 X + r 32 Y + r 33 Z + T z

5 Independent intrinsic parameters -5- -The five intrinsic parameters f, s x, s y, o x, o y are not independent. -Wecan define the folloing four independent parameters: f x = f /s x,the focal length in horizontal pixels = s y /s x (or = f x / f y ), aspect ratio (o x, o y ), image center coordinates Method : main steps () Assuming that o x and o y are knon, estimate all the remaining parameters. (2) Estimate o x and o y Step : estimate f x,, R, and T -Tosimplify notation, consider (x im o x, y im o y ) = (x, y) x = f x r X + r 2 Y + r 3 Z + T x r 3 X + r 32 Y + r 33 Z + T z y = f y r 2 X + r 22 Y + r 23 Z + T y r 3 X + r 32 Y + r 33 Z + T z -Using the fact that the above to equations have the same denominator, e get the folloing equation: x f y (r 2 X + r 22 Y + r 23 Z + T y ) = y f x (r X + r 2 Y + r 3 Z + T x ) Problem Statement Assuming that o x and o y are knon, compute f x,, R, and T from N corresponding pairs of points (Xi, Yi, Zi ), (x i, y i ), i =,..., N.

6 -6- Der ive a system of equations -Each pair of corresponding points leads to an equation: x i f y (r 2 X i + r 22 Y i + r 23 Z i + T y ) = y i f x (r X i + r 2 Y i + r 3 Z i + T x ) -Rerite the above equation as follos (i.e., divide by f y ): x i X i v + x i Y i v 2 + x i Z i v 3 + x i v 4 y i X i v 5 y i Y i v 6 y i Z i v 7 y i v 8 = here v = r 2 v 5 = r v 2 = r 22 v 6 = r 2 v 3 = r 23 v 7 = r 3 v 4 = T y v 8 = T x - N corresponding points lead to a homogeneous system of N equations ith 8 unknons: Av = here: A = x X x 2 X2 x N X N x Y x 2 Y2 x N Y N x Z x 2 Z2 x N Z N x x 2 x N y X y 2 X 2 y N X N y Y y 2 Y 2 y N Y N y Z y 2 Z 2 y N Z N y y 2 y N Solving the system -Itcan be shon that if N 7, then A has rank 7. -If A = UDV T,ehave discussed in class that the system has a nontrivial solution v hich is proportional to the column of V corresponding to the smallest singular value of A (i.e., the last column of V hich e denote as v): v = v ( is the scale factor) or v = v ( = / ) -Using the components of v and v: (v, v 2, v 3, v 4, v 5, v 6, v 7, v 8 ) = (r 2, r 22, r 23, T y, r, r 2, r 3, T x )

7 -7- Deter mine and v 2 + v2 2 + v2 3 = 2 (r2 2 + r r2 23 ) = (r r r 2 23 = ) v v2 6 + v2 7 = 2 2 (r 2 + r2 2 + r2 3 ) = (r 2 + r r 2 3 = and >) Deter mine r 2, r 22, r 23, r, r 2, r 3, T y, T x -Wecan determine the above parameters, up to an unknon common sign. r 2 = / v r = / v 5 r 22 = / v 2 r 2 = / v 6 r 23 = / v 3 r 3 = / v 7 T y = / v 4 T x = / v 8 Deter mine r 3, r 32, r 33 -Can be estimated as the cross product of R and R 2 : R 3 = R xr 2 -The sign of R 3 is already fixed (the entries of R 3 remain unchanged if the signs of all the entries of R and R 2 are reversed). Ensur ing the orthogonality of R -The computation of R does not take into account explicitly the orthogonality constraints. -The estimate ˆR of R cannot be expected to be orthogonal (e.g., ˆR ˆR T = I). -Wecan "enforce" the orthogonality on ˆR by using its SVD: ˆR = UDV T -Replace D ith I, e.g., ˆR =UIV T ( ˆR ˆR T = I)

8 -8- Deter mine the sign of -Consider the folloing equations again: x = f /s x r X + r 2 Y + r 3 Z + T x r 3 X + r 32 Y + r 33 Z + T z = f /s x X c Z c y = f /s y r 2 X + r 22 Y + r 23 Z + T y r 3 X + r 32 r + r 33 Z + T z = f /s y Y c Z c -If Z c >, then x and r X + r 2 Y + r 3 Z + T x must have opposite signs (it is sufficient to check the sign for one of the points). if x(r X + r 2 Y + r 3 Z + T x )>,then reverse the signs of r, r 2, r 3,and T x else no further action is required -Similarly, if Z c >, then y and r 2 X + r 22 Y + r 23 Z + T x must have opposite signs (it is sufficient to check the sign for one of the points). if y(r 2 X + r 22 Y + r 23 Z + T y )>,then reverse the signs of r 2, r 22, r 23,and T y else no further action is required

9 -9- Deter mine T z and f x : -Consider the equation: -Let s rerite it in the form: x = f /s x r X + r 2 Y + r 3 Z + T x r 3 X + r 32 Y + r 33 Z + T z x(r 3 X + r 32 Y + r 33 Z + T z ) = f /s x (r X + r 2 Y + r 3 Z + T x ) -Wecan obtain T z and f x by solving a system of equations like the above, ritten for N points: A T z f x = b here A = x x 2 x N (r X + r 2 Y + r 3 Z + T x ) x (r 3 X + r 32 Y + r 33 Z + T x ) (r X2 + r 2 Y2 + r 3 Z2 + T x ) x 2 (r 3 X2 + r 32 Y2 + r 33 Z2 + T x ) b = (r X N + r 2 Y N + r 3 Z N + T x ) x N (r 3 X N + r 32 Y N + r 33 Z N + T x ) -Using SVD, the (least-squares) solution is: T z = (A T A) A T b f x Deter mine f y : -From f x = f /s x and f y = f /s y e have: f y = f x /

10 -- Step 2: estimate o x and o y -The computation of o x and o y ill be based on the folloing theorem: Orthocenter Theorem: Let T be the triangle on the image plane defined by the three vanishing points of three mutually orthogonal sets of parallel lines in space. The image center (o x, o y )isthe orthocenter of T. -Wecan use the same calibration pattern to compute three vanishing points (use three pairs of parallel lines defined by the sides of the planes). Note : it is important that the calibration pattern is imaged from a viepoint guaranteeing that none of the three mutually orthogonal directions ill be near parallel to the image plane! Note 2: to improve the accuracy ofthe image center computation, it is a good idea to estimate the center using several vies of the calibration pattern and average the results.

11 -- Method 2: Camera parameters through the projection matrix Revie of basic equations x h y h = M in M ex X Y Z = M X Y Z = m m 2 m 3 m 2 m 22 m 32 m 3 m 23 m 33 m 4 m 24 m 34 X Y Z x = x h = m X + m 2 Y + m 3 Z + m 4 m 3 X + m 32 Y + m 33 Z + m 34 y = y h = m 2 X + m 22 Y + m 23 Z + m 24 m 3 X + m 32 Y + m 33 Z + m 34 (Note: Ihave replaced x im ith x and y im ith y for simplicity) Step : solve for m ij s -The matrix M has independent entries (e.g., divide every entry by m ). -We ould need at least N =6 orld-image point correspondences to solve for the entries of M. m X i m 2 X i + m 2 Y i + m 3 Z i + m 4 m 3 x i X i m 32 x i Y i m 33 x i Z i + m 34 = + m 22 Y i + m 23 Z i + m 24 m 3 y i X i m 32 y i Y i m 33 y i Z i + m 34 = -These equations ill lead to a homogeneous system of equations: Am = here A = X X 2 X N Y Y2 Y N Z Z2 Z N X X2 X N Y Y2 Y N Z Z2 Z N x X y X x 2 X 2 y 2 X 2 x N X N y N X N x Y y Y x 2 Y 2 y 2 Y 2 x N Y N y N Y N x Z y Z x 2 Z 2 y 2 Z 2 x N Z N y N Z N x y x 2 y 2 x N y N

12 -2- -Itcan be shon that A has rank (for N ). -If A = UDV T,the system has a nontrivial solution m hich is proportional to the column of V corresponding to the smallest singular value of A (i.e., the last column of V denoted here as m): m = m ( is the scale factor) or m = m ( = / ) Step 2: find the intrinsic/extrinsic parameters using m ij s -The full expression for M is as follos: f x r + o x r 3 M = f y r 2 + o y r 3 r 3 f x r 2 + o x r 32 f y r 22 + o y r 32 r 32 f x r 3 + o x r 33 f y r 23 + o y r 33 r 33 f x T x + o x T z f y T y + o y T z T z -Let s define the folloing vectors: q = (m, m 2, m 3 ) T q 2 = (m 2, m 22, m 23 ) T q 3 = (m 3, m 32, m 33 ) T q 4 = (m 4, m 24, m 34 ) T -The solutions are as follos (see book for details): o x = q T q 3 o y = q T 2 q 3 f x = q T q o 2 x f y = q T 2 q 2 o 2 y -The rest parameters are easily computed. Question: ho ould you estimate the accuracy ofacalibration algorithm?

13 -3- Some comments -The precision of calibration depends on ho accurately the orld and image points are located. -Studying ho localization errors "propagate" to the estimates of the camera parameters is very important. -Although the to methods described here should produce the same results (at least theoretically), e usually obtain different solutions due to different error propagations. -Method 2 is simpler and should be preferred if e do not need to compute the intrinsic/extrinsic camera parameters explicitly.

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum

CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION. From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION From Exploratory Factor Analysis Ledyard R Tucker and Robert C. MacCallum 1997 19 CHAPTER 3 THE COMMON FACTOR MODEL IN THE POPULATION 3.0. Introduction

More information

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s =

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = cotα), and the lens distortion (radial distortion coefficient

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

and sinθ = cosb =, and we know a and b are acute angles, find cos( a+ b) Trigonometry Topics Accuplacer Review revised July 2016 sin.

and sinθ = cosb =, and we know a and b are acute angles, find cos( a+ b) Trigonometry Topics Accuplacer Review revised July 2016 sin. Trigonometry Topics Accuplacer Revie revised July 0 You ill not be alloed to use a calculator on the Accuplacer Trigonometry test For more information, see the JCCC Testing Services ebsite at http://jcccedu/testing/

More information

Camera Models and Affine Multiple Views Geometry

Camera Models and Affine Multiple Views Geometry Camera Models and Affine Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in May 29, 2001 1 1 Camera Models A Camera transforms a 3D

More information

MMSE Equalizer Design

MMSE Equalizer Design MMSE Equalizer Design Phil Schniter March 6, 2008 [k] a[m] P a [k] g[k] m[k] h[k] + ṽ[k] q[k] y [k] P y[m] For a trivial channel (i.e., h[k] = δ[k]), e kno that the use of square-root raisedcosine (SRRC)

More information

Camera calibration by Zhang

Camera calibration by Zhang Camera calibration by Zhang Siniša Kolarić September 2006 Abstract In this presentation, I present a way to calibrate a camera using the method by Zhang. NOTE. This

More information

3 - Vector Spaces Definition vector space linear space u, v,

3 - Vector Spaces Definition vector space linear space u, v, 3 - Vector Spaces Vectors in R and R 3 are essentially matrices. They can be vieed either as column vectors (matrices of size and 3, respectively) or ro vectors ( and 3 matrices). The addition and scalar

More information

Introduction to pinhole cameras

Introduction to pinhole cameras Introduction to pinhole cameras Lesson given by Sébastien Piérard in the course Introduction aux techniques audio et vidéo (ULg, Pr JJ Embrechts) INTELSIG, Montefiore Institute, University of Liège, Belgium

More information

EE Camera & Image Formation

EE Camera & Image Formation Electric Electronic Engineering Bogazici University February 21, 2018 Introduction Introduction Camera models Goal: To understand the image acquisition process. Function of the camera Similar to that of

More information

CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS

CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS CHARACTERIZATION OF ULTRASONIC IMMERSION TRANSDUCERS INTRODUCTION David D. Bennink, Center for NDE Anna L. Pate, Engineering Science and Mechanics Ioa State University Ames, Ioa 50011 In any ultrasonic

More information

Econ 201: Problem Set 3 Answers

Econ 201: Problem Set 3 Answers Econ 20: Problem Set 3 Ansers Instructor: Alexandre Sollaci T.A.: Ryan Hughes Winter 208 Question a) The firm s fixed cost is F C = a and variable costs are T V Cq) = 2 bq2. b) As seen in class, the optimal

More information

MATHEMATICAL MODEL OF IMAGE DEGRADATION. = s

MATHEMATICAL MODEL OF IMAGE DEGRADATION. = s MATHEMATICAL MODEL OF IMAGE DEGRADATION H s u v G s u v F s u v ^ F u v G u v H s u v Gaussian Kernel Source: C. Rasmussen Gaussian filters pixel 5 pixels 0 pixels 30 pixels Gaussian filter Removes high-frequency

More information

1809, Carl Friedrich Gauss

1809, Carl Friedrich Gauss 1809, Carl Friedrich Gauss Singular Value Decomposition A = U D V T m x n m x n n x n n x n Singular Value Decomposition A = U D V T m x n m x n n x n n x n Column orthogonal matrix U i T U i U j T T =

More information

Announcements Wednesday, September 06. WeBWorK due today at 11:59pm. The quiz on Friday covers through Section 1.2 (last weeks material)

Announcements Wednesday, September 06. WeBWorK due today at 11:59pm. The quiz on Friday covers through Section 1.2 (last weeks material) Announcements Wednesday, September 06 WeBWorK due today at 11:59pm. The quiz on Friday coers through Section 1.2 (last eeks material) Announcements Wednesday, September 06 Good references about applications(introductions

More information

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese Lecture 5 Epipolar Geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 5-21-Jan-15 Lecture 5 Epipolar Geometry Why is stereo useful? Epipolar constraints Essential

More information

y(x) = x w + ε(x), (1)

y(x) = x w + ε(x), (1) Linear regression We are ready to consider our first machine-learning problem: linear regression. Suppose that e are interested in the values of a function y(x): R d R, here x is a d-dimensional vector-valued

More information

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix CS4495/6495 Introduction to Computer Vision 3D-L3 Fundamental matrix Weak calibration Main idea: Estimate epipolar geometry from a (redundant) set of point correspondences between two uncalibrated cameras

More information

Complex Numbers and the Complex Exponential

Complex Numbers and the Complex Exponential Complex Numbers and the Complex Exponential φ (2+i) i 2 θ φ 2+i θ 1 2 1. Complex numbers The equation x 2 + 1 0 has no solutions, because for any real number x the square x 2 is nonnegative, and so x 2

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of ork b Horia Varlan;

More information

3. The vertices of a right angled triangle are on a circle of radius R and the sides of the triangle are tangent to another circle of radius r. If the

3. The vertices of a right angled triangle are on a circle of radius R and the sides of the triangle are tangent to another circle of radius r. If the The Canadian Mathematical Society in collaboration ith The CENTRE for EDUCTION in MTHEMTICS and COMPUTING First Canadian Open Mathematics Challenge (1996) Solutions c Canadian Mathematical Society 1996

More information

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit Augmented Reality VU Camera Registration Prof. Vincent Lepetit Different Approaches to Vision-based 3D Tracking [From D. Wagner] [From Drummond PAMI02] [From Davison ICCV01] Consider natural features Consider

More information

Announcements Wednesday, September 06

Announcements Wednesday, September 06 Announcements Wednesday, September 06 WeBWorK due on Wednesday at 11:59pm. The quiz on Friday coers through 1.2 (last eek s material). My office is Skiles 244 and my office hours are Monday, 1 3pm and

More information

Information Retrieval and Web Search

Information Retrieval and Web Search Information Retrieval and Web Search IR models: Vector Space Model IR Models Set Theoretic Classic Models Fuzzy Extended Boolean U s e r T a s k Retrieval: Adhoc Filtering Brosing boolean vector probabilistic

More information

Why do Golf Balls have Dimples on Their Surfaces?

Why do Golf Balls have Dimples on Their Surfaces? Name: Partner(s): 1101 Section: Desk # Date: Why do Golf Balls have Dimples on Their Surfaces? Purpose: To study the drag force on objects ith different surfaces, ith the help of a ind tunnel. Overvie

More information

Group-invariant solutions of nonlinear elastodynamic problems of plates and shells *

Group-invariant solutions of nonlinear elastodynamic problems of plates and shells * Group-invariant solutions of nonlinear elastodynamic problems of plates and shells * V. A. Dzhupanov, V. M. Vassilev, P. A. Dzhondzhorov Institute of mechanics, Bulgarian Academy of Sciences, Acad. G.

More information

1 :: Mathematical notation

1 :: Mathematical notation 1 :: Mathematical notation x A means x is a member of the set A. A B means the set A is contained in the set B. {a 1,..., a n } means the set hose elements are a 1,..., a n. {x A : P } means the set of

More information

Chapter 3. Systems of Linear Equations: Geometry

Chapter 3. Systems of Linear Equations: Geometry Chapter 3 Systems of Linear Equations: Geometry Motiation We ant to think about the algebra in linear algebra (systems of equations and their solution sets) in terms of geometry (points, lines, planes,

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 20C. Lecture Eamples. (8/1/08) Section 12.2. Vectors in three dimensions To use rectangular z-coordinates in three-dimensional space, e introduce mutuall perpendicular -, -, and z-aes intersecting

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

A Practical Method for Decomposition of the Essential Matrix

A Practical Method for Decomposition of the Essential Matrix Applied Mathematical Sciences, Vol. 8, 2014, no. 176, 8755-8770 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410877 A Practical Method for Decomposition of the Essential Matrix Georgi

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

A new constrained parameter estimator: experiments in fundamental matrix computation

A new constrained parameter estimator: experiments in fundamental matrix computation A ne constrained parameter estimator: experiments in fundamental matrix computation Anton van den Hengel, Wojciech Chojnacki, Michael J. Brooks, Darren Galey School of Computer Science, University of Adelaide

More information

4 ORTHOGONALITY ORTHOGONALITY OF THE FOUR SUBSPACES 4.1

4 ORTHOGONALITY ORTHOGONALITY OF THE FOUR SUBSPACES 4.1 4 ORTHOGONALITY ORTHOGONALITY OF THE FOUR SUBSPACES 4.1 Two vectors are orthogonal when their dot product is zero: v w = orv T w =. This chapter moves up a level, from orthogonal vectors to orthogonal

More information

UNCERTAINTY SCOPE OF THE FORCE CALIBRATION MACHINES. A. Sawla Physikalisch-Technische Bundesanstalt Bundesallee 100, D Braunschweig, Germany

UNCERTAINTY SCOPE OF THE FORCE CALIBRATION MACHINES. A. Sawla Physikalisch-Technische Bundesanstalt Bundesallee 100, D Braunschweig, Germany Measurement - Supports Science - Improves Technology - Protects Environment... and Provides Employment - No and in the Future Vienna, AUSTRIA, 000, September 5-8 UNCERTAINTY SCOPE OF THE FORCE CALIBRATION

More information

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1

Preliminaries. Definition: The Euclidean dot product between two vectors is the expression. i=1 90 8 80 7 70 6 60 0 8/7/ Preliminaries Preliminaries Linear models and the perceptron algorithm Chapters, T x + b < 0 T x + b > 0 Definition: The Euclidean dot product beteen to vectors is the expression

More information

The Basis. [5] The Basis

The Basis. [5] The Basis The Basis [5] The Basis René Descartes Born 1596. After studying law in college,... I entirely abandoned the study of letters. Resolving to seek no knowledge other than that of which could be found in

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of ork b Horia Varlan;

More information

Theory of Bouguet s MatLab Camera Calibration Toolbox

Theory of Bouguet s MatLab Camera Calibration Toolbox Theory of Bouguet s MatLab Camera Calibration Toolbox Yuji Oyamada 1 HVRL, University 2 Chair for Computer Aided Medical Procedure (CAMP) Technische Universität München June 26, 2012 MatLab Camera Calibration

More information

M3: Multiple View Geometry

M3: Multiple View Geometry M3: Multiple View Geometry L18: Projective Structure from Motion: Iterative Algorithm based on Factorization Based on Sections 13.4 C. V. Jawahar jawahar-at-iiit.net Mar 2005: 1 Review: Reconstruction

More information

(1) Sensitivity = 10 0 g x. (2) m Size = Frequency = s (4) Slenderness = 10w (5)

(1) Sensitivity = 10 0 g x. (2) m Size = Frequency = s (4) Slenderness = 10w (5) 1 ME 26 Jan. May 2010, Homeork #1 Solution; G.K. Ananthasuresh, IISc, Bangalore Figure 1 shos the top-vie of the accelerometer. We need to determine the values of, l, and s such that the specified requirements

More information

Effect of Twist on Polarization Mode Dispersion

Effect of Twist on Polarization Mode Dispersion Web Site: http://.ipasj.org/iijec/iijec.htm Volume 3, Issue 6, June 015 ISSN 31-5984 Effect of Tist on Polarization Mode Dispersion Noor Ali Nasi, Hassan Abid Yasser Physics Department, Science College,

More information

An Improved Driving Scheme in an Electrophoretic Display

An Improved Driving Scheme in an Electrophoretic Display International Journal of Engineering and Technology Volume 3 No. 4, April, 2013 An Improved Driving Scheme in an Electrophoretic Display Pengfei Bai 1, Zichuan Yi 1, Guofu Zhou 1,2 1 Electronic Paper Displays

More information

Camera calibration Triangulation

Camera calibration Triangulation Triangulation Perspective projection in homogenous coordinates ~x img I 0 apple R t 0 T 1 ~x w ~x img R t ~x w Matrix transformations in 2D ~x img K R t ~x w K = 2 3 1 0 t u 40 1 t v 5 0 0 1 Translation

More information

Linear Algebra Homework and Study Guide

Linear Algebra Homework and Study Guide Linear Algebra Homework and Study Guide Phil R. Smith, Ph.D. February 28, 20 Homework Problem Sets Organized by Learning Outcomes Test I: Systems of Linear Equations; Matrices Lesson. Give examples of

More information

Frequency-Weighted Model Reduction with Applications to Structured Models

Frequency-Weighted Model Reduction with Applications to Structured Models 27 American Control Conference http://.cds.caltech.edu/~murray/papers/sm7-acc.html Frequency-Weighted Model Reduction ith Applications to Structured Models Henrik Sandberg and Richard M. Murray Abstract

More information

Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment

Enhancing Generalization Capability of SVM Classifiers with Feature Weight Adjustment Enhancing Generalization Capability of SVM Classifiers ith Feature Weight Adjustment Xizhao Wang and Qiang He College of Mathematics and Computer Science, Hebei University, Baoding 07002, Hebei, China

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7.

Linear models: the perceptron and closest centroid algorithms. D = {(x i,y i )} n i=1. x i 2 R d 9/3/13. Preliminaries. Chapter 1, 7. Preliminaries Linear models: the perceptron and closest centroid algorithms Chapter 1, 7 Definition: The Euclidean dot product beteen to vectors is the expression d T x = i x i The dot product is also

More information

3D from Photographs: Camera Calibration. Dr Francesco Banterle

3D from Photographs: Camera Calibration. Dr Francesco Banterle 3D from Photographs: Camera Calibration Dr Francesco Banterle francesco.banterle@isti.cnr.it 3D from Photographs Automatic Matching of Images Camera Calibration Photographs Surface Reconstruction Dense

More information

STATC141 Spring 2005 The materials are from Pairwise Sequence Alignment by Robert Giegerich and David Wheeler

STATC141 Spring 2005 The materials are from Pairwise Sequence Alignment by Robert Giegerich and David Wheeler STATC141 Spring 2005 The materials are from Pairise Sequence Alignment by Robert Giegerich and David Wheeler Lecture 6, 02/08/05 The analysis of multiple DNA or protein sequences (I) Sequence similarity

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

Science Degree in Statistics at Iowa State College, Ames, Iowa in INTRODUCTION

Science Degree in Statistics at Iowa State College, Ames, Iowa in INTRODUCTION SEQUENTIAL SAMPLING OF INSECT POPULATIONSl By. G. H. IVES2 Mr.. G. H. Ives obtained his B.S.A. degree at the University of Manitoba in 1951 majoring in Entomology. He thm proceeded to a Masters of Science

More information

Multi-Frame Factorization Techniques

Multi-Frame Factorization Techniques Multi-Frame Factorization Techniques Suppose { x j,n } J,N j=1,n=1 is a set of corresponding image coordinates, where the index n = 1,...,N refers to the n th scene point and j = 1,..., J refers to the

More information

ANALYTICAL IMAGE FEATURES

ANALYTICAL IMAGE FEATURES Chapter 6 ANALYTICAL IMAGE FEATURES Chapter laid the geometric foundations of image formation. This chapter uses analytical geometry to quantify more precisely the relationship between a camera, the objects

More information

Exercise 1a: Determine the dot product of each of the following pairs of vectors.

Exercise 1a: Determine the dot product of each of the following pairs of vectors. Bob Bron, CCBC Dundalk Math 53 Calculus 3, Chapter Section 3 Dot Product (Geometric Definition) Def.: The dot product of to vectors v and n in is given by here θ, satisfying 0, is the angle beteen v and.

More information

1 Introduction. Control 2:

1 Introduction. Control 2: Introduction Kinematics of Wheeled Mobile Robots (No legs here. They ork like arms. We e seen arms already) For control purposes, the kinematics of heeled mobile robots (WMRs) that e care about are the

More information

COS 424: Interacting with Data. Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007

COS 424: Interacting with Data. Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007 COS 424: Interacting ith Data Lecturer: Rob Schapire Lecture #15 Scribe: Haipeng Zheng April 5, 2007 Recapitulation of Last Lecture In linear regression, e need to avoid adding too much richness to the

More information

On the approximation of real powers of sparse, infinite, bounded and Hermitian matrices

On the approximation of real powers of sparse, infinite, bounded and Hermitian matrices On the approximation of real poers of sparse, infinite, bounded and Hermitian matrices Roman Werpachoski Center for Theoretical Physics, Al. Lotnikó 32/46 02-668 Warszaa, Poland Abstract We describe a

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process

Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process Early & Quick COSMIC-FFP Analysis using Analytic Hierarchy Process uca Santillo (luca.santillo@gmail.com) Abstract COSMIC-FFP is a rigorous measurement method that makes possible to measure the functional

More information

A Modified ν-sv Method For Simplified Regression A. Shilton M. Palaniswami

A Modified ν-sv Method For Simplified Regression A. Shilton M. Palaniswami A Modified ν-sv Method For Simplified Regression A Shilton apsh@eemuozau), M Palanisami sami@eemuozau) Department of Electrical and Electronic Engineering, University of Melbourne, Victoria - 3 Australia

More information

1 Effects of Regularization For this problem, you are required to implement everything by yourself and submit code.

1 Effects of Regularization For this problem, you are required to implement everything by yourself and submit code. This set is due pm, January 9 th, via Moodle. You are free to collaborate on all of the problems, subject to the collaboration policy stated in the syllabus. Please include any code ith your submission.

More information

FLOER HOMOLOGY AND SINGULAR KNOTS

FLOER HOMOLOGY AND SINGULAR KNOTS FLOER HOMOLOGY AND SINGULAR KNOTS PETER OZSVÁTH, ANDRÁS STIPSICZ, AND ZOLTÁN SZABÓ arxiv:0705.2661v3 [math.gt] 6 May 2009 Abstract. In this paper e define and investigate variants of the link Floer homology

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

ME751 Advanced Computational Multibody Dynamics

ME751 Advanced Computational Multibody Dynamics ME751 Advanced Computational Multibody Dynamics Review: Elements of Linear Algebra & Calculus September 9, 2016 Dan Negrut University of Wisconsin-Madison Quote of the day If you can't convince them, confuse

More information

arxiv: v2 [q-bio.pe] 23 Nov 2017

arxiv: v2 [q-bio.pe] 23 Nov 2017 Zero-determinant strategies in finitely repeated games Genki Ichinose and Naoki Masuda 2 arxiv:707.03097v2 [q-bio.pe] 23 Nov 207 Department of Mathematical and Systems Engineering, Shizuoka University,

More information

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces

Singular Value Decomposition. 1 Singular Value Decomposition and the Four Fundamental Subspaces Singular Value Decomposition This handout is a review of some basic concepts in linear algebra For a detailed introduction, consult a linear algebra text Linear lgebra and its pplications by Gilbert Strang

More information

CALCULATION OF STEAM AND WATER RELATIVE PERMEABILITIES USING FIELD PRODUCTION DATA, WITH LABORATORY VERIFICATION

CALCULATION OF STEAM AND WATER RELATIVE PERMEABILITIES USING FIELD PRODUCTION DATA, WITH LABORATORY VERIFICATION CALCULATION OF STEAM AND WATER RELATIVE PERMEABILITIES USING FIELD PRODUCTION DATA, WITH LABORATORY VERIFICATION Jericho L. P. Reyes, Chih-Ying Chen, Keen Li and Roland N. Horne Stanford Geothermal Program,

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes UC Berkeley Department of Electrical Engineering and Computer Sciences EECS 26: Probability and Random Processes Problem Set Spring 209 Self-Graded Scores Due:.59 PM, Monday, February 4, 209 Submit your

More information

A Generalization of a result of Catlin: 2-factors in line graphs

A Generalization of a result of Catlin: 2-factors in line graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 72(2) (2018), Pages 164 184 A Generalization of a result of Catlin: 2-factors in line graphs Ronald J. Gould Emory University Atlanta, Georgia U.S.A. rg@mathcs.emory.edu

More information

The Analytic Hierarchy Process for the Reservoir Evaluation in Chaoyanggou Oilfield

The Analytic Hierarchy Process for the Reservoir Evaluation in Chaoyanggou Oilfield Advances in Petroleum Exploration and Development Vol. 6, No. 2, 213, pp. 46-5 DOI:1.3968/j.aped.1925543821362.1812 ISSN 1925-542X [Print] ISSN 1925-5438 [Online].cscanada.net.cscanada.org The Analytic

More information

Normed & Inner Product Vector Spaces

Normed & Inner Product Vector Spaces Normed & Inner Product Vector Spaces ECE 174 Introduction to Linear & Nonlinear Optimization Ken Kreutz-Delgado ECE Department, UC San Diego Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 1 / 27 Normed

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 51 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Towards a Theory of Societal Co-Evolution: Individualism versus Collectivism

Towards a Theory of Societal Co-Evolution: Individualism versus Collectivism Toards a Theory of Societal Co-Evolution: Individualism versus Collectivism Kartik Ahuja, Simpson Zhang and Mihaela van der Schaar Department of Electrical Engineering, Department of Economics, UCLA Theorem

More information

COMPSCI 514: Algorithms for Data Science

COMPSCI 514: Algorithms for Data Science COMPSCI 514: Algorithms for Data Science Arya Mazumdar University of Massachusetts at Amherst Fall 2018 Lecture 8 Spectral Clustering Spectral clustering Curse of dimensionality Dimensionality Reduction

More information

= Prob( gene i is selected in a typical lab) (1)

= Prob( gene i is selected in a typical lab) (1) Supplementary Document This supplementary document is for: Reproducibility Probability Score: Incorporating Measurement Variability across Laboratories for Gene Selection (006). Lin G, He X, Ji H, Shi

More information

Théorie Analytique des Probabilités

Théorie Analytique des Probabilités Théorie Analytique des Probabilités Pierre Simon Laplace Book II 5 9. pp. 203 228 5. An urn being supposed to contain the number B of balls, e dra from it a part or the totality, and e ask the probability

More information

Regression coefficients may even have a different sign from the expected.

Regression coefficients may even have a different sign from the expected. Multicolinearity Diagnostics : Some of the diagnostics e have just discussed are sensitive to multicolinearity. For example, e kno that ith multicolinearity, additions and deletions of data cause shifts

More information

5. TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 5.1 INTRODUCTION

5. TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 5.1 INTRODUCTION 5. TWO-DIMENSIONAL FLOW OF WATER TROUG SOILS 5.1 INTRODUCTION In many instances the flo of ater through soils is neither one-dimensional nor uniform over the area perpendicular to flo. It is often necessary

More information

Possible Cosmic Influences on the 1966 Tashkent Earthquake and its Largest Aftershocks

Possible Cosmic Influences on the 1966 Tashkent Earthquake and its Largest Aftershocks Geophys. J. R. mtr. Sac. (1974) 38, 423-429. Possible Cosmic Influences on the 1966 Tashkent Earthquake and its Largest Aftershocks G. P. Tamrazyan (Received 1971 August 13)* Summary I present evidence

More information

Work and Heat Definitions

Work and Heat Definitions Work and Heat Definitions FL- Surroundings: Everything outside system + q -q + System: he part of S the orld e are observing. Heat, q: transfer of energy resulting from a temperature difference Work, :

More information

Adaptive Noise Cancellation

Adaptive Noise Cancellation Adaptive Noise Cancellation P. Comon and V. Zarzoso January 5, 2010 1 Introduction In numerous application areas, including biomedical engineering, radar, sonar and digital communications, the goal is

More information

CS 231A Computer Vision (Fall 2011) Problem Set 2

CS 231A Computer Vision (Fall 2011) Problem Set 2 CS 231A Computer Vision (Fall 2011) Problem Set 2 Solution Set Due: Oct. 28 th, 2011 (5pm) 1 Some Projective Geometry Problems (15 points) Suppose there are two parallel lines that extend to infinity in

More information

Intermediate 2 Revision Unit 3. (c) (g) w w. (c) u. (g) 4. (a) Express y = 4x + c in terms of x. (b) Express P = 3(2a 4d) in terms of a.

Intermediate 2 Revision Unit 3. (c) (g) w w. (c) u. (g) 4. (a) Express y = 4x + c in terms of x. (b) Express P = 3(2a 4d) in terms of a. Intermediate Revision Unit. Simplif 9 ac c ( ) u v u ( ) 9. Epress as a single fraction a c c u u a a (h) a a. Epress, as a single fraction in its simplest form Epress 0 as a single fraction in its simplest

More information

Multipole expansion of strongly focussed laser beams

Multipole expansion of strongly focussed laser beams Multipole expansion of strongly focussed laser beams T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg Centre for Biophotonics and Laser Science, Department of Physics, The University of Queensland,

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Scene Planes & Homographies Lecture 19 March 24, 2005 2 In our last lecture, we examined various

More information

Rigid Geometric Transformations

Rigid Geometric Transformations Rigid Geometric Transformations Carlo Tomasi This note is a quick refresher of the geometry of rigid transformations in three-dimensional space, expressed in Cartesian coordinates. 1 Cartesian Coordinates

More information

ax 2 + bx + c = 0 where

ax 2 + bx + c = 0 where Chapter P Prerequisites Section P.1 Real Numbers Real numbers The set of numbers formed by joining the set of rational numbers and the set of irrational numbers. Real number line A line used to graphically

More information

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions Linear Systems Carlo Tomasi June, 08 Section characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix

More information

Comparison and Enumeration of Chemical Graphs

Comparison and Enumeration of Chemical Graphs , http://dx.doi.org/10.5936/csbj.201302004 CSBJ Comparison and Enumeration of Chemical Graphs Tatsuya Akutsu a,*, Hiroshi Nagamochi b Abstract: Chemical compounds are usually represented as graph structured

More information

Numerical Methods. Elena loli Piccolomini. Civil Engeneering. piccolom. Metodi Numerici M p. 1/??

Numerical Methods. Elena loli Piccolomini. Civil Engeneering.  piccolom. Metodi Numerici M p. 1/?? Metodi Numerici M p. 1/?? Numerical Methods Elena loli Piccolomini Civil Engeneering http://www.dm.unibo.it/ piccolom elena.loli@unibo.it Metodi Numerici M p. 2/?? Least Squares Data Fitting Measurement

More information

TIME DOMAIN ACOUSTIC CONTRAST CONTROL IMPLEMENTATION OF SOUND ZONES FOR LOW-FREQUENCY INPUT SIGNALS

TIME DOMAIN ACOUSTIC CONTRAST CONTROL IMPLEMENTATION OF SOUND ZONES FOR LOW-FREQUENCY INPUT SIGNALS TIME DOMAIN ACOUSTIC CONTRAST CONTROL IMPLEMENTATION OF SOUND ZONES FOR LOW-FREQUENCY INPUT SIGNALS Daan H. M. Schellekens 12, Martin B. Møller 13, and Martin Olsen 4 1 Bang & Olufsen A/S, Struer, Denmark

More information

CANONICAL FORM. University of Minnesota University of Illinois. Computer Science Dept. Electrical Eng. Dept. Abstract

CANONICAL FORM. University of Minnesota University of Illinois. Computer Science Dept. Electrical Eng. Dept. Abstract PLAING ZEROES and the KRONEKER ANONIAL FORM D L oley P Van Dooren University of Minnesota University of Illinois omputer Science Dept Electrical Eng Dept Minneapolis, MN USA Urbana, IL 8 USA boleymailcsumnedu

More information

8. Diagonalization.

8. Diagonalization. 8. Diagonalization 8.1. Matrix Representations of Linear Transformations Matrix of A Linear Operator with Respect to A Basis We know that every linear transformation T: R n R m has an associated standard

More information