Carbon Cycle: An Inverse Problem. Inez Fung

Size: px
Start display at page:

Download "Carbon Cycle: An Inverse Problem. Inez Fung"

Transcription

1 Carbon Cycle: An Inverse Problem Inez Fung

2 Outstanding Questions Only half of the CO 2 produced by human activities is remaining in the atmosphere Where are the sinks that are absorbing over 40% of the CO 2 that we emit? Land or ocean? Eurasia/orth America? Why does CO 2 buildup vary dramatically with nearly uniform emissions? How will CO 2 sinks respond to climate change?

3 Atm Carbon Models C t + { (C ) = { Atm _transport+ mixing z= 0 ourcesinks Kalnay x b (t i+1 ) = M(x a (t i )) X =conc, fluxes, parameters ychka x (x ) G( u ) i+ 1 = i + X = conc u = fluxes

4 Atmospheric Inverse Modeling of CO 2 Concentration (observed samples) Transport (modeled) + = ources & inks (solved for)

5 An Atm Carbon Cycle Model C t + { (C ) = { z = 0 Atm _transport+ mixing ourcesinks = FF + LandUse + (F F ) + ( F F oa ao ba ab What we ve got: ources/inks known approximately or not well constrained C obs (actually mixing ratios X obs ) biweekly, at ~100 stations near the surface Decent transport model (winds, turbulent mixing) What we want: where has the fossil fuel CO2 gone? {Better estimates of the magnitude and distribution of (e.g. land exchange)} How did the fossil fuel CO2 get there? {improved understanding and representation of processes, e.g. F ab =LUE*AvailableLight; F ba =exp(t); )

6 Pressure (mb) What we ve got: (1) The Model: CAR climate model ource: Fossil fuel combustion (6 PgC/y) C(x,y,z) at steady state urface 4 Zonal mean P Eq Latitude P

7 What We ve got: The data: Atm CO2 (for now) Discrete surface flasks (~weekly) Continuous surface (hourly) observatories Tall towers continuous (hourly) Aircraft profiles (~weekly)

8 What We ve Got: (3) The Flux Priors = F { F + LandUse + ( Foa F ao ) + ( F ba Fab ) "wellknown" C + { (C ) = t { Atm _transport+ mixing z= 0 ourcesinks extrapolation of sparse obs should net land flux (F ba - F ab ) be prop to F ab?

9 Pressure (mb) Example I: A impler Model - reduce 3D atm to 2 hemisphere urface Zonal mean P Eq Latitude P

10 Example I: Interhemispheric Mixing: Two-Box Model, everything is perfect. M t M t M M = + M M =+ + M M ( M M ) M M = 2 + ( ) = teadytate t M M = 2 Interhemispheric exchange time determined from inert tracers (e.g. CFC, with s =0): ~1-2 years

11 Example 1: Interhemispheric Mixing: Two-Box Model, everything is perfect. M t M t M M = + M M =+ + M M ( M M ) M M = 2 + ( ) = teadytate t M M = 2 Interhemispheric exchange time determined from inert tracers (e.g. CFC, with s =0): ~1-2 years

12 Ex I: 2-Box Model Applied to the Carbon Cycle M M = ( ) 2 Consider the case = 6 PgC/yr; = 0 = 1 yr column M M = 3 PgC Recall 1 PgC 0.5 ppmv if mixed in entire atm. 1 PgC 1 ppmv if mixed in a hemisphere. sfc column = sfc 3 ppmv s Guess (3D model) surface gradient 1.5x column mean gradient = 4.5 ppmv M M Britt tephens: new obs of vertical profile

13 Ex I: 2-Box Model Applied to the Carbon Cycle Forward problem: If 100% FF CO2 remained in atm M M = ( ) 2 = 6 PgC/yr; = 0 = 1 yr M M = 3 PgC sfc sfc s sfc = sfc 4.5 ppmv But ( ) = 2.5 ppmv obs Obs only 50% of FF CO2 remains in atm (M + M ) t (M + M ) t = + = sources sinks obs sources = 6 PgC/yr = 3 PgC/yr inks +inks = 3 PgC/yr

14 Ex I: 2-Box Model Applied to the Carbon Cycle Inverse problem Obs operator X=H(M) Model: M M = ( ) 2 Given: sfc sfc ( ) = 2.5 column column obs obs ( ) = 1.7 ppmv M M = 1.7 PgC M M Invert model = 2 = 3.4 PgC/yr (sources sin ks ) (sources sin ks ) = 3.4 PgC/ yr (6 PgC/yr sin ks ) (0 sin ks ) = 3.4 PgC/yr sinks sin ks = 2.6 PgC/yr ppmv Obs Carbon Budget inks +inks = 3 PgC/yr

15 Budget Gradient Where are the Carbon inks? sinks + sin ks =+ 3 PgC/yr sinks sin ks = 2.6 PgC/yr sinks = 2.8PgC/yr; sin ks = 0.2 PgC/yr orthern sinks > outhern inks!!!!!!! Data/Obs : Huge C sink in the large expanse of southern ocean; but large uncertainty in obs ocn better observed large orthern land sink!!!

16 Example II: Perfect 3D atm circulation model. P teady state 60 (1) Forward tep Premise: Atm CO 2 = linear combination of response to each source or sink Divide surface into basis regions pecify unitary source (e.g. 1 PgC/year) each year from each region imulate atm CO 2 basis response with atm general circulation model Reconstruct fluxes and concentrations: unknown μ k = 30 EQ P W 60 W 0 60 E 120 E 180 ) s (x, y) k ) s (x, y) ) k ) s k (x, y) μ k kregions c(x, y,z) = μ k kregions c k (x, y,z,t) c ) k (x, y,z)

17 Ex II: (tep 2) Bayesian Inversion: perfect circulation model Inversion: eek the optimal source/sink combination {μ k } to match atmospheric CO 2 data: minimize [C obs (stn) μ k c ) k (stn)] 2 J = kregions + stn kregions [μ k μ k prior ] 2 [ k prior ] 2 stn 2 Obs. etwork mainly remote marine locations Trying to infer information over land Undetermined; non-unique solutions; prior estimates of source/sinks as additional constraints

18 Ex IIa: Posterior from many perfect circulation models μ k prior ± k prior Model m: {μ posterior mk ± posterior mk } X Mean,std_dev (μ posterior mk ) Mean ( posterior mk ) Little innovation in tropics, Africa Great innovation in. Ocean Gurney et al. ature 2005

19 What next? Anticipating satellite data eparating transport, initial conditions & surface fluxes Kalnay ychka x b i+1 = M(x a i ) Analysis at time i => forecast at time i+1 x b i+1 = (x i ) + G(u i ) x 0 0 x prior transport initial conditions Fluxes, parameters J(x) = 1 { 2 (x 0 0 x prior ) T B 1 (x 0 0 x prior ) + [ y o H(x) ] T R 1 [ y o H(x) ] Deviation of initial conditions from prior 4D Variational methods: adjust initial conditions to better match future data +(u u prior ) T P 1 (u u prior )} Deviation of fluxes from prior Deviation of x from observations

20

Carbon Cycle: Definition of the problem. Inez Fung

Carbon Cycle: Definition of the problem. Inez Fung Carbon Cycle: Definition of the problem Inez Fung Mean Meridional Circulation + Convection June July August pressure Dec Jan Feb Intertropical Convergence Zone (ITCZ): v=0: barrier to interhemispheric

More information

Carbon Cycle Introduction

Carbon Cycle Introduction Carbon Cycle Introduction Inez Fung UC Berkeley Ifung@berkeley.edu 2nd NCAR-MSRI Summer Graduate Workshop on Carbon Data Assimilation NCAR July 9-13 2006 High-precision Atm CO 2: at MLO since 1958 180

More information

Carbon Flux Data Assimilation

Carbon Flux Data Assimilation Carbon Flux Data Assimilation Saroja Polavarapu Environment Canada Thanks: D. Jones (U Toronto), D. Chan (EC), A. Jacobson (NOAA) DAOS Working group Meeting, 15-16 Aug. 2014 The Global Carbon Cycle http://www.scidacreview.org/0703/html/biopilot.html

More information

Ocean Constraints on the Atmospheric Inverse Problem: The contribution of Forward and Inverse Models

Ocean Constraints on the Atmospheric Inverse Problem: The contribution of Forward and Inverse Models Ocean Constraints on the Atmospheric Inverse Problem: The contribution of Forward and Inverse Models Nicolas Gruber Institute of Geophysics and Planetary Physics & Department of Atmospheric Sciences, University

More information

AT760 Global Carbon Cycle. Assignment #3 Due Friday, May 4, 2007 Atmospheric Transport and Inverse Modeling of CO 2

AT760 Global Carbon Cycle. Assignment #3 Due Friday, May 4, 2007 Atmospheric Transport and Inverse Modeling of CO 2 AT760 Global Carbon Cycle Assignment 3 Due Friday, May 4, 2007 Atmospheric Transport and Inverse Modeling of CO 2 In this exercise you will develop a very simplified model of the mixing of the global atmosphere.

More information

Ji-Sun Kang. Pr. Eugenia Kalnay (Chair/Advisor) Pr. Ning Zeng (Co-Chair) Pr. Brian Hunt (Dean s representative) Pr. Kayo Ide Pr.

Ji-Sun Kang. Pr. Eugenia Kalnay (Chair/Advisor) Pr. Ning Zeng (Co-Chair) Pr. Brian Hunt (Dean s representative) Pr. Kayo Ide Pr. Carbon Cycle Data Assimilation Using a Coupled Atmosphere-Vegetation Model and the LETKF Ji-Sun Kang Committee in charge: Pr. Eugenia Kalnay (Chair/Advisor) Pr. Ning Zeng (Co-Chair) Pr. Brian Hunt (Dean

More information

The Carbon Cycle Data Assimilation System CCDAS

The Carbon Cycle Data Assimilation System CCDAS The Carbon Cycle Data Assimilation System CCDAS Marko Scholze & CCDAS team JULES science meeting, Edinburgh, 8 January 2009 top-down vs. bottom-up net CO 2 flux at the surface atm. CO 2 data atmospheric

More information

THE OCEAN CARBON CYCLE

THE OCEAN CARBON CYCLE THE OCEAN CARBON CYCLE 21st February 2018 1 Box-model of the global ocean phosphorus, alkalinity, carbon 2 Pre-industrial model 3 Evolution during the industrial period 4 13 C isotopic evolution BOX-MODEL

More information

Estimation of Surface Fluxes of Carbon, Heat, Moisture and Momentum from Atmospheric Data Assimilation

Estimation of Surface Fluxes of Carbon, Heat, Moisture and Momentum from Atmospheric Data Assimilation AICS Data Assimilation Workshop February 27, 2013 Estimation of Surface Fluxes of Carbon, Heat, Moisture and Momentum from Atmospheric Data Assimilation Ji-Sun Kang (KIAPS), Eugenia Kalnay (Univ. of Maryland,

More information

On error estimation in atmospheric CO 2 inversions

On error estimation in atmospheric CO 2 inversions JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D22, 4635, doi:10.1029/2002jd002195, 2002 Correction published 22 July 2006 On error estimation in atmospheric CO 2 inversions Richard J. Engelen, 1 A. Scott

More information

3. Carbon Dioxide (CO 2 )

3. Carbon Dioxide (CO 2 ) 3. Carbon Dioxide (CO 2 ) Basic information on CO 2 with regard to environmental issues Carbon dioxide (CO 2 ) is a significant greenhouse gas that has strong absorption bands in the infrared region and

More information

Lecture 2 Global and Zonal-mean Energy Balance

Lecture 2 Global and Zonal-mean Energy Balance Lecture 2 Global and Zonal-mean Energy Balance A zero-dimensional view of the planet s energy balance RADIATIVE BALANCE Roughly 70% of the radiation received from the Sun at the top of Earth s atmosphere

More information

FLUXNET and Remote Sensing Workshop: Towards Upscaling Flux Information from Towers to the Globe

FLUXNET and Remote Sensing Workshop: Towards Upscaling Flux Information from Towers to the Globe FLUXNET and Remote Sensing Workshop: Towards Upscaling Flux Information from Towers to the Globe Space-Based Measurements of CO 2 from the Japanese Greenhouse Gases Observing Satellite (GOSAT) and the

More information

ATMOS 5140 Lecture 1 Chapter 1

ATMOS 5140 Lecture 1 Chapter 1 ATMOS 5140 Lecture 1 Chapter 1 Atmospheric Radiation Relevance for Weather and Climate Solar Radiation Thermal Infrared Radiation Global Heat Engine Components of the Earth s Energy Budget Relevance for

More information

UC Irvine Faculty Publications

UC Irvine Faculty Publications UC Irvine Faculty Publications Title On error estimation in atmospheric CO 2 inversions Permalink https://escholarship.org/uc/item/7617p1t8 Journal Journal of Geophysical Research, 107(D22) ISSN 0148-0227

More information

Variable localization in an Ensemble Kalman Filter: application to the carbon cycle data assimilation

Variable localization in an Ensemble Kalman Filter: application to the carbon cycle data assimilation 1 Variable localization in an Ensemble Kalman Filter: 2 application to the carbon cycle data assimilation 3 4 1 Ji-Sun Kang (jskang@atmos.umd.edu), 5 1 Eugenia Kalnay(ekalnay@atmos.umd.edu), 6 2 Junjie

More information

Interannual variability in oceanic biogeochemical processes inferred by inversion of atmospheric O 2 /N 2 and CO 2 data

Interannual variability in oceanic biogeochemical processes inferred by inversion of atmospheric O 2 /N 2 and CO 2 data [Estimated interannual variability of O 2 and CO 2 fluxes] Interannual variability in oceanic biogeochemical processes inferred by inversion of atmospheric O 2 /N 2 and CO 2 data [Tellus, in review] C.

More information

: 1.9 ppm y -1

: 1.9 ppm y -1 Atmospheric CO 2 Concentration Year 2006 Atmospheric CO 2 concentration: 381 ppm 35% above pre-industrial Atmoapheric [CO2] (ppmv) 4001850 1870 1890 1910 1930 1950 1970 1990 2010 380 360 340 320 300 280

More information

Atmospheric Inversion results

Atmospheric Inversion results Atmospheric Inversion results Viterbo RECCAP Philippe Peylin LSCE, France Rachel Law CSIRO, Australia Kevin Gurney, Xia Zhang Arizona State University/Purdue University, USA Zegbeu poussi LSCE, France

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

Atmospheric CO2 Observations

Atmospheric CO2 Observations ATS 760 Global Carbon Cycle Atmospheric CO2 Observations (in-situ) BRW MLO Point Barrow, Alaska Scott Denning CSU ATS Mauna Loa, Hawaii 1 ATS 760 Global Carbon Cycle SPO SMO American Samoa South Pole Interannual

More information

Climate Dynamics (PCC 587): Hydrologic Cycle and Global Warming

Climate Dynamics (PCC 587): Hydrologic Cycle and Global Warming Climate Dynamics (PCC 587): Hydrologic Cycle and Global Warming D A R G A N M. W. F R I E R S O N U N I V E R S I T Y O F W A S H I N G T O N, D E P A R T M E N T O F A T M O S P H E R I C S C I E N C

More information

Earth s Heat Budget. What causes the seasons?

Earth s Heat Budget. What causes the seasons? Earth s Heat Budget Solar Energy and the global Heat Budget Transfer of heat drives weather and climate Ocean circulation Should we talk about this? What causes the seasons? Before you answer, think. What

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes

SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes NAME: SIO 210 Introduction to Physical Oceanography Mid-term examination November 3, 2014; 1 hour 20 minutes Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100 total points.)

More information

Understanding the Greenhouse Effect

Understanding the Greenhouse Effect EESC V2100 The Climate System spring 200 Understanding the Greenhouse Effect Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 1096, USA kushnir@ldeo.columbia.edu Equilibrium

More information

A look at synoptic CO2 in the midlatitudes and tropics using continuous CO2 observations and Transcom continuous results

A look at synoptic CO2 in the midlatitudes and tropics using continuous CO2 observations and Transcom continuous results A look at synoptic CO2 in the midlatitudes and tropics using continuous CO2 observations and Transcom continuous results Nicholas Parazoo Transcom 2008 June 2-5 Scales of Variation Diurnal Synoptic Seasonal

More information

GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 18, GB4005, doi: /2004gb002224, 2004

GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 18, GB4005, doi: /2004gb002224, 2004 GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 18,, doi:10.1029/2004gb002224, 2004 CH 4 sources estimated from atmospheric observations of CH 4 and its 13 C/ 12 C isotopic ratios: 2. Inverse modeling of CH 4 fluxes

More information

Introduction to data assimilation and least squares methods

Introduction to data assimilation and least squares methods Introduction to data assimilation and least squares methods Eugenia Kalnay and many friends University of Maryland October 008 (part 1 Contents (1 Forecasting the weather - we are really getting better!

More information

IPCC AR5 WG1 - Climate Change 2013: The Physical Science Basis. Nandini Ramesh

IPCC AR5 WG1 - Climate Change 2013: The Physical Science Basis. Nandini Ramesh IPCC AR5 WG1 - Climate Change 2013: The Physical Science Basis Nandini Ramesh Seminar in Atmospheric Science 21 st February, 2014 1. Introduc,on The ocean exchanges heat, freshwater, and C with the atmosphere.

More information

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION

COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

Study of interannual variability in CO 2 fluxes using inverse modelling

Study of interannual variability in CO 2 fluxes using inverse modelling Study of interannual variability in CO 2 fluxes using inverse modelling Prabir K. Patra, Shamil Maksyutov, Misa Ishizawa, and Takakiyo Nakazawa Greenhouse Gases Modelling Group (D4) Acknowledgment: Gen

More information

ECMWF global reanalyses: Resources for the wind energy community

ECMWF global reanalyses: Resources for the wind energy community ECMWF global reanalyses: Resources for the wind energy community (and a few myth-busters) Paul Poli European Centre for Medium-range Weather Forecasts (ECMWF) Shinfield Park, RG2 9AX, Reading, UK paul.poli

More information

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change

Course Outline CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION. 1. Current climate. 2. Changing climate. 3. Future climate change COURSE CLIMATE SCIENCE A SHORT COURSE AT THE ROYAL INSTITUTION DATE 4 JUNE 2014 LEADER CHRIS BRIERLEY Course Outline 1. Current climate 2. Changing climate 3. Future climate change 4. Consequences 5. Human

More information

Torben Königk Rossby Centre/ SMHI

Torben Königk Rossby Centre/ SMHI Fundamentals of Climate Modelling Torben Königk Rossby Centre/ SMHI Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations

More information

1.6 Correlation maps CHAPTER 1. DATA ANALYSIS 47

1.6 Correlation maps CHAPTER 1. DATA ANALYSIS 47 CHAPTER 1. DATA ANALYSIS 47 1.6 Correlation maps Correlation analysis can be a very powerful tool to establish a statistical relationship between the two variables. Section 1.4 showed that a correlation

More information

CO 2 Source / Sink Inversion History, Computational Requirements

CO 2 Source / Sink Inversion History, Computational Requirements CO 2 Source / Sink Inverion itory, Computational Requirement Anna M. Michalak Department of Civil & Environmental Engineering Department of Atmopheric, Oceanic & Space Science Univerity of Michigan Invere

More information

A B C D PROBLEMS Dilution of power plant plumes. z z z z

A B C D PROBLEMS Dilution of power plant plumes. z z z z 69 PROBLEMS 4. Dilution of power plant plumes Match each power plant plume (-4) to the corresponding atmospheric lapse rate (A-D, solid lines; the dashed line is the adiabatic lapse rate Γ). Briefly comment

More information

ATMOSPHERIC MOTION I (ATM S 441/503 )

ATMOSPHERIC MOTION I (ATM S 441/503 ) http://earth.nullschool.net/ ATMOSPHERIC MOTION I (ATM S 441/503 ) INSTRUCTOR Daehyun Kim Born in 1980 B.S. 2003 Ph.D. 2010 2010-2013 2014- Assistant Professor at Dept. of Atmospheric Sciences Office:

More information

Quantifying and reducing uncertainties

Quantifying and reducing uncertainties Quantifying and reducing uncertainties Work package 4 DWD, ECMWF, FFCUL, RIHMI, UNIBE, UNIVIE, UVSQ ERA-CLIM2 Review Meeting Jan 19, 2017 Main tasks 4.1 making optimal use of observations in reanalysis,

More information

Determining Fluxes of CO 2 using Mass Constraints

Determining Fluxes of CO 2 using Mass Constraints Determining Fluxes of CO 2 using Mass Constraints Paul O. Wennberg Gretchen Keppel-Aleks, Debra Wunch, Tapio Schneider Fluxes from variations in boundary layer CO2 Annual mean surface CO2 [ppm] Mixing

More information

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 19. Learning objectives: develop a physical understanding of ocean thermodynamic processes

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 19. Learning objectives: develop a physical understanding of ocean thermodynamic processes ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 19 Learning objectives: develop a physical understanding of ocean thermodynamic processes 1. Ocean surface heat fluxes; 2. Mixed layer temperature

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

Atmospheric composition coupled model developments and surface flux estimation

Atmospheric composition coupled model developments and surface flux estimation Atmospheric composition coupled model developments and surface flux estimation Saroja Polavarapu Climate Research Division, CCMR Environment and Climate Change Canada ECMWF seminar: Earth System Assimilation,

More information

Recent Climate History - The Instrumental Era.

Recent Climate History - The Instrumental Era. 2002 Recent Climate History - The Instrumental Era. Figure 1. Reconstructed surface temperature record. Strong warming in the first and late part of the century. El Ninos and major volcanic eruptions are

More information

1. Composition and Structure

1. Composition and Structure Atmospheric sciences focuses on understanding the atmosphere of the earth and other planets. The motivations for studying atmospheric sciences are largely: weather forecasting, climate studies, atmospheric

More information

Steady Flow: rad conv. where. E c T gz L q 2. p v 2 V. Integrate from surface to top of atmosphere: rad TOA rad conv surface

Steady Flow: rad conv. where. E c T gz L q 2. p v 2 V. Integrate from surface to top of atmosphere: rad TOA rad conv surface The Three-Dimensional Circulation 1 Steady Flow: F k ˆ F k ˆ VE 0, rad conv where 1 E c T gz L q 2 p v 2 V Integrate from surface to top of atmosphere: VE F FF F 0 rad TOA rad conv surface 2 What causes

More information

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1

Lecture 3. Background materials. Planetary radiative equilibrium TOA outgoing radiation = TOA incoming radiation Figure 3.1 Lecture 3. Changes in planetary albedo. Is there a clear signal caused by aerosols and clouds? Outline: 1. Background materials. 2. Papers for class discussion: Palle et al., Changes in Earth s reflectance

More information

Earth s Energy Balance and the Atmosphere

Earth s Energy Balance and the Atmosphere Earth s Energy Balance and the Atmosphere Topics we ll cover: Atmospheric composition greenhouse gases Vertical structure and radiative balance pressure, temperature Global circulation and horizontal energy

More information

Ocean Acidification the other CO2 problem..

Ocean Acidification the other CO2 problem.. Ocean Acidification the other CO2 problem.. Recall: Atm CO 2 already above recent planetary history CO 2 Today: What does this do to ocean water? Main Outline: 1. Chemistry. How does ocean absorb CO 2,

More information

Climate of an Earth- like Aquaplanet: the high- obliquity case and the <dally- locked case

Climate of an Earth- like Aquaplanet: the high- obliquity case and the <dally- locked case Climate of an Earth- like Aquaplanet: the high- obliquity case and the

More information

Data and formulas at the end. Exam would be Weds. May 8, 2008

Data and formulas at the end. Exam would be Weds. May 8, 2008 ATMS 321: Science of Climate Practice Mid Term Exam - Spring 2008 page 1 Atmospheric Sciences 321 Science of Climate Practice Mid-Term Examination: Would be Closed Book Data and formulas at the end. Exam

More information

Cloud feedbacks on dynamics and SST in an equatorial mock-walker circulation

Cloud feedbacks on dynamics and SST in an equatorial mock-walker circulation Cloud feedbacks on dynamics and SST in an equatorial mock-walker circulation Equator (f=0) p W Pacific Warm SST x E Pacific Colder SST Ocean heat loss Very cold deep ocean Understand cloud feedbacks on:

More information

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION i CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION 1 1.1 MIXING RATIO 1 1.2 NUMBER DENSITY 2 1.3 PARTIAL PRESSURE 6 PROBLEMS 10 1.1 Fog formation 10 1.2 Phase partitioning of water in cloud 10 1.3 The ozone

More information

GHG-CCI. Achievements, plans and ongoing scientific activities

GHG-CCI. Achievements, plans and ongoing scientific activities GHG-CCI 4 th CCI CMUG Integration Meeting 2-4 CCI Integration Jun 2014, Meeting, Met ECMWF, Office, 14-16 Exeter, March 2011 UK Achievements, plans and ongoing scientific activities Michael Buchwitz Institute

More information

Carbon Dioxide, Alkalinity and ph

Carbon Dioxide, Alkalinity and ph Carbon Dioxide, Alkalinity and ph OCN 623 Chemical Oceanography 15 March 2018 Reading: Libes, Chapter 15, pp. 383 389 (Remainder of chapter will be used with the classes Global Carbon Dioxide and Biogenic

More information

Chapter 3- Energy Balance and Temperature

Chapter 3- Energy Balance and Temperature Chapter 3- Energy Balance and Temperature Understanding Weather and Climate Aguado and Burt Influences on Insolation Absorption Reflection/Scattering Transmission 1 Absorption An absorber gains energy

More information

How good are our models?

How good are our models? direct Estimates of regional and global forcing: ^ How good are our models? Bill Collins with Andrew Conley, David Fillmore, and Phil Rasch National Center for Atmospheric Research Boulder, Colorado Models

More information

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics.

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics. OCN/ATM/ESS 587 Ocean circulation, dynamics and thermodynamics. Equation of state for seawater General T/S properties of the upper ocean Heat balance of the upper ocean Upper ocean circulation Deep circulation

More information

Atmospheric Circulation and the Global Climate System A map-based exploration

Atmospheric Circulation and the Global Climate System A map-based exploration Name: Answer key Atmospheric Circulation and the Global Climate System A map-based exploration Introduction: Exploration of Earth s radiation budget (Units 4 and 5) reveals regions of positive and negative

More information

Unprecedented strength of Hadley circulation in impacts on CO2 interhemispheric

Unprecedented strength of Hadley circulation in impacts on CO2 interhemispheric Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-203-ac2, 2018 Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Interactive comment on Unprecedented

More information

An Interconnected Planet

An Interconnected Planet An Interconnected Planet How Clouds, Aerosols, and the Ocean Cause Distant Rainfall Anomalies Dargan M. W. Frierson University of Washington CESM Workshop, 6-15-15 New Connections Recent research has uncovered

More information

Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle

Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle Source: Sulfate aerosols are produced by chemical reactions in the atmosphere from gaseous precursors (with the exception

More information

Climate Change Impacts on the Marine Environment

Climate Change Impacts on the Marine Environment Climate Change Impacts on the Marine Environment Ken Ridgway CSIRO Marine and Atmospheric Research Wealth from Oceans National Research Flagship www.csiro.au Acknowledgements Jeff Dunn, John Church, Katy

More information

Solar Insolation and Earth Radiation Budget Measurements

Solar Insolation and Earth Radiation Budget Measurements Week 13: November 19-23 Solar Insolation and Earth Radiation Budget Measurements Topics: 1. Daily solar insolation calculations 2. Orbital variations effect on insolation 3. Total solar irradiance measurements

More information

Why do emissions estimates differ, and what can we learn from the differences?

Why do emissions estimates differ, and what can we learn from the differences? Why do emissions estimates differ, and what can we learn from the differences? Edward Hyer NCAR Junior Faculty Forum 13 July 2010 Lots of Emissions Products A No List Appears Here Good Thing! Because I

More information

Global atmospheric carbon budget: Discussions results from an ensemble of atmospheric

Global atmospheric carbon budget: Discussions results from an ensemble of atmospheric Atmospheric Measurement Techniques Biogeosciences Discuss.,, 301 360, 13 www.biogeosciences-discuss.net//301/13/ doi:.194/bgd--301-13 Author(s) 13. CC Attribution 3.0 License. Biogeosciences en Access

More information

Ocean Model Uncertainty

Ocean Model Uncertainty Ocean Model Uncertainty Chris Brierley University of Reading, UK Alan Thorpe Natural Environment Research Council, UK Mat Collins Hadley Centre, Met. Office, UK Malcolm MacVean European Centre for Medium-range

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget Course 12.812, General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget Water Vapor Distribution First let us look at the distribution of specific humidity, q. The

More information

Challenges for Climate Science in the Arctic. Ralf Döscher Rossby Centre, SMHI, Sweden

Challenges for Climate Science in the Arctic. Ralf Döscher Rossby Centre, SMHI, Sweden Challenges for Climate Science in the Arctic Ralf Döscher Rossby Centre, SMHI, Sweden The Arctic is changing 1) Why is Arctic sea ice disappearing so rapidly? 2) What are the local and remote consequences?

More information

Climate & Earth System Science. Introduction to Meteorology & Climate CHAPTER 1 LECTURE 1. Question: Introduction to the Atmosphere

Climate & Earth System Science. Introduction to Meteorology & Climate CHAPTER 1 LECTURE 1. Question: Introduction to the Atmosphere Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

Today s Lecture (Lecture 5): General circulation of the atmosphere

Today s Lecture (Lecture 5): General circulation of the atmosphere Climate Dynamics (Summer Semester 2017) J. Mülmenstädt Today s Lecture (Lecture 5): General circulation of the atmosphere Reference Hartmann, Global Physical Climatology (1994), Ch. 2, 3, 6 Peixoto and

More information

The Climate System and Climate Models. Gerald A. Meehl National Center for Atmospheric Research Boulder, Colorado

The Climate System and Climate Models. Gerald A. Meehl National Center for Atmospheric Research Boulder, Colorado The Climate System and Climate Models Gerald A. Meehl National Center for Atmospheric Research Boulder, Colorado The climate system includes all components of the physical earth system that affect weather

More information

Supplement of Unprecedented strength of Hadley circulation in impacts on CO 2 interhemispheric difference

Supplement of Unprecedented strength of Hadley circulation in impacts on CO 2 interhemispheric difference Supplement of Unprecedented strength of Hadley circulation in -16 impacts on CO 2 interhemispheric difference Jorgen S. Frederiksen and Roger J. Francey CSIRO Oceans and Atmosphere, Aspendale, Victoria,

More information

Climate Validation of MERRA

Climate Validation of MERRA Climate Validation of MERRA Siegfried Schubert, Michael Bosilovich, Michele Rienecker, Max Suarez, Randy Koster, Yehui Chang, Derek Van Pelt, Larry Takacs, Man-Li Wu, Myong-In Lee, Scott Weaver, Junye

More information

PROBLEMS Sources of CO Sources of tropospheric ozone

PROBLEMS Sources of CO Sources of tropospheric ozone 220 PROBLEMS 11. 1 Sources of CO The two principal sources of CO to the atmosphere are oxidation of CH 4 and combustion. Mean rate constants for oxidation of CH 4 and CO by OH in the troposphere are k

More information

Understanding Oceans Sustaining Future. Shaoqing Zhang

Understanding Oceans Sustaining Future. Shaoqing Zhang Understanding Oceans Sustaining Future Shaoqing Zhang OUTLINE 1. Background: Problem in AMOC reconstruction of GFDL ECDA 2. Hypothesis Importance of tropical high-frequency information to maintain the

More information

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook Winds and Weather Please read Chapter 6 from Archer Textbook Circulation of the atmosphere and oceans are driven by energy imbalances Energy Imbalances What Makes the Wind Blow? Three real forces (gravity,

More information

Aerosol Modeling and Forecasting at NRL: FLAMBE and NAAPS

Aerosol Modeling and Forecasting at NRL: FLAMBE and NAAPS Aerosol Modeling and Forecasting at NRL: FLAMBE and NAAPS Edward Hyer NRL Aerosol Group Naval Research Laboratory Monterey, California Lingo: FLAMBE, NAAPS and NAVDAS FLAMBE: Fire Locating and Monitoring

More information

Website Lecture 3 The Physical Environment Part 1

Website   Lecture 3 The Physical Environment Part 1 Website http://websites.rcc.edu/halama Lecture 3 The Physical Environment Part 1 1 Lectures 3 & 4 1. Biogeochemical Cycling 2. Solar Radiation 3. The Atmosphere 4. The Global Ocean 5. Weather and Climate

More information

Wind induced changes in the ocean carbon sink

Wind induced changes in the ocean carbon sink Wind induced changes in the ocean carbon sink Neil Swart John Fyfe Oleg Saenko Canadian Centre for Climate Modelling and Analysis, Environment Canada Ocean carbon and heat uptake workshop 14 December 2014

More information

Lecture 11: Meridonal structure of the atmosphere

Lecture 11: Meridonal structure of the atmosphere Lecture 11: Meridonal structure of the atmosphere September 28, 2003 1 Meridional structure of the atmosphere In previous lectures we have focussed on the vertical structure of the atmosphere. Today, we

More information

Data and formulas at the end. Real exam is Wednesday May 8, 2002

Data and formulas at the end. Real exam is Wednesday May 8, 2002 ATMS 31: Physical Climatology Practice Mid Term Exam - Spring 001 page 1 Atmospheric Sciences 31 Physical Climatology Practice Mid-Term Examination: Would be Closed Book Data and formulas at the end. Real

More information

CGSN Overview. GSN Sites CSN Sites Shore Facilities

CGSN Overview. GSN Sites CSN Sites Shore Facilities GSN Sites CSN Sites Shore Facilities CGSN Overview Coastal Pioneer Array Endurance Array Global Irminger Sea Southern Ocean Station Papa Fixed assets Surface mooring Subsurface mooring Mobile assets Ocean

More information

Patterns and impacts of ocean warming and heat uptake

Patterns and impacts of ocean warming and heat uptake Patterns and impacts of ocean warming and heat uptake Shang-Ping Xie Scripps Inst of Oceanography, UCSD Ocean warming & circulation change Ocean heat uptake & meridional overturning circulation Global

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

Lesson IV. TOPEX/Poseidon Measuring Currents from Space

Lesson IV. TOPEX/Poseidon Measuring Currents from Space Lesson IV. TOPEX/Poseidon Measuring Currents from Space The goal of this unit is to explain in detail the various measurements taken by the TOPEX/Poseidon satellite. Keywords: ocean topography, geoid,

More information

Extremes of Weather and the Latest Climate Change Science. Prof. Richard Allan, Department of Meteorology University of Reading

Extremes of Weather and the Latest Climate Change Science. Prof. Richard Allan, Department of Meteorology University of Reading Extremes of Weather and the Latest Climate Change Science Prof. Richard Allan, Department of Meteorology University of Reading Extreme weather climate change Recent extreme weather focusses debate on climate

More information

Sensitivity of climate forcing and response to dust optical properties in an idealized model

Sensitivity of climate forcing and response to dust optical properties in an idealized model Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007198, 2007 Sensitivity of climate forcing and response to dust optical properties in an idealized model Karen

More information

MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY

MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY Gokhan Danabasoglu National Center for Atmospheric Research OUTLINE: - Describe thermohaline and meridional overturning

More information

Data Assimilation for Tropospheric CO. Avelino F. Arellano, Jr. Atmospheric Chemistry Division National Center for Atmospheric Research

Data Assimilation for Tropospheric CO. Avelino F. Arellano, Jr. Atmospheric Chemistry Division National Center for Atmospheric Research Data Assimilation for Tropospheric CO Avelino F. Arellano, Jr. Atmospheric Chemistry Division National Center for Atmospheric Research Caveat: Illustrative rather than quantitative, applied rather than

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D12301, doi: /2005jd006278, 2006

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D12301, doi: /2005jd006278, 2006 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005jd006278, 2006 Insights from simulations with high-resolution transport and process models on sampling of the atmosphere for constraining midlatitude

More information

1/14/2019. INTRODUCTIONS Part 1. INTRODUCTIONS part 2. Weather and Climate Jim Keller & Paul Belanger. Classroom assistant: Fritz Ihrig

1/14/2019. INTRODUCTIONS Part 1. INTRODUCTIONS part 2. Weather and Climate Jim Keller & Paul Belanger. Classroom assistant: Fritz Ihrig Weather and Climate Jim Keller & Paul Belanger Classroom assistant: Fritz Ihrig Week 1: January 15 th, 2019 1 INTRODUCTIONS Part 1 Fritz Ihrig; classroom assistant, liaison to OLLI: fgihrig@msn.com ; h.

More information

Forward Problems and their Inverse Solutions

Forward Problems and their Inverse Solutions Forward Problems and their Inverse Solutions Sarah Zedler 1,2 1 King Abdullah University of Science and Technology 2 University of Texas at Austin February, 2013 Outline 1 Forward Problem Example Weather

More information

IMPACTS OF A WARMING ARCTIC

IMPACTS OF A WARMING ARCTIC The Earth s Greenhouse Effect Most of the heat energy emitted from the surface is absorbed by greenhouse gases which radiate heat back down to warm the lower atmosphere and the surface. Increasing the

More information

Why There Is Weather?

Why There Is Weather? Lecture 6: Weather, Music Of Our Sphere Weather and Climate WEATHER The daily fluctuations in atmospheric conditions. The atmosphere on its own can produce weather. (From Understanding Weather & Climate)

More information

FOLLOW THE ENERGY! EARTH S DYNAMIC CLIMATE SYSTEM

FOLLOW THE ENERGY! EARTH S DYNAMIC CLIMATE SYSTEM Investigation 1B FOLLOW THE ENERGY! EARTH S DYNAMIC CLIMATE SYSTEM Driving Question How does energy enter, flow through, and exit Earth s climate system? Educational Outcomes To consider Earth s climate

More information

The ECMWF coupled data assimilation system

The ECMWF coupled data assimilation system The ECMWF coupled data assimilation system Patrick Laloyaux Acknowledgments: Magdalena Balmaseda, Kristian Mogensen, Peter Janssen, Dick Dee August 21, 214 Patrick Laloyaux (ECMWF) CERA August 21, 214

More information

INTRODUCTIONS Part 1

INTRODUCTIONS Part 1 Weather and Climate Jim Keller & Paul Belanger Classroom assistant: Fritz Ihrig Week 1: January 15 th, 2019 1 INTRODUCTIONS Part 1 Fritz Ihrig; classroom assistant, liaison to OLLI: fgihrig@msn.com ; h.

More information