E cient size correct subset inference in linear instrumental variables regression

Size: px
Start display at page:

Download "E cient size correct subset inference in linear instrumental variables regression"

Transcription

1 E cent sze correct subset nference n lnear nstrumental varables regresson Frank Klebergen September 7 Abstract We sow tat Morera s 3) condtonal crtcal value functon for te lkelood rato statstc tat tests te structural parameter n te d lnear nstrumental varables regresson model wt one ncluded endogenous varable provdes a boundng dstrbuton for te subset lkelood rato statstc tat tests one structural parameter n an d lnear nstrumental varables regresson model wt several ncluded endogenous varables Te only adjustment concerns te usual degrees of freedom correcton for subset tests of te nvolved dstrbuted random varables Te condtonal crtcal value functon makes te subset lkelood rato test sze correct under weak dent caton of te structural parameters and e cent under strong dent caton Wen te ypoteszed value of te parameter of nterest s dstant from te true one, te subset Anderson-Rubn and lkelood rato statstcs are nvarant wt respect to te parameter of nterest and eual statstcs tat test te dent caton of all structural parameters Te value of te statstc testng a dstant value of any of te structural parameters s terefore te same All results extend to tests on te parameters of te ncluded exogenous varables Introducton For te omoscedastc lnear nstrumental varables IV) regresson model wt one ncluded endogenous varable, sze correct procedures exst to conduct tests on ts structural parameter, see e:g: Anderson and Rubn 949), Klebergen ) and Morera 3) Andrews et al Econometrcs and Statstcs Secton, Amsterdam Scool of Economcs, Unversty of Amsterdam, Roetersstraat, 8WB Amsterdam, Te Neterlands Emal: frklebergen@uvanl

2 6) sow tat te condtonal) lkelood rato statstc s optmal amongst sze correct procedures tat test a pont null ypotess aganst a two sded alternatve E cent tests of ypoteses spec ed on one structural parameter n a lnear IV regresson model wt several ncluded endogenous varables wc are sze correct under weak nstruments are, owever, stll lackng Tere are statstcs for testng ypoteses on subsets of te parameters tat are sze correct and near-optmal under weak nstruments for te untested structural parameters but wc are not e cent under strong nstruments, lke, for example, te subset Anderson-Rubn AR) statstc, see Guggenberger et al ) and Guggenberger et al 7) Tere are also statstcs tat are e cent under strong nstruments but wc are not sze correct under weak nstruments, lke, for example, te t-statstc Neter one of tese statstcs leads to con dence sets for all structural parameters, ncludng tose on te ncluded exogenous parameters, wc are vald under weak nstruments and ave mnmum lengt under strong nstruments We construct a condtonal crtcal value functon for te subset lkelood rato LR) statstc wc makes t sze correct under weak nstruments and e cent under strong nstruments Tus t allows for te constructon of optmal con dence sets tat reman vald under weak nstruments Te condtonal crtcal value functon for te subset LR statstc tat we construct s dentcal to te condtonal crtcal value functon of te LR statstc for te omoscedastc lnear IV regresson model wt one ncluded endogenous varable from Morera 3) Tat condtonal crtcal value functon depends on a condtonng statstc and two ndependent dstrbuted random varables Instead of te common spec caton of te condtonng statstc as n Morera 3), t can also be spec ed as te d erence between te sum of te two smallest) roots of te caracterstc polynomal assocated wt te lnear IV regresson model and te value of te AR statstc at te ypoteszed value of te structural parameter Ts spec caton of te condtonng statstc generalzes to te condtonng statstc of te condtonal crtcal value functon of te subset LR statstc wc conducts tests on one structural parameter wen tere are several ncluded endogenous varables Alongsde te condtonng statstc, te condtonal crtcal value functon of te subset LR statstc also as te usual degrees of freedom adjustment of one of te nvolved dstrbuted random varables wen conductng tests on subsets of parameters Wen testng a value of te structural parameter tat s dstant from te true one, te subset AR and LR statstcs no longer depend on te structural parameter tat s tested Hence, for large values of te ypoteszed parameter, te value of te subset AR and LR statstcs are te same for all structural parameters At tese values, te subset AR and LR statstcs are

3 dentcal to statstcs tat test te ypotess of a reduced rank value of te reduced form parameter matrx Te rank condton for dent caton s for te reduced form parameter matrx to ave a full rank value so at dstant values of te ypoteszed structural parameter, te subset AR and LR statstcs become dentcal to tests of te dent caton of all structural parameters For te omoscedastc lnear IV regresson model wt one ncluded endogenous varable, Andrews et al 6) sow tat te LR statstc s optmal Tey construct te power envelope for testng a pont null ypotess on te structural parameter aganst a two-sded pont alternatve Te rejecton freuences of te LR statstc usng te condtonal crtcal value functon are on te power envelope so te LR statstc s optmal Under pont ypoteses on te structural parameter, te lnear IV regresson model wt one ncluded endogenous varable s euvalent to a lnear regresson model so te power envelope can be constructed usng te Neyman-Pearson Lemma Wen te null ypotess concerns te structural parameter of one ncluded endogenous varable of several, te lnear IV regresson model no longer smpl- es to a lnear regresson model under te null ypotess We can ten no longer use te Neyman-Pearson Lemma to construct te power envelope Alternatvely we could determne te maxmal rejecton freuency under least favorable alternatve ypoteses Least favorable alternatves result wen te structural parameters of te remanng ncluded endogenous varables are not dent ed Gven te beavor of te subset AR and LR statstcs at dstant values of te ypoteszed parameter, te maxmal rejecton freuency under least favorable alternatves euals te sze of tests for te dent caton of te non-dent ed) structural parameters of te remanng endogenous varables It terefore does not provde a useful caracterzaton of e cency of sze correct subset tests n te lnear IV regresson model eter Wen all nonypoteszed structural parameters are well dent ed, testng a ypotess on te remanng structural parameter usng te subset LR statstc s euvalent to testng te structural parameter n a lnear IV regresson model wt only one ncluded endogenous varables usng te LR statstc Snce te LR statstc s optmal n tat settng, te subset LR statstc s optmal wen all non-ypoteszed structural parameters are well dent ed and sze correct n general Te optmalty results for testng te structural parameter n te omoscedastc lnear IV regresson model wt one ncluded endogenous varable ave been extended n d erent drectons Andrews 5), Montel Olea 5) and Morera and Morera 3) extend t to general covarance structures wle Montel Olea 5) and Cernozukov et al 9) analyze te admssblty of suc tests Neter one of tese extensons, owever, analyzes tests on subsets of te structural parameters 3

4 Te omoscedastc lnear IV regresson model s a fundamental model n econometrcs It provdes a stylzed settng for analyzng nference ssues wc makes t stragtforward to communcate te results As suc tere s an extensve lterature on t Ts paper provdes a furter contrbuton by solvng an mportant open problem: ow to optmally construct con dence sets wc reman vald wen nstruments are weak for all structural parameters Te lnear IV regresson model wt d errors can be extended by allowng, for example, for autocorrelaton and/or eteroscedastcty Tese extensons are emprcally relevant and wen te structural parameters are well dent ed, nference metods extend stragtforwardly Klebergen 5) sows tat te same reasonng apples to te weak nstrument robust tests on te full structural parameter vector Te extensons to tests on subsets of te parameters are, owever, far less stragtforward Tey can be obtaned for te omoscedastc lnear IV regresson model because of te algebrac structure t provdes, see also Guggenberger et al ) Ts structure s lost wen te errors are autocorrelated and/or eteroscedastc We ten bascally ave to resort to explctly analyzng te rejecton freuency of te subset tests over all possble values of te nusance parameters as, for example, n Andrews and Cen ) Unless you resort to projecton based tests, weak nstruments robust tests on subsets of te parameters for te lnear IV regresson model wt a more general error structure s terefore conceptually very d erent from a settng wt d errors It s tus mportant to determne te extent to wc t s analytcally possble to analyze te dstrbuton of tests on subsets of te parameters wle allowng for weak dent caton Snce te estmators tat are used for te non-ypoteszed structural parameters are nconsstent n suc settngs, t s from te outset unclear f any suc analytcal results can be obtaned Te paper s organzed as follows Te second secton states te subset AR and LR statstcs In te trd secton, we dscuss te bound on te condtonal crtcal value functon of te subset LR statstc Te fourt secton dscusses a smulaton experment wc sows tat te subset LR statstc wt condtonal crtcal values s sze correct Te ft secton provdes extensons to more tan two ncluded endogenous varables Te sxt secton covers te beavor of te subset AR and LR statstcs at dstant values of te ypoteszed parameter Te sevent secton deals wt te usual d omoscedastc settng to wc all results stragtforwardly extend Fnally, te egt secton concludes We use te followng notaton trougout te paper: veca) stands for te column) vectorzaton of te k n matrx A; veca) a : : : a n) for A a : : : a n ); P A AA A) A s a projecton on te columns of te full rank matrx A and M A I N P A s a projecton on te space ortogonal to A: Convergence n probablty s denoted by and convergence n p 4

5 dstrbuton by d Subset statstcs n te lnear IV regresson model We consder te lnear IV regresson model y X + W + " X Z X + V X W Z W + V W ; ) wt y and W N and N m w dmensonal matrces tat contan endogenous varables, X a N m x dmensonal matrx of exogenous or endogenous varables, Z a N k dmensonal matrx of nstruments and m m x + m w : Te spec caton of X s suc tat we allow for tests on te parameters of te ncluded exogenous varables Te N ; N m w and N m x dmensonal matrces "; V W and V X contan te dsturbances Te unknown parameters are contaned n te m x ; m w ; k m x and k m w dmensonal matrces ; ; X and W Te model stated n euaton ) s used to smplfy te exposton An extenson of te model tat s more relevant for practcal purposes arses wen we add a number of so-called ncluded control) exogenous varables, wose parameters we are not nterested n, to all euatons n ) Te results tat we obtan do not alter from suc an extenson wen we replace te expressons of te varables tat are currently n ) n te spec catons of te subset statstcs by te resduals tat result from a regresson of tem on tese addtonal ncluded exogenous varables Wen we want to test a ypotess on te parameters of te ncluded exogenous varables, we just nclude tem as elements of X: To furter smplfy te exposton, we start out as n, for example, Andrews et al 6), assumng tat te rows of u "+V W +V X ; V W and V X ; wc we ndcate by u ; VW; ; and V X; ; so u u : : : u N ) ; V W V W; : : : V W;N ) ; V X V X; : : : V X;N ) ; are d normal dstrbuted wt mean zero and known covarance matrx : We also assume tat te nstruments n Z Z : : : Z N ) are pre-determned Tese random varables are terefore uncorrelated wt te nstruments Z so: EZ " V X; V W;)) ; ; : : : ; N: ) Wen X conssts of exogenous varables, t s part of te matrx of nstruments as well so V X s n tat case eual to zero 5

6 We extend ts n Secton 7 to te usual d omoscedastc settng We are nterested n testng te subset null ypotess H : aganst H : 6 : 3) In Guggenberger et al ), te subset AR statstc for testng H s analyzed We focus on te subset LR statstc Te dstrbutons of tese statstcs for testng te jont ypotess H : and ; 4) are robust to weak nstruments, see e:g: Anderson and Rubn 949), Morera 3) and Klebergen 7) Te expressons of ter subset counterparts result wen we replace te ypoteszed value of ; ; n te expresson of tese statstcs to test te jont ypotess by te lmted nformaton maxmum lkelood LIML) estmator under H ; wc we ndcate by ~ ): We note beforeand tat our results only old wen we use te LIML estmator and do not apply wen we use te two stage least suares estmator Snce te subset LR statstc nvolves te subset AR statstc, we state bot ter expressons De nton : Te subset AR statstc tmes k) to test H : reads AR ) mn R mw y X W ) P Z y X W ) : : ) : : ) ^ "" ) y X W ~ )) P Z y X W ~ )) mn ; 5) wt ~ ) te LIMLK) estmator, ^ "" ) ~ ) ) ~ ) ; ) and mn euals te smallest root of te caracterstc polynomal I mw C A I mw ) Y X W ) P Z Y X W ) : 7) Snce we treat te reduced form covarance matrx as known, te LIML estmator s dentcal to te LIMLK estmator, see e:g: Anderson et: al: 983) C A 6) 6

7 Te subset LR statstc to test H reads wt LR ) mn mn ; 8) mn mn R mx; R mw y X W ) P Z y X W ) : : ) : : ) ; 9) wc euals te smallest root of te caracterstc polynomal y X W ) P Z y X W ) : ) Under H and wen W as a full rank value, te subset AR statstc as a k m W ) lmtng dstrbuton Ts dstrbuton provdes an upper bound on te lmtng dstrbuton of te subset AR statstc for all values of W ; see Guggenberger et al ) Alongsde te bound on te lmtng dstrbuton of te subset AR statstc, Guggenberger et al ) also sow tat te score or Lagrange multpler statstc to test H s sze dstorted Wle te subset AR statstc s sze correct under weak nstruments, t s less powerful tan optmal tests of H under strong nstruments, lke, for example, te t-statstc It s terefore mportant to ave statstcs tat test H wc are sze-correct under weak nstruments and are as powerful as te t-statstc under strong nstruments Te subset LR statstc s suc a statstc 3 Subset LR statstc Te weak nstrument robust statstcs proposed n te lterature to test H are based upon ndependently dstrbuted su cent statstcs Tese can be constructed under te jont ypotess H but not under te subset ypotess H : To obtan a weak nstrument robust nference procedure for testng H usng te subset LR statstc, we terefore proceed n tree steps: We caracterze te condtonal dstrbuton of te subset LR statstc under te jont ypotess H 4) wc depends on mm + ) condtonng statstcs de ned under H : We construct a bound on te condtonal dstrbuton of te subset LR statstc under te jont ypotess H tat depends on only m x condtonng statstcs wc are de ned under H 3 We provde an estmator for te condtonng statstcs wc can be computed under H and sow tat ts leads to a condtonal boundng dstrbuton for te subset LR statstc 7

8 3 Subset LR statstc under H : Te subset LR statstc conssts of two components, :e: te subset AR statstc and te smallest root mn ) Teorems and state tem as functons of te ndependent su cent statstcs de ned under H : For reasons of brevty, we ntally focus only on te case of one structural parameter tat s tested and one wc s left unrestrcted so m x m w : We later extend ts to more unrestrcted structural parameters Teorem rst states te ndependent su cent statstcs de ned under H and tereafter expresses te subset AR statstc as a functon of tem Teorem states te smallest caracterstc root mn as a functon of te ndependent su cent statstcs Teorem Under H : ; ; te ndependent su cent statstcs: ; ) Z Z) Z y W X ) "" ; ) Z Z) Z W X) y W X ) "V "" V V:" ; ) wc are N; I k ) and NZ Z) W X ) V V:" ; I mk) dstrbuted random varables wt "" V " "V V V I mx I mw C A I mx I mw C A ; ) "" : ; V " "V : m ; V V : m m and V V:" V V V " "V "" ; can be used to specfy te dstrbuton of te subset AR statstc tat tests H : as AR ) +g g ; ) ; ) g ; ) ; ) g ' s ' s ) 4 + )s mn gr mw 3) 8

9 were ; ) ; ) I mw ; ) ; ) N; I mw ) ' [ I mx ; ) ; )] I mx [ I mx ; ) ; )] ; ) ; ) N; I mx ) ; )? ; ) N; I k m ) s ; ) ; ) 4) wt '; and ndependently dstrbuted, ; )? s a k k m) dmensonal ortonormal matrx wc s ortogonal to ; ) : ; )? ; ) and ; )? ; )? I k m ; "" : ; V " "V : m ; V V : m m and V V:" V V V " "V "" : Proof see te Appendx and Morera 3) Teorem Under H : ; ; te smallest caracterstc root mn ) euals mn mn br mx; gr mw +b b+g g ; ) and s dentcal to te smallest root of te caracterstc polynomal: I m+ ; ) b g ; ) ; ) g b ; 5) + S S S 6) wt S dags max; s mn); s max s mn; a dagonal matrx tat contans te two egenvalues of ; ) ; ) n descendng order and so and are m and k vectors ; ) ; )) ; ) ; ); 7) Proof see te Appendx and Klebergen 7) m dmensonal ndependent standard normal dstrbuted random Te closed form expresson for te dstrbuton of te subset AR statstc n Teorem results snce t s te smallest root of a second order polynomal Te smallest root n Teorem results from a trd order polynomal so we only provde t n an mplct manner Teorems and state te dstrbutons of te subset AR statstc and te smallest root mn as functons of te ndependent su cent statstcs ; ) and ; ) ) wc are de ned under 9

10 H 3 Snce ; ) and ; ) are ndependent, we use te condtonal dstrbutons of te subset AR statstc and te smallest root mn gven te realzed value of a functon of) ; ) : ^ ; ); see Morera 3) Teorems and sow tat tese furter smplfy so we can use te condtonal dstrbutons of te subset AR statstc gven te realzed value of s ; ^s ; and te condtonal dstrbuton of mn gven te realzed values of s mn and s max : ^s mn; ^s max: Ts makes te total number of condtonng statstcs eual to tree Teorem 3 sows tat tese tree condtonng statstcs are an nvertble functon of ^ ; ) ^ ; ): Teorem 3 also sows ow, gven ^ ; ) ^ ; ); we can construct '; ) from ; wc s a standard normal dstrbuted random vector, and vce versa Snce bot and are standard normal dstrbuted random vectors, tey consttute te random components n te condtonal dstrbuton of te subset LR statstc under H gven te realzed value ^ ; ) ^ ; ): Teorem 3 Under H : ; ; te condtonal dstrbuton of te subset LR statstc tat tests H : gven te realzed value of ; ) ; ); ^ ; ) ^ ; ); can be spec ed as LR ) ' ^s ' ^s ) 4 + )^s mn ; 8) were mn results from 6) usng te realzed value of S Te relatonsp between '; ; ^s ) used n Teorem and ; ^s mn; ^s max) from Teorem s caracterzed by ' ^s ^ ; ) ^ ; ) I mw VS V I mw VS VS I mx V VS I mx I mx SV I mw VS V cos^) wt V sn^) ^smax cos^) ^s mn sn^) r ' cos^) ^s VS V C A ' + S V max + cos^) ^s max + cos^)^s max sn^)^s mn [cos^)] ^s max+[sn^)] ^s mn sn^) + cos^) ^s mn ^smax r sn^)) ^s + cos^)) max ^s mn I mx I mx VS V I mx sn^) ^s C A, sn^) ^s mn + sn^)^s max cos^)^s sn^)) + cos^)) mn ^s max ^s mn 9) sn^) ; : te matrx of ortonormal egenvectors of ^ cos^) ; ) ^ ; ) mn 3 see Morera 3) and Andrews et: al: 6) for a proof tat ; ) and ; ) are su cent statstcs for te parameters under H wc tey reman to be under H :

11 Proof It results from te sngular value decomposton, ^ ; ) USV ; wt U and V k m and m m dmensonal ortonormal matrces, e U U I m, V V I m ; and te dagonal m m matrx S contanng te m non-negatve sngular values ^s : : : ^s m ) n decreasng order on te man dagonal, tat U ; ): Te remanng part results from usng te sngular value decomposton for te expressons n Teorems and Te condtonal dstrbuton of te subset LR statstcs s a functon of tree condtonng statstcs none of wc s de ned under H To obtan a workable bound of t, we rst reduce te number of condtonng statstcs for wc we tereafter provde estmators wc are de ned under H : 3 Bound on subset LR statstc wt one condtonng statstc Te condtonal dstrbuton of te subset LR statstc depends n an mplct manner on ts condtonng statstcs Ts makes t ard to sow tat t s a monotone functon of any or several) of tem wc would make t stragtforward to obtan a bound on t In order to construct suc a bound, we terefore start out to sow tat te two elements tat comprse te subset LR statstc are monotone functons of some of) ter condtonng statstcs Teorem 4 Te condtonal dstrbutons of te subset AR statstc and mn gven ^s ; ^s mn; ^s max) are respectvely non-decreasng functons of ^s and ^s max: Proof see te Appendx Teorem 4 mples tat te condtonal dstrbutons of te subset AR statstc and mn are bounded by ter condtonal) dstrbutons tat result for te smallest and largest feasble values of te realzed value of ter condtonng statstcs ^s and ^s max resp Gven te realzed value of s mn; ^s mn; bot ^s and ^s max can be n nte wle ter lower bounds are eual to ^s mn:

12 Teorem 5 Gven te realzed value of s mn : ^s mn; te condtonal dstrbuton of te subset AR statstc s bounded accordng to AR low js ^s mn) ARjs ^s mn) ' ^s mn ' ^s mn ) AR )js ^s ) + AR up ARjs ) k m w ) 4 + )^s mn ) and te condtonal dstrbuton of mn s bounded accordng to low js mn ^s mn) mn js mn ^s mn; s max ^s mn) ^s mn ^s mn 4 ^s mn mn js mn ^s mn; s max ^s max) + + ^s mn + + ^s mn 4 ^s mn mn js mn ^s mn; s max ) up js mn ^s mn): ) Proof see te Appendx Snce ^s mn ^s ^s max 4 ; te bounds on te condtonal dstrbuton of te subset AR statstc are rater wde but tey are sarp for large values of ^s mn: Bot te lower and upper bound of te condtonal dstrbuton of mn are non-decreasng functons of ^s mn and are eual wen ^s mn euals zero and for large values of ^s mn n wc case tey bot eual : It mples tat tey are tgt wc can be furter ver ed by conductng a mean-value expanson of te lower bound Te bounds are tgt snce te condtonal dstrbuton of mn gven s mn ^s mn; s max ^s max) prmarly depends on ^s mn and muc less so on ^s max as one would expect from te smallest caracterstc root) Te condtonal dstrbuton of te subset LR statstc stated n Teorem 3 depends on tree condtonng statstcs wc are all de ned under H : Te tree condtonng statstcs result from te tree d erent elements of te estmator of te concentraton matrx ^ ; ) ^ ; ): Ts estmator provdes an ndependent estmate of te dent caton strengt of te two parameters restrcted under H : Under H ; tere s only one restrcted parameter so ts dent caton strengt can be represented by one condtonng statstc Te smallest caracterstc root of ^ ; ) ^ ; ) s re ected by ^s mn: Snce t re ects te mnmal den- 4 Snce ^s ^ ; ) ^ ; ) ; ^s s bounded by te smallest and largest caracterstc roots of ^ ; ) ^ ; ) so ^s mn ^s ^s max:

13 t caton strengt of any combnaton of te parameters n H, we use t as te condtonng statstc n a boundng functon of te condtonal dstrbuton of te subset LR statstc gven ^ ; ) ^ ; ): Te boundng functon ten results as te d erence between te upper boundng functons of te subset AR statstc and mn stated n Teorem 5 It s obtaned by notng tat ^s max ^s sn^) ^s [cos^)] mn ; ) so wen ^s goes o to n nty, cos^) 6 ; ^s max goes o to n nty as well Oter settngs of te d erent condtonng statstcs do not result n an upper bound For example, consder sn^) ; ^s ^s mn so ^s max ^s mn; wc results from applyng l Hôptal s rule to ) Snce te subset AR statstc, wc consttutes te rst component of te subset LR statstc n 8), s an ncreasng functon of ^s ; we obtan a lower bound on te subset AR statstc gven ^s mn so te resultng settng for te subset LR statstc s more akn to a lower bound tan an upper bound De nton We denote te condtonal dstrbuton of te subset LR statstc gven ^s ; ^s mn; ^s max) tat results from Teorem 3 wen cos ^) 6 ; ^s and ^s max go o to n nty, so ' and ; by CLR ) : 5 CLR )js mn ^s mn) lm ^s ; ^s LR max) ) + ^s mn ^s mn ) 4 ^s mn : 3) We use CLR ) de ned n 3) as a condtonal bound gven ^s mn for te condtonal dstrbuton of LR ) gven ^s mn; ^s max; ^s ): It euals te d erence between te upper bounds on AR ) and mn stated n Teorem 4 wt eual to : Te d erence between te upper bounds of two statstcs not necessarly provdes an upper bound on te d erence between te two statstcs Here t does snce te upper bound on te subset AR statstc as a lot of slackness wen mn s close to ts lower bound To prove ts, we specfy te condtonal dstrbuton of te subset LR statstc as LR ) CLR ) D ); 4) 5 Te expresson of CLR ) s dentcal to tat of Morera s 3) condtonal lkelood rato statstc wc explans te acronym 3

14 wt D ) AR up AR ) + mn + + ^s mn + + ^s mn ) 4 ^s mn : 5) and analyze te propertes of te condtonal approxmaton error D ) gven ^s mn over te range of values of ^s max and ^s ^): We note tat only negatve values of D ) can lead to sze dstortons so we only focus on worst case settngs of te condtonng statstcs ŝ ; ^s mn; ^s max) tat lead to suc negatve values Teorem 6 Under H ; te condtonal dstrbuton of CLR ) gven s mn ^s mn provdes an upper bound for te condtonal dstrbuton of LR ) gven s mn ^s mn; s max ^s max; s ^s ) snce te approxmaton error D ) s non-negatve for all values of ^s mn; s max; ^s ): Proof see te Appendx Teorem 6 s proven usng approxmatons to te d erent components of D ): Tese approxmatons are analyzed over te range of values ^s mn; s max; ^s ) can take For none of tese do we nd tat D ) s negatve Corollary Under H ; te rejecton freuency of a -) % sgn cance test of H usng te subset LR test wt condtonal crtcal values from CLR ) gven ^s mn s less tan or eual to % Wle te condtonal crtcal value functon makes te subset LR test of H sze correct, t s nfeasble snce te condtonng statstc ^s mn s de ned under H : We next construct a feasble estmator for ^s mn under H wc s suc tat te resultng condtonal crtcal value functon makes te subset LR statstc a sze correct test of H : 33 Condtonng statstc under H To motvate our estmator of ^s mn under H ; we start out from te caracterstc polynomal n 6) wc s wen, m w m x ; a trd order polynomal: max ) ) mn ) 3 a + a a 3 ; 6) 4

15 wt, resultng from Teorem : a + + s mn + s max tr Y X W ) P Z Y X W )) mn + + max a s mn + s max) + s mns max + s max + s mn a 3 s mns max mn max ; 7) and were mn max are te tree roots of te caracterstc polynomal n 6) We next factor out te largest root max to specfy te trd order polynomal as te product of a rst and second order polynomal: 3 a + a a 3 max ) b + b ) ; 8) wt b + + s mn + s max max b s mns max max : 9) We obtan our estmator for te condtonng statstc ^s mn from te second order polynomal In order to so, we use tat max provdes an estmator of s max + : Teorem 7 Under H ; te largest root max s suc tat max s max + + s max + ) + ; 3) wt s max s max + and Omaxs 4 max + ) ; s mn s 4 max)) ; were Oa) ndcates tat te respectve element s proportonal to a: Proof see te Appendx Teorem 7 sows tat max s an estmator of s max + wc gets more precse wen s max ncreases We use t to purge s max + from te expresson of b : wt d b d + s mn; 3) s + ) : 3) max Snce s non-negatve, te statstc d n 3) s bounded from above by a k ) dstrbuted random varable Teorem 4 sows tat under H ; te subset AR statstc s also bounded from above by a k ) dstrbuted random varable We terefore use te subset AR statstc 5

16 as an estmator for d n 3) to obtan te estmator for te condtonng statstc ^s mn tat s feasble under H : ~s mn b AR ) tr Y X W ) P Z Y X W )) max AR ) smallest caracterstc root of Y X W ) P Z Y X W ))+ second smallest caracterstc root of Y X W ) P Z Y X W )) AR ): 33) We use ~s mn as te condtonng statstc for te condtonal boundng dstrbuton CLR ) gven tat s mn ~s mn 3) Te condtonng statstc ~s mn n 33) estmates s mn wt error so t s mportant to determne te propertes of ts estmaton error Teorem 8 Under H ; te estmator of te condtonng statstc ~s mn can be spec ed as: ~s mn s mn + g; 34) wt g + ' ' +s + ) s max + ) + e; 35) and were e O Proof see te Appendx ' ; ) M ; ) ) ; ) ' + ) ; ) ; ) ) ): Te common element n te upper) boundng dstrbutons of te statstc d and te subset AR statstc s te k ) dstrbuted random varable : It mples tat te d erence between tese two statstcs, wc consttutes te estmaton error n ~s mn; conssts of: Te d erence between two possbly correlated ) dstrbuted random varables: ; 36) wt tat part of ; ) tat s spanned by te egenvectors of te smallest sngular value of ; ) and tat part of ; ) tat s spanned by ; ) I mx : Te d erence between te devatons of d and AR ) from ter boundng k ) dstrbuted random varables: ' ' +s + ) s max + ) + e: 37) 6

17 Snce s s smaller tan or eual to s max; ts error s largely non-negatve and becomes neglgble wen s and s max get large Snce s as a non-central dstrbuton wt k degrees of freedom ndependent of '; and ; and a smlar argument apples to s max; ; and ; te combned e ect of te components n 37) s small, snce every element s at most of te order of magntude of one and a decreasng functon of s and s max: Te same argument apples to 36) as well Corollary Te estmaton error for estmatng s mn by ~s mn s bounded and decreasng wt te strengt of dent caton of Te dervatve of CLR ) gven s mn wt respect to s mn CLR )js mn s ) + p +s +s ) +4 < ; 38) wc s constructed n Lemma n te Appendx; s suc tat CLR ) s not senstve to te value of s mn: Tus small errors n te estmaton of s mn just lead to a small cange n te condtonal crtcal values gven ~s mn wt lttle e ect on te sze of te subset LR test under H : Corollary and 38) mply tat te estmaton error n ~s mn as just a mnor e ect on te sze of te subset LR test under H : We next provde a more detaled dscusson of te e ect of te estmaton error n ~s mn on te sze of te subset LR test Under H ; te condtonng statstc s mn s ndependent of ; ) wle te components of te estmaton error g n 36) and 37) are not We terefore analyze te propertes of te estmaton error n ~s mn and ts e ect wen usng ~s mn for te approxmaton of te condtonal dstrbuton of te subset LR statstc 3) One part of te estmaton error results from te devaton of te dstrbuton of te subset AR statstc from ts boundng k ) dstrbuton We terefore assess te two fold e ect tat ts devaton as: one drectly on te subset LR statstc troug te subset AR statstc and one on te approxmate condtonal dstrbuton troug ts e ect on ~s mn: We analyze te e ect of te estmaton error n ~s mn on te approxmate condtonal dstrbuton of te subset LR statstc for four d erent cases: Strong dent caton of and : Bot and are well dent ed, so s mn s large and s s mn) s large as well Ts mples tat bot components of te subset LR statstc are at ter upperbounds stated n Teorem 4 so te condtonal dstrbuton of te subset LR statstc corresponds wt tat of CLR ): Snce bot s and s max are large, te estmaton error s: g : 39) 7

18 Te proof of Teorem 8 sows te expressons of te covarance between and wc, snce bot s mn and s max are large, can not be large Te estmaton error s terefore O p ): Te dervatve of te approxmate condtonal dstrbuton of te subset LR statstc wt respect to s mn goes to zero wen s mn gets large Hence, snce s mn s large, te estmaton error n ~s mn as no e ect on te accuracy of te approxmaton of te condtonal dstrbuton of te subset LR statstc Strong dent caton of ; weak dent caton of : Snce s weakly dent ed s mn s small but s s large because s strongly dent ed and so s terefore s max: Snce bot s and s max are large, bot components of te subset LR statstc are at ter upperbounds stated n Teorem 4 wc mples tat te condtonal dstrbuton of te subset LR statstc euals tat of CLR ): Also snce s and s max are large, te estmaton error n ~s mn s just g : 4) Because s mn s small and s s large, Teorem 3 sows tat cos) s close to one wle sn) s close to zero Ts mples tat s approxmately eual to so g s small Te estmaton error does terefore not lead to sze dstortons wen usng te approxmaton of te condtonal dstrbuton of te subset LR statstc 3 Weak dent caton of ; strong dent caton of : s weakly dentfed so s mn and s are small wle s max s large snce s strongly dent ed Snce s max s large, mn s at ts upperbound up : Te d erence between te condtonal dstrbuton of te subset LR statstc and te condtonal boundng dstrbuton of CLR ) ten solely results from te d erence between te upper bound on te dstrbuton of te subset AR statstc, AR up, and ts condtonal dstrbuton Wen usng condtonal crtcal values from CLR ) gven s mn for te subset LR test, t s conservatve We, owever, use ~s mn nstead of s mn wt estmaton error g : g + ' ' + ) ; ) ; ) ) + ) + e; 4) wc, snce t ncreases te estmate of te condtonng statstc ~s mn; reduces te condtonal crtcal values Te last part of 4) results from te subset AR statstc Snce te condtonal crtcal values of CLR ) gven s mn make te subset LR statstc test conservatve for ts settng, te decrease of te condtonal crtcal values does not lead to over-rejectons Ts olds snce te reducton of te subset AR statstc compared to ts boundng k ) dstrbuton exceeds te decrease of te condtonal dstrbuton of CLR ) gven ~s mn nstead of s mn: Te latter results snce te dervatve of te condtonal dstrbuton of CLR ) gven s mn wt 8

19 respect to s mn exceeds mnus one Hence, usage of te condtonal crtcal values of CLR ) gven ~s mn make te subset LR test conservatve for ts settng Weak dent caton of and strong dent caton of covers te parameter settng for wc Guggenberger et al ) sow tat te subset score statstc from Klebergen ) for testng H s sze dstorted Ts sze dstorton occurs for values of W and X wc are suc tat W X wt X relatvely large so s well dent ed and a small scalar so s weakly dent ed Tese settngs tus do not lead to sze dstorton for te subset LR test wen usng te condtonal crtcal values tat result from CLR ) gven ~s mn: 4 Weak dent caton of and : Bot s mn and s max are small and so s terefore s : Te proof of Teorem 6 n te Appendx sows tat te error of approxmatng te subset LR statstc by CLR ) gven s mn s non-negatve for ts settng Usage of te condtonal crtcal values tat result from CLR ) gven s mn would ten make te subset LR test conservatve Wen we use ~s mn nstead of s mn; te estmaton error g s ten suc tat bot te boundng dstrbutons of d and te subset AR statstc devate from ter k bounds so te estmaton error contans all components of 35) devaton of te boundng dstrbuton of te subset AR statstc from a k ) dstrbuted lower Te twofold e ect of te ) dstrbuton s now dmnsed snce ts contrbuton to te estmator of te condtonng statstc ~s mn s largely o set by te devaton of te boundng dstrbuton of d from a k Hence, v v + ) ; ) ; ) ) + ' ') ) dstrbuton s max + ) + e ; 4) s small Also te oter component of g s typcally small snce and are gly correlated wen bot and are weakly dent ed Ts all mples tat ~s mn s close to s mn so te subset LR test remans conservatve wen we use condtonal crtcal values from CLR ) gven ~s mn nstead of CLR ) gven s mn: Summarzng, we observe no sze dstorton for any of te above settngs wen usng te subset LR test to test H wt condtonal crtcal values from CLR ) gven ~s mn: It s nterestng to note tat wen non-negatve estmaton errors n ~s mn occur, wc result wen s weakly dent ed, te subset LR test usng crtcal values from CLR ) gven s mn s conservatve wc o sets any sze dstortons wc mgt occur because of te larger crtcal values tat result from CLR ) gven ~s mn: 9

20 Spec caton of condtonng statstc s dentcal to te one wt ncluded endogenous varable For te lnear IV regresson model wt one ncluded endogenous varable: y X + " X Z X + V X ; 43) te AR statstc tmes k) for testng H reads AR ) ^ "" ) y X ) P Z y X ); 44) wt ^ "" ) and te known) reduced form covarance matrx, Te LR statstc for testng H euals te AR statstc mnus ts mnmal value over : Y Y XY Y X XX LR ) AR ) mn AR): 45) Ts mnmal value euals te smallest root of te uadratc polynomal: : wt a tr Y X) P Z Y X)) AR ) + s a s [AR ) LM )] LM ) Y X ^ "" ) ) P Z X ~ ) y X ) s ~ X ) Z Z ~ X )^ XX:" ) ~ X ) Z Z) Z X y X ) ^ X" ) ^ "" ) a + a ; 46) Z Z) Z y X) ^ and ^ XX:" ) X" ) XX ^ "" ) ; ^X" ) XY XX : Under H ; te LR statstc as a condtonal dstrbuton gven te realzed value of s wc s dentcal to 3) wt s mn eual to s and a k ) dstrbuted random varable, see Morera 3) Te statstc a n 47) does not depend on : For a gven value of AR ); we can terefore 47)

21 stragtforwardly recover s from a : s tr Y X) P Z Y X)) AR ) smallest caracterstc root of Y X) P Z Y X))+ second smallest caracterstc root of Y X) P Z Y X)) AR ); 48) wc sows tat te spec caton of te condtonng statstc for te condtonal dstrbuton of te condtonal lkelood rato statstc for te lnear IV regresson model wt one ncluded endogenous varable s dentcal to ~s mn n 33) 4 Smulaton experment To sow te adeuacy of usage of condtonal crtcal values tat result from CLR ) gven ~s mn for testng H usng LR ); we conduct a smulaton experment Before we do so, we rst state some nvarance propertes wc allow us to obtan general results by just usng a small number of nusance parameters Teorem 9 Under H ; te subset LR statstc only depends on te su cent statstcs ; ) and ; ) wc are de ned under H and ndependently normal dstrbuted wt means resp zero and Z Z) W X ) V V:" Proof see te Appendx and dentty covarance matrces Teorem 9 sows tat under H ; Z Z) W X ) V V:" s te only parameter of te IV regresson model tat a ects te subset LR statstc Te number of nusance) parameters were te subset LR statstc depends on s terefore eual to km: We furter reduce ts number Teorem Under H ; te dependence of te dstrbuton of te subset LR statstc on te parameters of te lnear IV regresson model s fully captured by te mm + ) parameters of te matrx concentraton parameter: V V:" W X ) Z Z W X ) V V:" R R ; 49) wt R an ortonormal m m matrx and a dagonal m m matrx tat contans te caracterstc roots

22 Proof see te Appendx In our smulaton experment we use two ncluded endogenous varables so m : We also use te spec catons for R and : R cos) sn) sn) ; ; cos) : 5) Wt tese tree parameters: ; and ; we can generate any value of te matrx concentraton parameter and terefore also every dstrbuton of te subset LR statstc In our smulaton experment, we compute te rejecton freuences of testng H usng te subset AR and LR statstcs for a range of values of ; ; and k: Ts range s cosen suc tat: < ; ; ; 5) and we use values of k from two to one undred For every parameter, we use fty d erent values on an eudstant grd and ve tousand smulatons to compute te rejecton freuency Maxmal rejecton freuency over te number of nstruments Fgure sows te maxmal rejecton freuency of testng H at te 95% sgn cance level usng te subset AR and LR statstcs over te d erent values of ; ; ) as a functon of te number of nstruments We use te crtcal value functon for te subset AR statstc and te condtonal crtcal values of CLR ) gven ~s mn for te subset LR statstc Fgure sows tat bot statstcs are sze correct for all numbers of nstruments

23 Rjecton freuency Fgure Maxmal rejecton freuences of subset AR dased) and subset LR sold) statstcs wen testng te 95% sgn cance level for d erent numbers of nstruments Number of nstruments Maxmal rejecton freuences as functon of te caracterstc roots of te matrx concentraton parameter To furter llustrate te sze propertes of te subset AR and LR tests, we compute te maxmal rejecton freuences over as a functon of ; ) for k 5; ; ; 5 and : Tese are sown n Panels -5 All panels are n lne wt Fgure 5 and sow no sze dstorton of eter te subset AR or subset LR tests Te panels sow tat bot tests are conservatve at small values of bot and : 3

24 Rejecton freuency Rejecton freuency Rejecton freuency Rejecton freuency Panel Maxmal rejecton freuency over for d erent values of ; ) for k 5: λ 4 4 λ λ 4 4 λ 6 8 Fgure subset AR statstc Fgure subset LR statstc Panel Maxmal rejecton freuency over for d erent values of ; ) for k : λ 4 4 λ λ 4 4 λ 6 8 Fgure subset AR statstc Fgure subset LR statstc 4

25 Rejecton freuency Rejecton freuency Rejecton freuency Rejecton freuency Panel 3 Maxmal rejecton freuency over for d erent values of ; ) for k : λ 4 4 λ λ 4 4 λ 6 8 Fgure 3: subset AR statstc Fgure 3 subset LR statstc Panel 4 Maxmal rejecton freuency over for d erent values of ; ) for k 5: λ 4 4 λ λ 4 4 λ 6 8 Fgure 4 subset AR statstc Fgure 4 subset LR statstc 5

26 Rejecton freuency Rejecton freuency Panel 5 Maxmal rejecton freuency over for d erent values of ; ) for k : λ 4 4 λ λ 4 4 λ 6 8 Fgure 5 subset AR statstc Fgure 5 subset LR statstc To sow te prevously referred to sze dstorton of te subset score statstc, Panels 6 and 7 sow te rejecton freuency of te subset LM statstc for testng H : Tese gures agan sow te maxmal rejecton freuency over as a functon of ; ): Tey clearly sow te ncreasng sze dstorton wen k gets larger wc occurs for settngs were W X wt X szeable and small so W s small and tangent to X : Te mpled value of s terefore of reduced rank so eter or s eual to zero 6

27 Rejecton freuency Rejecton freuency Rejecton freuency Rejecton freuency Panel 6 Maxmal rejecton freuency over as functon of ; ) for subset LM statstc λ 4 4 λ λ 4 4 λ 6 8 Fgure 6 k Fgure 6 k Panel 7 Maxmal rejecton freuency over as functon of ; ) for subset LM statstc λ 4 4 λ λ 4 4 λ 6 8 Fgure 63 k 5 Fgure 64 k 5 More ncluded endogenous varables Teorems,, 4 and 5 extend to more non-ypoteszed structural parameters, :e: settngs were m W exceeds one Teorem 3 can be generalzed as well to sow te relatonsp be- 7

28 tween te condtonng statstc of te subset AR statstc under H and te sngular values of ; ) ; ) for values of m larger tan two Combnng tese results, Corollary, wc states tat CLR ) gven ^s mn provdes a bound on te condtonal dstrbuton of te subset LR statstc, extends to values of m larger tan two Teorem 6 states te maxmal error of ts bound by runnng troug te d erent settngs of te condtonng statstcs Snce te number of condtonng statstcs s larger, we refran from extendng Teorem 6 to settngs of m larger tan two For te estmator of te condtonng statstc, Teorem 7 s extended n te Appendx to cover te sum of te largest m caracterstc roots of ) wen m exceeds two wle te bound on te subset AR statstc s extended n Lemma n te Appendx Hence, te estmator of te condtonng statstc ~s mn smallest caracterstc root Y X W ) P Z Y X W ))+ second smallest caracterstc root Y X W ) P Z Y X W )) AR ); 5) apples to tests of H : for any number of addtonal ncluded endogenous varable and so does te bound on te condtonal dstrbuton of te subset LR statstc stated n Corollary Range of values of te estmator of te condtonng statstc Te estmator of te condtonng statstc n 5) s a functon of te subset AR statstc Before we determne some propertes of ~s mn; we terefore rst analyze te beavor of te realzed value of te jont AR statstc tat tests H : ; as a functon of ) : Teorem Te realzed value of te jont AR statstc tat tests H : ; wt ) : AR H ) "") y ~ X) P Z y ~ X); s a functon of tat as a mnmum, maxmum and m ) saddle ponts Te values of te AR statstc at tese statonarty ponts are eual to resp te smallest, largest and, f m exceeds one, te second up to m-t root of te caracterstc polynomal ) Proof see te Appendx Teorem mples tat n a lnear IV regresson model wt one ncluded endogenous varable, te AR statstc as one mnmum and one maxmum wle n lnear IV models wt more ncluded endogenous varables, te AR statstc also as m 8 ) saddle ponts Saddle

29 ponts are statonary ponts at wc te Hessan s postve de nte n a number of drectons and negatve de nte n te remanng drectons Te saddle pont wt te lowest value of te jont AR statstc terefore results from maxmzng n one drecton and mnmzng n all oter m ) drectons Te subset AR statstc tat tests H results from mnmzng te jont AR statstc over at : Te maxmal value of te subset AR statstc s terefore smaller tan or eual to te smallest value of te jont AR statstc over te d erent saddle ponts snce t results from constraned optmzaton because of te orderng of te varables were you optmze over) Wen m ; te optmzaton s unconstraned, snce no mnmzaton s nvolved, so te maxmal value of te subset AR statstc s eual to te second smallest caracterstc root wc s n tat case also te largest caracterstc root Corollary 3 Te maxmal value of te subset AR statstc s less tan or eual to te second smallest caracterstc root of ): max AR) second smallest root Y X W ) P Z Y X W )): 53) Corollary 4 Te mnmal value of te condtonng statstc s larger tan or eual to te smallest caracterstc root of ): mn ~s mn smallest root Y X W ) P Z Y X W )): 54) Corollary 4 sows tat te beavor of te condtonng statstc as a functon of for larger values of m s smlar to tat wen m : 6 Testng at dstant values An mportant applcaton of subset tests s to construct con dence sets Con dence sets result from specfyng a grd of values of and computng te subset statstc for eac value of on te grd 6 Te ) % con dence set ten conssts of all values of on te grd for wc te subset test s less tan ts % crtcal value Tese con dence sets sow tat te subset LR statstc tat tests H : at a value of tat s dstant from te true one s dentcal to te subset LR statstc tat tests H : at a value of tat s dstant 6 Te con dence sets tat result from te subset tests can not yet) be constructed usng te e cent procedures developed by Dufour and Taamout 3) for te AR statstc and Mkuseva 7) for te LR statstc snce tese apply to tests on all structural parameters 9

30 from te true one and te same olds true for te subset AR statstc Teorem Wen m x ; Assumpton olds and for tests of H : for values of tat are dstant from te true value: a Te subset AR statstc AR ) euals te smallest egenvalue of XW X W ) P Z X W ) XW ; wt XW XX W X XW W W : b Te subset LR statstc euals LR ) mn mn ; 55) wt mn te smallest egenvalue of XW X W ) P Z X W ) XW and mn te smallest egenvalue of ) c Te condtonng statstc ^s mn euals ^s mn smallest caracterstc root Y X W ) P Z Y X W ))+ second smallest caracterstc root Y X W ) P Z Y X W )) smallest caracterstc root XW X W ) P Z X W )): 56) Proof see te Appendx Teorem sows tat te expressons of te subset AR and LR statstcs at values of tat are dstant from te true value do not depend on : Hence, te same value of te statstcs result wen we use tem to test for a dstant value of any element of : Te weak dent caton of one structural parameter terefore carres over to all te oter structural parameters Hence, wen te power for testng one of te structural parameters s low because of ts weak dent caton, t s low for all oter structural parameters as well Te smallest egenvalue of XW X W ) P Z X W ) XW s dentcal to Anderson s 95) canoncal correlaton reduced rank statstc wc s te lkelood rato statstc under omoscedastc normal dsturbances tat tests te ypotess H r : rank W X ) m w + m x ; see Anderson 95) Tus Teorem sows tat te subset AR statstc s eual to a reduced rank statstc tat tests for a reduced rank value of W X ) at values of tat are dstant from te true one Snce te dent caton condton for and s tat W X ) as a full rank value, te subset AR statstc at dstant values of s dentcal to a test for te dent caton of and : 3

31 7 Weak nstrument settng For ease of exposton, we ave assumed sofar tat te nstruments are pre-determned and u and V are jontly normal dstrbuted wt mean zero and a known value of te reduced form) covarance matrx Our results extend stragtforwardly to d errors, nstruments tat are possbly) random and an unknown covarance matrx : Te analogues of te subset AR and LR statstcs n De nton for an unknown value of are obtaned by replacng n tese expressons by te estmator: ^ N k y X W ) M Z y X W ); 57) wc s a consstent estmator of under te outlned condtons, ^ p : We next specfy te parameter space for te null data generatng processes Assumpton Te parameter space under H s suc tat: f f ; g : ; W ; X ); R mw ; W R kmw ; X R kmx ; F : EjjT jj + ) < M; for T f" ; V ; Z ; Z " ; Z V ; " V g; EZ " ) ; EZ V ) ; EvecZ " V ))vecz" V )) ) E" V ) " V )) EZ Z)) B C A 9 > C A ; >; for some > ; M < ; Q EZ Z ) postve de nte and R m+)m+) postve de nte symmetrc Assumpton s a common parameter space assumpton, see eg ), Andrews and Guggenberger 9) and Guggenberger et al ) 58) Andrews and Ceng To determne te asymptotc sze of te subset LR test, we analyze parameter seuences n wc lead to te spec caton of te model for a sample of N d observatons as y n X n + W n n + " n X n Z n X;n + V X;n W n Z n W;n + V W;n ; 59) wt y n : n ; X n : n m x ; W n : n m w ; Z n : n k; " n : n ; V X;n : n m x ; V W;n : n m w ; 3

32 : m x ; n : m w ; X;n : k m x ; W;n : k m w : Te rows of " n V X;n V W;n Z n ) are d dstrbuted wt dstrbuton F n : Te mean of te rows of " n V X;n V W;n Z n ) euals zero and ter covarance matrx s n "";n V ";n "V;n V V;n : 6) Tese seuences are assumed to allow for a sngular value decomposton, see e:g: Golub and Van Loan 989), of te normalzed reduced form parameter matrx Assumpton Te sngular value decomposton of n) Z nz n ) W;n X;n ) V V:";n tat results from a seuence n n ; W;n ; X;n ; F n ) of null data generatng processes n as a sngular value decomposton: n) Z nz n ) W;n X;n ) V V:";n H nt n R n R km ; 6) were H n and R n are k k and m m dmensonal ortonormal matrces and T n a k n rectangular matrx wt te m sngular values n decreasng order) on te man dagonal, wt a well de ned lmt Teorem 3 states tat te subset LR test s sze correct for weak nstrument settngs Teorem 3 Under Assumptons and, te asymptotc sze of te subset LR test of H wt sgn cance level : AsySz LR, lm sup n sup Pr LRn ) > CLR js mn ~s mn;n) ; 6) were LR n ) s te subset LR statstc for a sample of sze n and CLR js mn ~s mn) s te ) % uantle of te condtonal dstrbuton of CLR ) gven tat s mn ~s mn; s eual to for < < : Proof see te Appendx Eualty of te rejecton freuency of te subset LR test and te sgn cance level occurs wen s well dent ed Wen becomes less well dent ed, te subset LR test, dentcal to te subset AR test, becomes conservatve 3

33 8 Conclusons Inference usng te LR statstc to test a ypotess on one structural parameter n te omoscedastc lnear IV regresson model extends stragtforwardly from one ncluded endogenous varable to several Te rst and foremost extenson s tat of te condtonal crtcal value functon Te condtonal crtcal value functon of te LR statstc n te lnear IV regresson model wt one ncluded endogenous varable from Morera 3) extends wt te usual degrees of freedom adjustments of te nvolved dstrbuted random varables to te subset LR statstc tat tests a ypotess on te structural parameter of one of several ncluded endogenous varables n a lnear IV regresson model wt multple ncluded endogenous varables Te expresson of te condtonng statstc nvolved n te condtonal crtcal value functon also remans unaltered Ts spec caton of te condtonal crtcal value functon and ts condtonng statstc makes te LR statstc for testng ypoteses on one structural parameter sze correct A second mportant property of te condtonal crtcal value functon s optmalty of te resultng subset LR test under strong dent caton of all untested structural parameters Wen all untested structural parameters are well dent ed, te subset LR test becomes dentcal to te LR test n te lnear IV regresson model wt one ncluded endogenous varable for wc Andrews et al 6) sow tat te LR test s optmal under weak and strong dent caton of te ypoteszed structural parameter Establsng optmalty wle allowng for any knd of dent caton strengt for te untested parameters s complcated snce te usual optmalty crtera are often no longer sensble In Guggenberger et al 7), condtonal crtcal values for te subset AR statstc are constructed wc make t nearly optmal under weak nstruments for te untested structural parameters but not so under strong nstruments 33

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up Not-for-Publcaton Aendx to Otmal Asymtotc Least Aquares Estmaton n a Sngular Set-u Antono Dez de los Ros Bank of Canada dezbankofcanada.ca December 214 A Proof of Proostons A.1 Proof of Prooston 1 Ts roof

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling Open Journal of Statstcs, 0,, 300-304 ttp://dx.do.org/0.436/ojs.0.3036 Publsed Onlne July 0 (ttp://www.scrp.org/journal/ojs) Multvarate Rato Estmator of te Populaton Total under Stratfed Random Samplng

More information

x i1 =1 for all i (the constant ).

x i1 =1 for all i (the constant ). Chapter 5 The Multple Regresson Model Consder an economc model where the dependent varable s a functon of K explanatory varables. The economc model has the form: y = f ( x,x,..., ) xk Approxmate ths by

More information

Testing for Granger Non-causality in Heterogeneous Panels

Testing for Granger Non-causality in Heterogeneous Panels Testng for Granger on-causalty n Heterogeneous Panels Chrstophe Hurln y June 27 Abstract Ths paper proposes a very smple test of Granger (1969) non-causalty for heterogeneous panel data models. Our test

More information

Systems of Equations (SUR, GMM, and 3SLS)

Systems of Equations (SUR, GMM, and 3SLS) Lecture otes on Advanced Econometrcs Takash Yamano Fall Semester 4 Lecture 4: Sstems of Equatons (SUR, MM, and 3SLS) Seemngl Unrelated Regresson (SUR) Model Consder a set of lnear equatons: $ + ɛ $ + ɛ

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL TR/9 February 980 End Condtons for Interpolatory Quntc Splnes by G. H. BEHFOROOZ* & N. PAPAMICHAEL *Present address: Dept of Matematcs Unversty of Tabrz Tabrz Iran. W9609 A B S T R A C T Accurate end condtons

More information

PubH 7405: REGRESSION ANALYSIS. SLR: INFERENCES, Part II

PubH 7405: REGRESSION ANALYSIS. SLR: INFERENCES, Part II PubH 7405: REGRESSION ANALSIS SLR: INFERENCES, Part II We cover te topc of nference n two sessons; te frst sesson focused on nferences concernng te slope and te ntercept; ts s a contnuaton on estmatng

More information

Discussion of Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests by F. X.

Discussion of Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests by F. X. Dscusson of Comparng Predctve Accuracy, Twenty Years Later: A Personal Perspectve on te Use and Abuse of Debold-Marano Tests by F. X. Debold Dscusson by Andrew J. Patton Duke Unversty 21 Aprl 2014 1 Introducton

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

ESTIMATING A CLASS OF TRIANGULAR SIMULTANEOUS EQUATIONS MODELS WITHOUT EXCLUSION RESTRICTIONS

ESTIMATING A CLASS OF TRIANGULAR SIMULTANEOUS EQUATIONS MODELS WITHOUT EXCLUSION RESTRICTIONS ESTIMATING A CLASS OF TRIANGULAR SIMULTANEOUS EQUATIONS MODELS WITHOUT EXCLUSION RESTRICTIONS Roger Klen Francs Vella THE INSTITUTE FOR FISCAL STUDIES DEPARTMENT OF ECONOMICS, UCL cemmap workng paper CWP08/05

More information

Y = X + " E [X 0 "] = 0 K E ["" 0 ] = = 2 I N : 2. So, you get an estimated parameter vector ^ OLS = (X 0 X) 1 X 0 Y:

Y = X +  E [X 0 ] = 0 K E [ 0 ] = = 2 I N : 2. So, you get an estimated parameter vector ^ OLS = (X 0 X) 1 X 0 Y: 1 Ecent OLS 1. Consder te model Y = X + " E [X 0 "] = 0 K E ["" 0 ] = = 2 I N : Ts s OLS appyland! OLS s BLUE ere. 2. So, you get an estmated parameter vector ^ OLS = (X 0 X) 1 X 0 Y: 3. You know tat t

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Testing for seasonal unit roots in heterogeneous panels

Testing for seasonal unit roots in heterogeneous panels Testng for seasonal unt roots n heterogeneous panels Jesus Otero * Facultad de Economía Unversdad del Rosaro, Colomba Jeremy Smth Department of Economcs Unversty of arwck Monca Gulett Aston Busness School

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Optimal Bandwidth Choice for Interval Estimation in GMM Regression

Optimal Bandwidth Choice for Interval Estimation in GMM Regression Optmal Bandwdt Coce for Interval Estmaton n G Regresson Yxao Sun Department of Economcs Unversty of Calforna, San Dego Peter C. B. Pllps Cowles Foundaton, Yale Unversty, Unversty of Auckland & Unversty

More information

Computing MLE Bias Empirically

Computing MLE Bias Empirically Computng MLE Bas Emprcally Kar Wa Lm Australan atonal Unversty January 3, 27 Abstract Ths note studes the bas arses from the MLE estmate of the rate parameter and the mean parameter of an exponental dstrbuton.

More information

5 The Laplace Equation in a convex polygon

5 The Laplace Equation in a convex polygon 5 Te Laplace Equaton n a convex polygon Te most mportant ellptc PDEs are te Laplace, te modfed Helmoltz and te Helmoltz equatons. Te Laplace equaton s u xx + u yy =. (5.) Te real and magnary parts of an

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Multigrid Methods and Applications in CFD

Multigrid Methods and Applications in CFD Multgrd Metods and Applcatons n CFD Mcael Wurst 0 May 009 Contents Introducton Typcal desgn of CFD solvers 3 Basc metods and ter propertes for solvng lnear systems of equatons 4 Geometrc Multgrd 3 5 Algebrac

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Explaining the Stein Paradox

Explaining the Stein Paradox Explanng the Sten Paradox Kwong Hu Yung 1999/06/10 Abstract Ths report offers several ratonale for the Sten paradox. Sectons 1 and defnes the multvarate normal mean estmaton problem and ntroduces Sten

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fall 0 Analyss of Expermental easurements B. Esensten/rev. S. Errede We now reformulate the lnear Least Squares ethod n more general terms, sutable for (eventually extendng to the non-lnear case, and also

More information

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications

Durban Watson for Testing the Lack-of-Fit of Polynomial Regression Models without Replications Durban Watson for Testng the Lack-of-Ft of Polynomal Regresson Models wthout Replcatons Ruba A. Alyaf, Maha A. Omar, Abdullah A. Al-Shha ralyaf@ksu.edu.sa, maomar@ksu.edu.sa, aalshha@ksu.edu.sa Department

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Factor models with many assets: strong factors, weak factors, and the two-pass procedure

Factor models with many assets: strong factors, weak factors, and the two-pass procedure Factor models wth many assets: strong factors, weak factors, and the two-pass procedure Stanslav Anatolyev 1 Anna Mkusheva 2 1 CERGE-EI and NES 2 MIT December 2017 Stanslav Anatolyev and Anna Mkusheva

More information

Lecture 4: September 12

Lecture 4: September 12 36-755: Advanced Statstcal Theory Fall 016 Lecture 4: September 1 Lecturer: Alessandro Rnaldo Scrbe: Xao Hu Ta Note: LaTeX template courtesy of UC Berkeley EECS dept. Dsclamer: These notes have not been

More information

Statistics II Final Exam 26/6/18

Statistics II Final Exam 26/6/18 Statstcs II Fnal Exam 26/6/18 Academc Year 2017/18 Solutons Exam duraton: 2 h 30 mn 1. (3 ponts) A town hall s conductng a study to determne the amount of leftover food produced by the restaurants n the

More information

Chapter 12 Analysis of Covariance

Chapter 12 Analysis of Covariance Chapter Analyss of Covarance Any scentfc experment s performed to know somethng that s unknown about a group of treatments and to test certan hypothess about the correspondng treatment effect When varablty

More information

COMP4630: λ-calculus

COMP4630: λ-calculus COMP4630: λ-calculus 4. Standardsaton Mcael Norrs Mcael.Norrs@ncta.com.au Canberra Researc Lab., NICTA Semester 2, 2015 Last Tme Confluence Te property tat dvergent evaluatons can rejon one anoter Proof

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

The Finite Element Method: A Short Introduction

The Finite Element Method: A Short Introduction Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Professor Chris Murray. Midterm Exam

Professor Chris Murray. Midterm Exam Econ 7 Econometrcs Sprng 4 Professor Chrs Murray McElhnney D cjmurray@uh.edu Mdterm Exam Wrte your answers on one sde of the blank whte paper that I have gven you.. Do not wrte your answers on ths exam.

More information

Panel cointegration rank test with cross-section dependence

Panel cointegration rank test with cross-section dependence Panel contegraton rank test wth cross-secton dependence Josep Lluís Carron--Slvestre Laura Surdeanu y AQR-IREA Research Group Department of Econometrcs, Statstcs and Spansh Economy Unversty of Barcelona

More information

Short T Dynamic Panel Data Models with Individual and Interactive Time E ects

Short T Dynamic Panel Data Models with Individual and Interactive Time E ects Short T Dynamc Panel Data Models wth Indvdual and Interactve Tme E ects Kazuhko Hayakawa Hroshma Unversty M. Hashem Pesaran Unversty of Southern Calforna, USA, and Trnty College, Cambrdge L. Vanessa Smth

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD e Karus-Kun-ucker condtons and dualt Nuno Vasconcelos ECE Department, UCSD Optmzaton goal: nd mamum or mnmum o a uncton Denton: gven unctons, g, 1,...,k and, 1,...m dened on some doman Ω R n mn w, w Ω

More information

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting

Online Appendix to: Axiomatization and measurement of Quasi-hyperbolic Discounting Onlne Appendx to: Axomatzaton and measurement of Quas-hyperbolc Dscountng José Lus Montel Olea Tomasz Strzaleck 1 Sample Selecton As dscussed before our ntal sample conssts of two groups of subjects. Group

More information

Properties of Least Squares

Properties of Least Squares Week 3 3.1 Smple Lnear Regresson Model 3. Propertes of Least Squares Estmators Y Y β 1 + β X + u weekly famly expendtures X weekly famly ncome For a gven level of x, the expected level of food expendtures

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Structural Breaks and Unit Root Tests for Short. Panels

Structural Breaks and Unit Root Tests for Short. Panels Structural Breaks and Unt Root Tests for Short Panels Elas Tzavals* Department of Economcs Athens Unversty of Economcs & Busness Athens 104 34, Greece (emal: E.Tzavals@aueb.gr) Ths verson December 008

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

Direct Methods for Solving Macromolecular Structures Ed. by S. Fortier Kluwer Academic Publishes, The Netherlands, 1998, pp

Direct Methods for Solving Macromolecular Structures Ed. by S. Fortier Kluwer Academic Publishes, The Netherlands, 1998, pp Drect Metods for Solvng Macromolecular Structures Ed. by S. Forter Kluwer Academc Publses, Te Neterlands, 998, pp. 79-85. SAYRE EQUATION, TANGENT FORMULA AND SAYTAN FAN HAI-FU Insttute of Pyscs, Cnese

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

Chapter 5 Multilevel Models

Chapter 5 Multilevel Models Chapter 5 Multlevel Models 5.1 Cross-sectonal multlevel models 5.1.1 Two-level models 5.1.2 Multple level models 5.1.3 Multple level modelng n other felds 5.2 Longtudnal multlevel models 5.2.1 Two-level

More information

A Comparative Study for Estimation Parameters in Panel Data Model

A Comparative Study for Estimation Parameters in Panel Data Model A Comparatve Study for Estmaton Parameters n Panel Data Model Ahmed H. Youssef and Mohamed R. Abonazel hs paper examnes the panel data models when the regresson coeffcents are fxed random and mxed and

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

A Monte Carlo Study for Swamy s Estimate of Random Coefficient Panel Data Model

A Monte Carlo Study for Swamy s Estimate of Random Coefficient Panel Data Model A Monte Carlo Study for Swamy s Estmate of Random Coeffcent Panel Data Model Aman Mousa, Ahmed H. Youssef and Mohamed R. Abonazel Department of Appled Statstcs and Econometrcs, Instute of Statstcal Studes

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Parameter estimation class 5

Parameter estimation class 5 Parameter estmaton class 5 Multple Ve Geometr Comp 9-89 Marc Pollefes Content Background: Projectve geometr (D, 3D), Parameter estmaton, Algortm evaluaton. Sngle Ve: Camera model, Calbraton, Sngle Ve Geometr.

More information

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction ECONOMICS 35* -- NOTE 7 ECON 35* -- NOTE 7 Interval Estmaton n the Classcal Normal Lnear Regresson Model Ths note outlnes the basc elements of nterval estmaton n the Classcal Normal Lnear Regresson Model

More information

Competitive Experimentation and Private Information

Competitive Experimentation and Private Information Compettve Expermentaton an Prvate Informaton Guseppe Moscarn an Francesco Squntan Omtte Analyss not Submtte for Publcaton Dervatons for te Gamma-Exponental Moel Dervaton of expecte azar rates. By Bayes

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

β0 + β1xi. You are interested in estimating the unknown parameters β

β0 + β1xi. You are interested in estimating the unknown parameters β Ordnary Least Squares (OLS): Smple Lnear Regresson (SLR) Analytcs The SLR Setup Sample Statstcs Ordnary Least Squares (OLS): FOCs and SOCs Back to OLS and Sample Statstcs Predctons (and Resduals) wth OLS

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek Dscusson of Extensons of the Gauss-arkov Theorem to the Case of Stochastc Regresson Coeffcents Ed Stanek Introducton Pfeffermann (984 dscusses extensons to the Gauss-arkov Theorem n settngs where regresson

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Lecture 20: Hypothesis testing

Lecture 20: Hypothesis testing Lecture : Hpothess testng Much of statstcs nvolves hpothess testng compare a new nterestng hpothess, H (the Alternatve hpothess to the borng, old, well-known case, H (the Null Hpothess or, decde whether

More information