Schrödinger Equation in Born-Oppenheimer Approximation (1)

Size: px
Start display at page:

Download "Schrödinger Equation in Born-Oppenheimer Approximation (1)"

Transcription

1 Schrödinger Equation in Born-Oppenheimer Approximation (1) Time-independent Schrödinger equation: Solution: Wave-function: (where x=(r,s)) Energy: E 2

2 Schrödinger Equation in Born-Oppenheimer Approximation (2) Knowledge of the wavefunction Ψ(x 1,x 2,..,x N ) is sufficient to obtain all observable quantities, electron density ρ(r) in particular: ρ(r)= dx 1 dx 2..dx N i N δ(r-r i ) Ψ(x 1,x 2,..,x N ) 2 3

3 Schrödinger Equation in Born-Oppenheimer Approximation (3) Variational principle: E 0 =min Ψ N H Ψ N Ψ N where, E 0 is ground-state energy and Ψ N is a trial N-electron wavefunction Variational principle, is the basis for a large group of methods to obtain an approximate solution of Schrödinger equation (HF, MCSCF, CI, for instance). 3

4 Constrained minimisation of E HK [ρ] for a given ρ B E emb [ρ B ] = min ρdr=n,ρ ρb E HK [ρ] or E emb [ρ B ] = min ρ Adr=NA EHK [ρ A + ρ B ] ρ A ρ B ρ electron density electron density total electron of the QM subsystem of the environment density (can be macroscopic!) (can be macroscopic!) 4

5 Definitions of density functionals through constrained search The minimiser (Ψo) is used to define the following density functionals By a functional, we mean a correspondence which assigns a definite (real) number to each function (or a curve) belonging to some class. [I.M. Gelfand and S.V. Fomin, "Calculus of Variations" Prentice-Hall, Inc. 1963, page 1] 5

6 The non-additive bi-functionals: For a given functional F[ρ], the corresponding non-additive bi-functional is: F nad [ρ A,ρ B ] = F[ρ A +ρ B ]- F[ρ A ] F[ρ B ] A given functional F[ρ] is additive if: F nad [ρ A,ρ B ] = F[ρ A +ρ B ]- F[ρ A ] Fρ B ] =0. Additive functionals: N[ρ], V ext [ρ] Non-additive functionals: J[ρ],T[ρ], E ex [ρ], T s [ρ], E HK [ρ] 6

7 Embedding potentials for variational QC methods Q1: Can conventional methods of Quantum Chemistry be modified by adding some local potential (embedding potential) to perform the constrained minimisation E emb = min ρdr=n,ρ ρb E HK [ρ]? Q2: Can such local potential be obtained as universal functional of ρ A and ρ B? [H 0 + V emb (r)]ψ emb = E emb Ψ emb 7

8 Embedding potentials for variational QC methods Q1: Can conventional methods of Quantum Chemistry be modified by adding some local potential (embedding potential) to perform the constrained minimisation E emb = min ρdr=n,ρ ρb E HK [ρ]? Q2: Can such local potential be obtained as universal functional of ρ A and ρ B? Answers: [H 0 + V emb (r)]ψ emb = E emb Ψ emb α) Φ s emb embedded non-interacting wavefunction (Kohn-Sham system) [Wesolowski & Warshel, J. Phys. Chem. 97 (1993) 8050] Φ s emb, Ψ emb, or Γ emb Auxiliary quantities used to access: β) Ψ s emb embedded interacting wavefunction [Wesolowski, Phys. Rev.A. 77 (2008) ] γ) Γ s emb embedded one-matrix [Pernal & Wesolowski, Intl. J. Quant. Chem.109 (2009) 2520] - the total energy (- energy of the frozen part) - properties directly related to the electronic structure 8

9 Embedding potentials for variational QC methods Embedding potential for methods such as HF, MCSF, CI (embedded «interacting wavefunction») [Wesolowski, Phys. Rev.A. 77 (2008) ] Embedding potential for a non-interacting reference system [Wesolowski & Warshel, J. Phys. Chem. 1993, 97, 8050] or for «one-matrix» [Pernal & Wesolowski, Intl. J. Quant. Chem.109 (2009)2520] 9

10 Embedding potentials for variational QC methods Embedding potential for methods such as HF, MCSF, CI (embedded «interacting wavefunction») PHYSICAL REVIEW A 77, Embedding a multideterminantal wave function in an orbital-free environment Tomasz A. Wesołowski Département de Chimie Physique, 30 quai Ernest-Ansermet, Université de Genève, CH-1211 Genève 4, Switzerland Received 3 October 2006; revised manuscript received 15 October 2007; published 11 January 2008 Variational methods to treat a many-electron system embedded in the environment, which is represented by means of only its electron density, are considered. It is shown that the embedding operator is a local potential in the case where the electron-electron repulsion is treated exactly and the trial embedded wave function takes the multideterminantal form with a fixed number of determinants. The local embedding potential is constructed by imposing that it leads to the same electron density as the one which minimizes the Hohenberg-Kohn functional. For the limiting cases of single-determinant and configuration interaction forms of the embedded wave function, the expressions for the local embedding potential using commonly known density functionals are given. The relation between the derived local embedding potential and the effective embedding potential in the case of the embedded Kohn-Sham system T. A. Wesołowski and A. Warshel, J. Phys. Chem. 97, is discussed in detail. Note that we take a particular perspective on the relation between the wave-function-based methods and densityfunctional theory. A multideterminantal wave function is considered in this work as an auxiliary quantity used to obtain the approximate solution of Eq. 1 and the corresponding electron density by means of variational calculations, whereas the relevant density functionals are considered to be exact in the derivation of the basic relation. functionals are considered only in the discussion 10

11 Embedded interacting electrons (1) construction of the embedding operator V emb!! " A WF (r) 11

12 Embedded interacting electrons (2) construction of the embedding operator V emb We are looking for a local potential V emb (r), such that E HK [! A WF [V emb ] +! B ] = min"! A dr=n A E HK [! A +! B ] for some arbitrarily chosen! B! 1) The definition of the functional # EWF [$ A,! B ]!! where $ A is of the multi-determinant form ($ A MD ).! 2) showing that 3)!extracting the form of V emb from the condition:! A MD =! WF [V emb ]! 12

13 Embedded interacting electrons (3) construction of the embedding operator V emb Depending on the number of determinants (MD) the following relation holds: where 13

14 Embedded interacting electrons (4) construction of the embedding operator V emb Only the first term depends explicitly on! A MD.! For! AO MD obtained from Euler-Lagrange equations, the sum of the first and the last term is equal to F HK [" A ]=T s [" A ]+J[" A ]+E xc [" A ].! Therefore: # EWF [! A0 MD," B ]= F HK [" A +" B ]+$v ext AB (r)(" A +" B )dr= E HK [" A +" B ]! 14

15 15

16 Embedded interacting electrons (6) construction of the embedding operator V emb Euler-Lagrange equations to minimize 16

17 Embedded interacting electrons (7)! Euler-Lagrange equations to minimize 17

18 18

19 Numerical examples for the embedded Hartree-Fock case: F. Aquilante & TAW, J. Chem. Phys., 135 (2011)

20 Embedding an «interacting wavefunction» The embedding operator is a local potential V emb (r) For a given external potential V emb (r) is a bi-functional of ρ A and ρ B (it is orbital-free therefore). The embedded wavefunction is an auxiliary quantity. Its relation to the exact wavefunction for the whole wavefunction is not direct. Depending on the form of the embedded wavefunction, the functional dependence of the potential V emb (r) on ρ A and ρ B might be different. V emb (r) and the potential V eff emb(ks) [ρ A,ρ B,r] for embedding a noninteracting system (Wesolowski-Warshel, 1993) are closely related. They are equal if the embedded wavefunction has the full CI form. The difference is bound from below by (-E c [ρ]) and from above (it is nonpositive). 20

21 Variation formulations of quantum many-body problem (SE in BO approximation) E o in N- electron system as a func3onal of: Search for the minimum among: What is approximated Difficulty in prac3ce E[Ψ] Ψ : wavefunc1ons nothing large space to search E[Γ 12 ] E[γ] E[{φ i }] Γ 12 : two- body reduced density matrices γ one- body density matrices {φ i } i=1,n one- electron orbitals nothing representability of Γ 12 E xc [γ] E xc [ρ] representability of γ AND approxima1on for the func1onal E xc [γ] approxima1ng the func1onal E xc [ρ] E[ρ] ρ: Electron density E xc [ρ] AND T s [ρ] approxima1ng the func1onals (especially T s [ρ]!) 1

22 Variation formulations of quantum many-body problem (SE in BO approximation) E o in N- electron system as a func3onal of: Search for the minimum among: What is approximated Difficulty in prac3ce E[Ψ] Ψ : wavefunc1ons nothing large space to search E[Γ 12 ] E[γ] E[{φ i }] Γ 12 : two- body reduced density matrices γ one- body density matrices {φ i } i=1,n one- electron orbitals nothing representability of Γ 12 E xc [γ] E xc [ρ] representability of γ AND approxima1on for the func1onal E xc [γ] approxima1ng the func1onal E xc [ρ] E[{φ i } A,ρ B ] {φ i } A i=1,n A and ρ B (only {φ i } A in embedding case) E xc [ρ A ], E xc nad [ρ A,ρ B ], T s nad [ρ A,ρ B ] approxima1ng the func1onals and bi- func1onals (in embedding case: admissibility of ρ B ) E[ρ] ρ: Electron density E xc [ρ] AND T s [ρ] approxima1ng the func1onals 1

Multi-level Simulation Methods using the Density- Functional-Theory Derived Embedding Potential

Multi-level Simulation Methods using the Density- Functional-Theory Derived Embedding Potential DFT2013, Sept. 9-13, Durham, UK Multi-level Simulation Methods using the Density- Functional-Theory Derived Embedding Potential Tomasz A. Wesolowski Département de Chimie Physique Introduction: Outline

More information

Unexpected and expected features of the Lembarki-Chermette ap. functional for the kinetic energy T s [ρ]

Unexpected and expected features of the Lembarki-Chermette ap. functional for the kinetic energy T s [ρ] Unexpected and expected features of the Lembarki-Chermette approximation to the density functional for the kinetic energy T s [ρ] Tomasz A. Wesolowski, Université de Genève, Switzerland www.unige.ch/sciences/chifi/wesolowski/

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Density functional theory with approximate kinetic energy functionals applied to hydrogen bonds

Density functional theory with approximate kinetic energy functionals applied to hydrogen bonds Density functional theory with approximate kinetic energy functionals applied to hydrogen bonds Tomasz Adam Wesolowski Université de Genève, Département de Chimie Physique, 30, quai Ernest-Ansermet, CH-1211

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

To Freeze or Not to Freeze: playing with electron density

To Freeze or Not to Freeze: playing with electron density To Freeze or Not to Freeze: playing with electron density T.A. Wesolowski, University of Geneva, Switzerland One-electron equations for embedded orbitals basic concepts, challenges for theory, possible

More information

Orbital-Free Embedding Effective Potential in Analytically Solvable Cases

Orbital-Free Embedding Effective Potential in Analytically Solvable Cases Orbital-Free Embedding Effective Potential in Analytically Solvable Cases Andreas Savin and Tomasz A. Wesolowski Abstract The effective embedding potential introduced by Wesolowski and Warshel [J. Phys.

More information

9182 J. Chem. Phys. 105 (20), 22 November /96/105(20)/9182/9/$ American Institute of Physics

9182 J. Chem. Phys. 105 (20), 22 November /96/105(20)/9182/9/$ American Institute of Physics Accuracy of approximate kinetic energy functionals in the model of Kohn Sham equations with constrained electron density: The FH NCH complex as a test case Tomasz Adam Wesolowski, Henry Chermette, a) and

More information

Equilibrium Geometries of Noncovalently Bound Intermolecular Complexes Derived from Subsystem Formulation of Density Functional Theory

Equilibrium Geometries of Noncovalently Bound Intermolecular Complexes Derived from Subsystem Formulation of Density Functional Theory J. Chem. Theory Comput. 2007, 3, 735-745 735 Equilibrium Geometries of Noncovalently Bound Intermolecular Complexes Derived from Subsystem Formulation of Density Functional Theory Marcin Dułak, Jakub W.

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 5 CHEM6085: Density Functional Theory Orbital-free (or pure ) DFT C.-K. Skylaris 1 Consists of three terms The electronic Hamiltonian operator Electronic kinetic energy operator Electron-Electron

More information

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University Advanced Quantum Chemistry III: Part 3 Haruyuki Nakano Kyushu University 2013 Winter Term 1. Hartree-Fock theory Density Functional Theory 2. Hohenberg-Kohn theorem 3. Kohn-Sham method 4. Exchange-correlation

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique Introduction to DFT and Density Functionals by Michel Côté Université de Montréal Département de physique Eamples Carbazole molecule Inside of diamant Réf: Jean-François Brière http://www.phys.umontreal.ca/~michel_

More information

Notes on Density Functional Theory

Notes on Density Functional Theory Notes on Density Functional Theory Rocco Martinazzo E-mail: rocco.martinazzo@unimi.it Contents 1 Introduction 1 Density Functional Theory 7 3 The Kohn-Sham approach 11 1 Introduction We consider here a

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Key concepts in Density Functional Theory

Key concepts in Density Functional Theory From the many body problem to the Kohn-Sham scheme ILM (LPMCN) CNRS, Université Lyon 1 - France European Theoretical Spectroscopy Facility (ETSF) December 12, 2012 Lyon Outline 1 The many-body problem

More information

Density matrix functional theory vis-á-vis density functional theory

Density matrix functional theory vis-á-vis density functional theory Density matrix functional theory vis-á-vis density functional theory 16.4.007 Ryan Requist Oleg Pankratov 1 Introduction Recently, there has been renewed interest in density matrix functional theory (DMFT)

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » To calculate all the properties of a molecule or crystalline system knowing its atomic information: Atomic species Their coordinates The Symmetry

More information

Study of the physisorption of CO on the MgO(100) surface using the approach of Kohn-Sham equations with constrained electron density 1

Study of the physisorption of CO on the MgO(100) surface using the approach of Kohn-Sham equations with constrained electron density 1 Journal of Molecular Structure (Theochem) 458 (1999) 151 160 Study of the physisorption of CO on the MgO(100) surface using the approach of Kohn-Sham equations with constrained electron density 1 Tomasz

More information

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor 2145-25 Spring College on Computational Nanoscience 17-28 May 2010 Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor Stefano BARONI SISSA & CNR-IOM DEMOCRITOS Simulation Center

More information

Quantum Chemical Embedding Methods Lecture 3

Quantum Chemical Embedding Methods Lecture 3 Quantum Chemical Embedding Methods Lecture 3 Johannes Neugebauer Workshop on Theoretical Chemistry, Mariapfarr, 20 23.02.208 Structure of This Lecture Lecture : Subsystems in Quantum Chemistry subsystems

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

3: Density Functional Theory

3: Density Functional Theory The Nuts and Bolts of First-Principles Simulation 3: Density Functional Theory CASTEP Developers Group with support from the ESF ψ k Network Density functional theory Mike Gillan, University College London

More information

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield Handbook of Computational Quantum Chemistry DAVID B. COOK The Department of Chemistry, University of Sheffield Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1998 CONTENTS 1 Mechanics and molecules 1 1.1

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012 2327-3 Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data 23-27 January 2012 Qunatum Methods for Plasma-Facing Materials Alain ALLOUCHE Univ.de Provence, Lab.de la Phys.

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

Density Functional Theory - II part

Density Functional Theory - II part Density Functional Theory - II part antonino.polimeno@unipd.it Overview From theory to practice Implementation Functionals Local functionals Gradient Others From theory to practice From now on, if not

More information

Direct Minimization in Density Functional Theory

Direct Minimization in Density Functional Theory Direct Minimization in Density Functional Theory FOCM Hongkong 2008 Partners joint paper with: J. Blauert, T. Rohwedder (TU Berlin), A. Neelov (U Basel) joint EU NEST project BigDFT together with Dr. Thierry

More information

7.1 Variational Principle

7.1 Variational Principle 7.1 Variational Principle Suppose that you want to determine the ground-state energy E g for a system described by H, but you are unable to solve the time-independent Schrödinger equation. It is possible

More information

The art of solving approximately the Schrödinger equation for chemistry, biochemistry, and materials science

The art of solving approximately the Schrödinger equation for chemistry, biochemistry, and materials science T.A. Wesolowski, SCG lecture, Sept. 30, 2013, Genève The art of solving approximately the Schrödinger equation for chemistry, biochemistry, and materials science Introduction: Why Art in the title? computer

More information

Representation of operators in MADNESS (Multiresolution ADaptive Numerical Environment for Scientific Simulation)

Representation of operators in MADNESS (Multiresolution ADaptive Numerical Environment for Scientific Simulation) Representation of operators in MADNESS (Multiresolution ADaptive Numerical Environment for Scientific Simulation) Gregory Beylkin University of Colorado at Boulder IPAM: Big Data Meets Computation workshop

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT Some generalities on functional theories LECTURE

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

Independent electrons in an effective potential

Independent electrons in an effective potential ABC of DFT Adiabatic approximation Independent electrons in an effective potential Hartree Fock Density Functional Theory MBPT - GW Density Functional Theory in a nutshell Every observable quantity of

More information

Density functional theory with an approximate kinetic energy functional applied to study structure and stability of weak van der Waals complexes

Density functional theory with an approximate kinetic energy functional applied to study structure and stability of weak van der Waals complexes JOURNAL OF CHEMICAL PHYSICS VOLUME 108, NUMBER 15 15 APRIL 1998 Density functional theory with an approximate kinetic energy functional applied to study structure and stability of weak van der Waals complexes

More information

Academic Editors: Karlheinz Schwarz and Agnes Nagy Received: 22 June 2016; Accepted: 10 August 2016; Published: 16 August 2016

Academic Editors: Karlheinz Schwarz and Agnes Nagy Received: 22 June 2016; Accepted: 10 August 2016; Published: 16 August 2016 computation Article Electron Correlations in Local Effective Potential Theory Viraht Sahni 1, *, Xiao-Yin Pan 2 and Tao Yang 2 1 The Graduate School of the City University of New York, New York, NY 10016,

More information

1 Density functional theory (DFT)

1 Density functional theory (DFT) 1 Density functional theory (DFT) 1.1 Introduction Density functional theory is an alternative to ab initio methods for solving the nonrelativistic, time-independent Schrödinger equation H Φ = E Φ. The

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information

Electronic Structure Calculations and Density Functional Theory

Electronic Structure Calculations and Density Functional Theory Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier Pôle de chimie théorique Département de chimie de l ENS CNRS Ecole normale supérieure UPMC Formation ModPhyChem Lyon,

More information

Spin in Density-Functional Theory

Spin in Density-Functional Theory Spin in Density-Functional Theory Christoph R. Jacob 1 and Markus Reiher 2 1 Karlsruhe Institute of Technology (KIT), Center for Functional Nanostructures and Institute of Physical Chemistry, Wolfgang-Gaede-Straße

More information

N-Representability in the Quantum Kernel Energy Method

N-Representability in the Quantum Kernel Energy Method City University of New York (CUNY) CUNY Academic Works Dissertations, Theses, and Capstone Projects Graduate Center 5-2018 N-Representability in the Quantum Kernel Energy Method Walter Polkosnik The Graduate

More information

Al 2 O 3. Al Barrier Layer. Pores

Al 2 O 3. Al Barrier Layer. Pores Overview of DFT Calculations for Nanoscience and Nanotechnology Oğuz Gülseren Al 2 O 3 Al Barrier Layer Pores Jules Verne A Trip to the Moon, 1865 Nanostructures: a. Contain a countable number of atoms

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz November 29, 2010 The self interaction error and its correction Perdew-Zunger SIC Average-density approximation Weighted density approximation

More information

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig Electron Density Matrices Density matrices Γ, an alternative to the wavefunction Ψ, for the description of a quantum system Electronic Structure The N-particle density matrix Electrons in Momentum Space

More information

Set the initial conditions r i. Update neighborlist. Get new forces F i

Set the initial conditions r i. Update neighborlist. Get new forces F i v Set the initial conditions r i ( t 0 ), v i ( t 0 ) Update neighborlist Quantum mechanical models Get new forces F i ( r i ) Solve the equations of motion numerically over time step Δt : r i ( t n )

More information

Handbook of Computational Quantum Chemistry

Handbook of Computational Quantum Chemistry Handbook of Computational Quantum Chemistry David B. Cook Dept. of Chemistry University of Sheffield DOVER PUBLICATIONS, INC. Mineola, New York F Contents 1 Mechanics and molecules 1 1.1 1.2 1.3 1.4 1.5

More information

Mini-tutorial on Mathematical Aspects of Computational Quantum Chemistry SIAM MS 18, July 2018

Mini-tutorial on Mathematical Aspects of Computational Quantum Chemistry SIAM MS 18, July 2018 Mini-tutorial on Mathematical Aspects of Computational Quantum Chemistry SIAM MS 18, July 2018 Benjamin Stamm Center for Computational Engineering Science, RWTH Aachen University, Aachen, Germany Outline

More information

Mathematical representations of quantum states

Mathematical representations of quantum states Mathematical representations of quantum states Eric CANCES Ecole des Ponts and INRIA, Paris, France IPAM, Los Angeles, Septembre 13-16, 2016 Outline of the tutorial 2 1. Quantum states of many-particle

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

Foundation for a parallel time-dependent density functional theory simulator in a spherical harmonic basis using the exact exchange energy functional

Foundation for a parallel time-dependent density functional theory simulator in a spherical harmonic basis using the exact exchange energy functional Foundation for a parallel time-dependent density functional theory simulator in a spherical harmonic basis using the exact exchange energy functional Tue Jensen Boesen Department of Physics and Astronomy

More information

arxiv: v1 [cond-mat.other] 4 Apr 2008

arxiv: v1 [cond-mat.other] 4 Apr 2008 Self-interaction correction in a simple model P. M. Dinh a, J. Messud a, P.-G. Reinhard b, and E. Suraud a arxiv:0804.0684v1 [cond-mat.other] 4 Apr 2008 Abstract a Laboratoire de Physique Théorique, Université

More information

Introduction to Computational Quantum Chemistry: Theory

Introduction to Computational Quantum Chemistry: Theory Introduction to Computational Quantum Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC 3108 Course Lectures 2007 Introduction Hartree Fock Theory Configuration Interaction Lectures 1 Introduction

More information

Advanced Solid State Theory SS Roser Valentí and Harald Jeschke Institut für Theoretische Physik, Goethe-Universität Frankfurt

Advanced Solid State Theory SS Roser Valentí and Harald Jeschke Institut für Theoretische Physik, Goethe-Universität Frankfurt Advanced Solid State Theory SS 2010 Roser Valentí and Harald Jeschke Institut für Theoretische Physik, Goethe-Universität Frankfurt i 0. Literatur R. M. Martin, Electronic Structure: Basic Theory and

More information

Bert de Groot, Udo Schmitt, Helmut Grubmüller

Bert de Groot, Udo Schmitt, Helmut Grubmüller Computergestützte Biophysik I Bert de Groot, Udo Schmitt, Helmut Grubmüller Max Planck-Institut für biophysikalische Chemie Theoretische und Computergestützte Biophysik Am Fassberg 11 37077 Göttingen Tel.:

More information

Introduction to Density Functional Theory (DFT)

Introduction to Density Functional Theory (DFT) Introduction to Density Functional Theory (DFT) Brad Malone, Sadas Shankar The Problem: What's the big deal? Materials we are often interested in contain a macroscopically large number of particles (~1023

More information

The Schrödinger equation for many-electron systems

The Schrödinger equation for many-electron systems The Schrödinger equation for many-electron systems Ĥ!( x,, x ) = E!( x,, x ) 1 N 1 1 Z 1 Ĥ = " $ # " $ + $ 2 r 2 A j j A, j RAj i, j < i a linear differential equation in 4N variables (atomic units) (3

More information

Solutions to selected problems from Giuliani, Vignale : Quantum Theory of the Electron Liquid

Solutions to selected problems from Giuliani, Vignale : Quantum Theory of the Electron Liquid Solutions to selected problems from Giuliani, Vignale : Quantum Theory of the Electron Liquid These problems have been solved as a part of the Independent study class with prof. Neepa Maitra. Compiled

More information

Density-functional theory

Density-functional theory Density-functional theory Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway The 13th Sostrup Summer School Quantum Chemistry and Molecular

More information

Electron-Proton Correlation, Theory, and Tunneling Splittings. Sharon Hammes-Schiffer Penn State University

Electron-Proton Correlation, Theory, and Tunneling Splittings. Sharon Hammes-Schiffer Penn State University Nuclear-Electronic Orbital Approach: Electron-Proton Correlation, Multicomponent Density Functional Theory, and Tunneling Splittings Sharon Hammes-Schiffer Penn State University Nuclear Quantum Effects

More information

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Formally simple -- a framework for going beyond DFT? Random walks in non-orthogonal Slater determinant

More information

Orbital-free embedding applied to the calculation of induced dipole moments in CO 2 X X=He, Ne, Ar, Kr, Xe, Hg van der Waals complexes

Orbital-free embedding applied to the calculation of induced dipole moments in CO 2 X X=He, Ne, Ar, Kr, Xe, Hg van der Waals complexes THE JOURNAL OF CHEMICAL PHYSICS 123, 174104?2005? Orbital-free embedding applied to the calculation of induced dipole moments in CO 2 X X=He, Ne, Ar, Kr, Xe, Hg van der Waals complexes Christoph R. Jacob

More information

Density Functional Theory (DFT)

Density Functional Theory (DFT) Density Functional Theory (DFT) An Introduction by A.I. Al-Sharif Irbid, Aug, 2 nd, 2009 Density Functional Theory Revolutionized our approach to the electronic structure of atoms, molecules and solid

More information

Pseudopotential generation and test by the ld1.x atomic code: an introduction

Pseudopotential generation and test by the ld1.x atomic code: an introduction and test by the ld1.x atomic code: an introduction SISSA and DEMOCRITOS Trieste (Italy) Outline 1 2 3 Spherical symmetry - I The Kohn and Sham (KS) equation is (in atomic units): [ 1 ] 2 2 + V ext (r)

More information

Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD

Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD E.K.U. Gross Max-Planck Institute for Microstructure Physics Halle (Saale) OUTLINE Thanks Exact factorisation

More information

Introduction to Computational Chemistry Computational (chemistry education) and/or. (Computational chemistry) education

Introduction to Computational Chemistry Computational (chemistry education) and/or. (Computational chemistry) education Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools to help increase student understanding of material

More information

Thermal Density Functional Theory in Context

Thermal Density Functional Theory in Context Thermal Density Functional Theory in Context Aurora Pribram-Jones, Stefano Pittalis, E.K.U. Gross, and Kieron Burke Department of Chemistry, University of California, Irvine, CA 92697, USA CNR Istituto

More information

One-Electron Hamiltonians

One-Electron Hamiltonians One-Electron Hamiltonians Hartree-Fock and Density Func7onal Theory Christopher J. Cramer @ChemProfCramer 2017 MSSC, July 10, 2017 REVIEW A One-Slide Summary of Quantum Mechanics Fundamental Postulate:

More information

arxiv: v2 [cond-mat.other] 27 Jun 2008

arxiv: v2 [cond-mat.other] 27 Jun 2008 Self-interaction correction in a simple model arxiv:0804.0684v [cond-mat.other] 7 Jun 008 P. M. Dinh a, J. Messud a, P.-G. Reinhard b, and E. Suraud a Abstract a Laboratoire de Physique Théorique, Université

More information

Intro to ab initio methods

Intro to ab initio methods Lecture 2 Part A Intro to ab initio methods Recommended reading: Leach, Chapters 2 & 3 for QM methods For more QM methods: Essentials of Computational Chemistry by C.J. Cramer, Wiley (2002) 1 ab initio

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Molecular Mechanics by Ju Li. Given August 9, 2006 during the GEM4 session at MIT in Cambridge, MA. Please use

More information

Electronic structure calculations: fundamentals George C. Schatz Northwestern University

Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic Structure (often called Quantum Chemistry) calculations use quantum mechanics to determine the wavefunctions

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Localized form of Fock terms in nuclear covariant density functional theory

Localized form of Fock terms in nuclear covariant density functional theory Computational Advances in Nuclear and Hadron Physics September 21 October 3, 215, YITP, Kyoto, Japan Localized form of Fock terms in nuclear covariant density functional theory Haozhao Liang ùíî RIKEN

More information

Kinetic-energy systems, density scaling, and homogeneity relations in density-functional theory

Kinetic-energy systems, density scaling, and homogeneity relations in density-functional theory PHYSICAL REVIEW A VOLUME 59, NUMBER 4 APRIL 1999 Kinetic-energy systems, density scaling, and homogeneity relations in density-functional theory Garnet Kin-Lic Chan and Nicholas C. Handy Department of

More information

Reactivity and Organocatalysis. (Adalgisa Sinicropi and Massimo Olivucci)

Reactivity and Organocatalysis. (Adalgisa Sinicropi and Massimo Olivucci) Reactivity and Organocatalysis (Adalgisa Sinicropi and Massimo Olivucci) The Aldol Reaction - O R 1 O R 1 + - O O OH * * H R 2 R 1 R 2 The (1957) Zimmerman-Traxler Transition State Counterion (e.g. Li

More information

Molecular Mechanics: The Ab Initio Foundation

Molecular Mechanics: The Ab Initio Foundation Molecular Mechanics: The Ab Initio Foundation Ju Li GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA 2 Outline Why are electrons quantum? Born-Oppenheimer

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

Recent advances in development of single-point orbital-free kinetic energy functionals

Recent advances in development of single-point orbital-free kinetic energy functionals PacifiChem 2010 p. 1/29 Recent advances in development of single-point orbital-free kinetic energy functionals Valentin V. Karasiev vkarasev@qtp.ufl.edu Quantum Theory Project, Departments of Physics and

More information

Lecture 8: Introduction to Density Functional Theory

Lecture 8: Introduction to Density Functional Theory Lecture 8: Introduction to Density Functional Theory Marie Curie Tutorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Science

More information

From Quantum Mechanics to Materials Design

From Quantum Mechanics to Materials Design The Basics of Density Functional Theory Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg December 03, 2010 Outline Formalism 1 Formalism Definitions

More information

HECToR CSE technical meeting, Oxford Parallel Algorithms for the Materials Modelling code CRYSTAL

HECToR CSE technical meeting, Oxford Parallel Algorithms for the Materials Modelling code CRYSTAL HECToR CSE technical meeting, Oxford 2009 Parallel Algorithms for the Materials Modelling code CRYSTAL Dr Stanko Tomi Computational Science & Engineering Department, STFC Daresbury Laboratory, UK Acknowledgements

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Conical Intersections. Spiridoula Matsika

Conical Intersections. Spiridoula Matsika Conical Intersections Spiridoula Matsika The Born-Oppenheimer approximation Energy TS Nuclear coordinate R ν The study of chemical systems is based on the separation of nuclear and electronic motion The

More information

Model Hamiltonians in Density Functional Theory

Model Hamiltonians in Density Functional Theory Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes Volume 41, 2006 Model Hamiltonians in Density Functional Theory Paola Gori-Giorgi, Julien Toulouse, and Andreas Savin Abstract. The

More information

Car-Parrinello Molecular Dynamics

Car-Parrinello Molecular Dynamics Car-Parrinello Molecular Dynamics Eric J. Bylaska HPCC Group Moral: A man dreams of a miracle and wakes up with loaves of bread Erich Maria Remarque Molecular Dynamics Loop (1) Compute Forces on atoms,

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

Electronic Structure Calcula/ons: Density Func/onal Theory. and. Predic/ng Cataly/c Ac/vity

Electronic Structure Calcula/ons: Density Func/onal Theory. and. Predic/ng Cataly/c Ac/vity Electronic Structure Calcula/ons: Density Func/onal Theory and Predic/ng Cataly/c Ac/vity Review Examples of experiments that do not agree with classical physics: Photoelectric effect Photons and the quan/za/on

More information

The Role of the Hohenberg Kohn Theorem in Density-Functional Theory

The Role of the Hohenberg Kohn Theorem in Density-Functional Theory The Role of the Hohenberg Kohn Theorem in Density-Functional Theory T. Helgaker, U. E. Ekström, S. Kvaal, E. Sagvolden, A. M. Teale,, E. Tellgren Centre for Theoretical and Computational Chemistry (CTCC),

More information

Path Integral Monte Carlo Simulations on the Blue Waters System. Burkhard Militzer University of California, Berkeley

Path Integral Monte Carlo Simulations on the Blue Waters System. Burkhard Militzer University of California, Berkeley Path Integral Monte Carlo Simulations on the Blue Waters System Burkhard Militzer University of California, Berkeley http://militzer.berkeley.edu Outline 1. Path integral Monte Carlo simulation method

More information