Discrete-Time Signals and Systems. Frequency Domain Analysis of LTI Systems. The Frequency Response Function. The Frequency Response Function

Size: px
Start display at page:

Download "Discrete-Time Signals and Systems. Frequency Domain Analysis of LTI Systems. The Frequency Response Function. The Frequency Response Function"

Transcription

1 Discrete-Time Signals and s Frequency Domain Analysis of LTI s Dr. Deepa Kundur University of Toronto Reference: Sections 5., of John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, 4th edition, Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 2 / 39 The Frequency Response Function 5. Frequency-Domain Characteristics of LTI s Recall for an LTI system: y(n) = h(n) x(n). Suppose we inject a complex exponential into the LTI system: y(n) = k= x(n) = Ae jωn h(k)x(n k) Note: we consider x(n) to be comprised of a pure frequency of ω rad/s The Frequency Response Function y(n) = = k= k= = Ae jωn 5. Frequency-Domain Characteristics of LTI s h(k)ae jω(n k) h(k)ae jωn e jωk [ = Ae jωn H(ω) k= h(k)e jωk ] } {{ } H(ω)=DTFT {h(n)} Thus, y(n) = H(ω)x(n) when x(n) is a pure frequency. Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 3 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 4 / 39

2 The Frequency Response Function 5. Frequency-Domain Characteristics of LTI s LTI Eigenfunction 5. Frequency-Domain Characteristics of LTI s y(n) = H(ω)x(n) output = scaled input A v = λ v Eigenfunction of a system: an input signal that produces an output that differs from the input by a constant multiplicative factor multiplicative factor is called the eigenvalue Therefore, a signal of the form Ae jωn is an eigenfunction of an LTI system. Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 5 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 6 / 39 LTI Eigenfunction 5. Frequency-Domain Characteristics of LTI s Magnitude and Phase of H(ω) 5. Frequency-Domain Characteristics of LTI s Implications: An LTI system can only change the amplitude and phase of a sinusoidal signal. H(ω) = H(ω) e jθ(ω) An LTI system with inputs comprised of frequencies from set Ω0 cannot produce an output signal with frequencies in the set Ω c 0 (i.e., the complement set of Ω 0 ) H(ω) system gain for freq ω H(ω) = Θ(ω) phase shift for freq ω Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 7 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 8 / 39

3 5. Frequency-Domain Characteristics of LTI s 5. Frequency-Domain Characteristics of LTI s Example: Example: Determine the magnitude and phase of H(ω) for the three-point moving average (MA) system y(n) = [x(n + ) + x(n) + x(n )] 3 By inspection, h(n) = δ(n + ) + δ(n) + δ(n ). Therefore, H(ω) = n= h(n)e jωn = n= 3 e jωn What is the phase of H(ω) = ( + 2 cos(ω))? 3 See Figure 5.. of text. H(ω) = + 2 cos(ω) { ω 2π Θ(ω) = 3 π 2π ω < π 3 = 3 [ejω + + e jω ] = ( + 2 cos(ω)) 3 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 9 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 0 / Frequency Response of LTI s Frequency Response of LTI s 5.2 Frequency Response of LTI s Frequency Response of LTI s z-domain H(z) system function Y (z) = X (z)h(z) ω-domain z=e jω = H(ω) z=ejω = frequency response z=e jω = Y (ω) = X (ω)h(ω) If H(z) converges on the unit circle, then we can obtain the frequency response by letting z = e jω : H(ω) = H(z) z=e jωn = = for rational system functions. M k=0 b ke jωk n= + N k= a ke jωk h(n)e jωn Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 2 / 39

4 LTI s as Frequency-Selective Filters Ideal Filters Filter: device that discriminates, according to some attribute of the input, what passes through it For LTI systems, given Y (ω) = X (ω)h(ω) H(ω) acts as a kind of weighting function or spectral shaping function of the different frequency components of the signal LTI system Filter Classification: lowpass highpass bandpass bandstop allpass See Figure 5.4. of text. Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 3 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 4 / 39 Ideal Filters Ideal Filters Suppose H(ω) = Ce jωn 0 for all ω: Common characteristics: unity (flat) frequency response magnitude in passband and zero frequency response in stopband linear phase; for constants C and n0 δ(n) δ(n n 0 ) C δ(n n 0 ) F F e jωn 0 F C e jωn 0 = Ce jωn 0 H(ω) = { Ce jωn 0 ω < ω < ω 2 0 otherwise Therefore, h(n) = Cδ(n n 0 ) and: y(n) = x(n) h(n) = x(n) Cδ(n n 0 ) = Cx(n n 0 ) Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 5 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 6 / 39

5 Ideal Filters Phase versus Magnitude Therefore for ideal linear phase filters: H(ω) = { Ce jωn 0 ω < ω < ω 2 0 otherwise What s more important? signal components in stopband are annihilated signal components in passband are shifted (and scaled by passband gain which is unity) Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 7 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 8 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 9 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 20 / 39

6 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 2 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 22 / 39 Why Invert? There is a fundamental necessity in engineering applications to undo the unwanted processing of a signal. reverse intersymbol interference in data symbols in telecommunications applications to improve error rate; called equalization correct blurring effects in biomedical imaging applications for more accurate diagnosis; called restoration/enhancement increase signal resolution in reflection seismology for improved geologic interpretation; called deconvolution Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 23 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 24 / 39

7 Invertibility of s Invertibility of LTI s Invertible system: there is a one-to-one correspondence between its input and output signals the one-to-one nature allows the process of reversing the transformation between input and output; suppose y(n) = T [x(n)] where T is one-to-one w(n) = T [y(n)] = T {T [x(n)]} = x(n) Identity Direct Impluse response = Inverse Identity Direct Inverse Direct Inverse Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 25 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 26 / 39 Invertibility of LTI s Invertibility of Rational LTI s Therefore, h(n) h I (n) = δ(n) For a given h(n), how do we find h I (n)? Consider the z domain H(z)H I (z) = H I (z) = H(z) Suppose, H(z) is rational: H(z) = A(z) B(z) H I (z) = B(z) A(z) poles of H(z) = zeros of H I (z) zeros of H(z) = poles of H I (z) Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 27 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 28 / 39

8 Example Determine the inverse system of the system with impulse response h(n) = ( 2 )n u(n). Common Transform Pairs Signal, x(n) z-transform, X (z) ROC δ(n) All z 2 u(n) z z > 3 a n u(n) az 4 na n u(n) az ( az ) 2 5 a n u( n ) az 6 na n az u( n ) 7 (cos(ω 0 n))u(n) 8 (sin(ω 0 n))u(n) 9 (a n cos(ω 0 n)u(n) 0 (a n sin(ω 0 n)u(n) ( az ) 2 z cos ω 0 2z cos ω 0 +z 2 z > z sin ω 0 2z cos ω 0 +z 2 z > az cos ω 0 2az cos ω 0 +a 2 z 2 az sin ω 0 2az cos ω 0 +a 2 z 2 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 29 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 30 / 39 Example Determine the inverse system of the system with impulse response h(n) = ( 2 )n u(n). H(z) =, ROC: z > ; note: direct system is causal + 2 z 2 stable. Therefore, By inspection, H I (z) = H(z) = 2 z h I (n) = δ(n) δ(n ) 2 Another Example Determine the inverse system of the system with impulse response h(n) = δ(n) δ(n ). 2 H(z) = H I (z) = n= = 2 z 2 z h(n)z n = n= [δ(n) n δ(n )]z 2 Is the inverse system stable? causal? Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 3 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 32 / 39

9 Common Transform Pairs Common Transform Pairs Signal, x(n) z-transform, X (z) ROC δ(n) All z 2 u(n) z z > 3 a n u(n) az 4 na n u(n) az ( az ) 2 5 a n u( n ) az 6 na n az u( n ) 7 (cos(ω 0 n))u(n) 8 (sin(ω 0 n))u(n) 9 (a n cos(ω 0 n)u(n) 0 (a n sin(ω 0 n)u(n) ( az ) 2 z cos ω 0 2z cos ω 0 +z 2 z > z sin ω 0 2z cos ω 0 +z 2 z > az cos ω 0 2az cos ω 0 +a 2 z 2 az sin ω 0 2az cos ω 0 +a 2 z 2 Signal, x(n) z-transform, X (z) ROC δ(n) All z 2 u(n) z z > 3 a n u(n) az 4 na n u(n) az ( az ) 2 5 a n u( n ) az 6 na n az u( n ) 7 (cos(ω 0 n))u(n) 8 (sin(ω 0 n))u(n) 9 (a n cos(ω 0 n)u(n) 0 (a n sin(ω 0 n)u(n) ( az ) 2 z cos ω 0 2z cos ω 0 +z 2 z > z sin ω 0 2z cos ω 0 +z 2 z > az cos ω 0 2az cos ω 0 +a 2 z 2 az sin ω 0 2az cos ω 0 +a 2 z 2 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 33 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 34 / 39 Another Example There are two possibilities for inverses: Causal + stable inverse: h I (n) = ( ) n u(n) 2 Homomorphic Deconvolution The complex cepstrum of a signal x(n) is given by: c x (n) = Z {ln(z{x(n)}} = Z {ln(x (z))} = Z {C x (z)} Anticausal + unstable inverse: ( ) n h I (n) = u( n ) 2 x(n) cepstrum c x (n) Z Z X (z) C x (z) = ln(x (z)) We say, c x (n) is produced via a homomorphic transform of x(n). Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 35 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 36 / 39

10 Homomorphic Deconvolution Homomorphic Deconvolution Therefore, Y (z) = X (z)h(z) C y (z) = ln Y (z) = ln X (z) + ln H(z) = C x (z) + C h (z) Z {C y (z)} = Z {C x (z)} + Z {C h (z)} c y (n) = c x (n) + c h (n) In many applications, the characteristics of c x (n) and c h (n) are sufficiently distinct that temporal windows can be used to separate them: where: ĉ h (n) = c y (n)ŵ lp (n) ĉ x (n) = c y (n)ŵ hp (n) ŵ lp (n) = { n N 0 n > N convolution in time-domain addition in cepstral domain ŵ hp (n) = { 0 n N n > N Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 37 / 39 Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 38 / 39 Homomorphic Deconvolution Obtaining the inverse homomorphic transforms of c h (n) and c x (n) give estimates of h(n) and x(n), respectively. Dr. Deepa Kundur (University of Toronto) Frequency Domain Analysis of LTI s 39 / 39

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections Discrete-Time Signals and Systems The z-transform and Its Application Dr. Deepa Kundur University of Toronto Reference: Sections 3. - 3.4 of John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:

More information

Lecture 7 Discrete Systems

Lecture 7 Discrete Systems Lecture 7 Discrete Systems EE 52: Instrumentation and Measurements Lecture Notes Update on November, 29 Aly El-Osery, Electrical Engineering Dept., New Mexico Tech 7. Contents The z-transform 2 Linear

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

ELC 4351: Digital Signal Processing

ELC 4351: Digital Signal Processing ELC 4351: Digital Signal Processing Liang Dong Electrical and Computer Engineering Baylor University liang dong@baylor.edu October 18, 2016 Liang Dong (Baylor University) Frequency-domain Analysis of LTI

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Solution Manual for Theory and Applications of Digital Speech Processing by Lawrence Rabiner and Ronald Schafer Click here to Purchase full Solution Manual at http://solutionmanuals.info Link download

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Chapter 2 Review of Fundamentals of Digital Signal Processing 2.1 (a) This system is not linear (the constant term makes it non linear) but is shift-invariant (b) This system is linear but not shift-invariant

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA November 1, 2009 1 / 27 1 The z-transform 2 Linear Time-Invariant System 3 Filter Design IIR Filters FIR Filters

More information

Frequency-Domain C/S of LTI Systems

Frequency-Domain C/S of LTI Systems Frequency-Domain C/S of LTI Systems x(n) LTI y(n) LTI: Linear Time-Invariant system h(n), the impulse response of an LTI systems describes the time domain c/s. H(ω), the frequency response describes the

More information

Digital Signal Processing Lecture 3 - Discrete-Time Systems

Digital Signal Processing Lecture 3 - Discrete-Time Systems Digital Signal Processing - Discrete-Time Systems Electrical Engineering and Computer Science University of Tennessee, Knoxville August 25, 2015 Overview 1 2 3 4 5 6 7 8 Introduction Three components of

More information

ECE503: Digital Signal Processing Lecture 5

ECE503: Digital Signal Processing Lecture 5 ECE53: Digital Signal Processing Lecture 5 D. Richard Brown III WPI 3-February-22 WPI D. Richard Brown III 3-February-22 / 32 Lecture 5 Topics. Magnitude and phase characterization of transfer functions

More information

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform.

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Inversion of the z-transform Focus on rational z-transform of z 1. Apply partial fraction expansion. Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Let X(z)

More information

Transform Analysis of Linear Time-Invariant Systems

Transform Analysis of Linear Time-Invariant Systems Transform Analysis of Linear Time-Invariant Systems Discrete-Time Signal Processing Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC Transform

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

Discrete-Time Fourier Transform (DTFT)

Discrete-Time Fourier Transform (DTFT) Discrete-Time Fourier Transform (DTFT) 1 Preliminaries Definition: The Discrete-Time Fourier Transform (DTFT) of a signal x[n] is defined to be X(e jω ) x[n]e jωn. (1) In other words, the DTFT of x[n]

More information

# FIR. [ ] = b k. # [ ]x[ n " k] [ ] = h k. x[ n] = Ae j" e j# ˆ n Complex exponential input. [ ]Ae j" e j ˆ. ˆ )Ae j# e j ˆ. y n. y n.

# FIR. [ ] = b k. # [ ]x[ n  k] [ ] = h k. x[ n] = Ae j e j# ˆ n Complex exponential input. [ ]Ae j e j ˆ. ˆ )Ae j# e j ˆ. y n. y n. [ ] = h k M [ ] = b k x[ n " k] FIR k= M [ ]x[ n " k] convolution k= x[ n] = Ae j" e j ˆ n Complex exponential input [ ] = h k M % k= [ ]Ae j" e j ˆ % M = ' h[ k]e " j ˆ & k= k = H (" ˆ )Ae j e j ˆ ( )

More information

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 9th, 011 Examination hours: 14.30 18.30 This problem set

More information

Solutions: Homework Set # 5

Solutions: Homework Set # 5 Signal Processing for Communications EPFL Winter Semester 2007/2008 Prof. Suhas Diggavi Handout # 22, Tuesday, November, 2007 Solutions: Homework Set # 5 Problem (a) Since h [n] = 0, we have (b) We can

More information

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform Signals and Systems Problem Set: The z-transform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem - Transfer functions in MATLAB A discrete-time, causal LTI system is described by the

More information

VI. Z Transform and DT System Analysis

VI. Z Transform and DT System Analysis Summer 2008 Signals & Systems S.F. Hsieh VI. Z Transform and DT System Analysis Introduction Why Z transform? a DT counterpart of the Laplace transform in CT. Generalization of DT Fourier transform: z

More information

Discrete Time Fourier Transform

Discrete Time Fourier Transform Discrete Time Fourier Transform Recall that we wrote the sampled signal x s (t) = x(kt)δ(t kt). We calculate its Fourier Transform. We do the following: Ex. Find the Continuous Time Fourier Transform of

More information

Discrete Time Systems

Discrete Time Systems Discrete Time Systems Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz 1 LTI systems In this course, we work only with linear and time-invariant systems. We talked about

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing The -Transform and Its Application to the Analysis of LTI Systems Moslem Amiri, Václav Přenosil Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Cech

More information

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR Digital Signal Processing - Design of Digital Filters - FIR Electrical Engineering and Computer Science University of Tennessee, Knoxville November 3, 2015 Overview 1 2 3 4 Roadmap Introduction Discrete-time

More information

Chapter 7: The z-transform

Chapter 7: The z-transform Chapter 7: The -Transform ECE352 1 The -Transform - definition Continuous-time systems: e st H(s) y(t) = e st H(s) e st is an eigenfunction of the LTI system h(t), and H(s) is the corresponding eigenvalue.

More information

Z-TRANSFORMS. Solution: Using the definition (5.1.2), we find: for case (b). y(n)= h(n) x(n) Y(z)= H(z)X(z) (convolution) (5.1.

Z-TRANSFORMS. Solution: Using the definition (5.1.2), we find: for case (b). y(n)= h(n) x(n) Y(z)= H(z)X(z) (convolution) (5.1. 84 5. Z-TRANSFORMS 5 z-transforms Solution: Using the definition (5..2), we find: for case (a), and H(z) h 0 + h z + h 2 z 2 + h 3 z 3 2 + 3z + 5z 2 + 2z 3 H(z) h 0 + h z + h 2 z 2 + h 3 z 3 + h 4 z 4

More information

Multidimensional digital signal processing

Multidimensional digital signal processing PSfrag replacements Two-dimensional discrete signals N 1 A 2-D discrete signal (also N called a sequence or array) is a function 2 defined over thex(n set 1 of, n 2 ordered ) pairs of integers: y(nx 1,

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION FINAL EXAMINATION 9:00 am 12:00 pm, December 20, 2010 Duration: 180 minutes Examiner: Prof. M. Vu Assoc. Examiner: Prof. B. Champagne There are 6 questions for a total of 120 points. This is a closed book

More information

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE 0: Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem. Hz z 7 z +/9, causal ROC z > contains the unit circle BIBO

More information

Filter Analysis and Design

Filter Analysis and Design Filter Analysis and Design Butterworth Filters Butterworth filters have a transfer function whose squared magnitude has the form H a ( jω ) 2 = 1 ( ) 2n. 1+ ω / ω c * M. J. Roberts - All Rights Reserved

More information

Your solutions for time-domain waveforms should all be expressed as real-valued functions.

Your solutions for time-domain waveforms should all be expressed as real-valued functions. ECE-486 Test 2, Feb 23, 2017 2 Hours; Closed book; Allowed calculator models: (a) Casio fx-115 models (b) HP33s and HP 35s (c) TI-30X and TI-36X models. Calculators not included in this list are not permitted.

More information

Computer Engineering 4TL4: Digital Signal Processing

Computer Engineering 4TL4: Digital Signal Processing Computer Engineering 4TL4: Digital Signal Processing Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December, 2003 This examination paper includes

More information

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz Discrete Time Signals and Systems Time-frequency Analysis Gloria Menegaz Time-frequency Analysis Fourier transform (1D and 2D) Reference textbook: Discrete time signal processing, A.W. Oppenheim and R.W.

More information

EE123 Digital Signal Processing. M. Lustig, EECS UC Berkeley

EE123 Digital Signal Processing. M. Lustig, EECS UC Berkeley EE123 Digital Signal Processing Today Last time: DTFT - Ch 2 Today: Continue DTFT Z-Transform Ch. 3 Properties of the DTFT cont. Time-Freq Shifting/modulation: M. Lustig, EE123 UCB M. Lustig, EE123 UCB

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions 8-90 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 08 Midterm Solutions Name: Andrew ID: Problem Score Max 8 5 3 6 4 7 5 8 6 7 6 8 6 9 0 0 Total 00 Midterm Solutions. (8 points) Indicate whether

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 30, 2018 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information

z-transform Chapter 6

z-transform Chapter 6 z-transform Chapter 6 Dr. Iyad djafar Outline 2 Definition Relation Between z-transform and DTFT Region of Convergence Common z-transform Pairs The Rational z-transform The Inverse z-transform z-transform

More information

Z-Transform. The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = g(t)e st dt. Z : G(z) =

Z-Transform. The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = g(t)e st dt. Z : G(z) = Z-Transform The Z-transform is the Discrete-Time counterpart of the Laplace Transform. Laplace : G(s) = Z : G(z) = It is Used in Digital Signal Processing n= g(t)e st dt g[n]z n Used to Define Frequency

More information

Homework 6 Solutions

Homework 6 Solutions 8-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 208 Homework 6 Solutions. Part One. (2 points) Consider an LTI system with impulse response h(t) e αt u(t), (a) Compute the frequency response

More information

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

Digital Signal Processing:

Digital Signal Processing: Digital Signal Processing: Mathematical and algorithmic manipulation of discretized and quantized or naturally digital signals in order to extract the most relevant and pertinent information that is carried

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Systems Prof. ark Fowler Note Set #28 D-T Systems: DT Filters Ideal & Practical /4 Ideal D-T Filters Just as in the CT case we can specify filters. We looked at the ideal filter for the

More information

SEL4223 Digital Signal Processing. Inverse Z-Transform. Musa Mohd Mokji

SEL4223 Digital Signal Processing. Inverse Z-Transform. Musa Mohd Mokji SEL4223 Digital Signal Processing Inverse Z-Transform Musa Mohd Mokji Inverse Z-Transform Transform from z-domain to time-domain x n = 1 2πj c X z z n 1 dz Note that the mathematical operation for the

More information

The Z-Transform. Fall 2012, EE123 Digital Signal Processing. Eigen Functions of LTI System. Eigen Functions of LTI System

The Z-Transform. Fall 2012, EE123 Digital Signal Processing. Eigen Functions of LTI System. Eigen Functions of LTI System The Z-Transform Fall 202, EE2 Digital Signal Processing Lecture 4 September 4, 202 Used for: Analysis of LTI systems Solving di erence equations Determining system stability Finding frequency response

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 4: Inverse z Transforms & z Domain Analysis Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner

More information

Discrete Time Systems

Discrete Time Systems 1 Discrete Time Systems {x[0], x[1], x[2], } H {y[0], y[1], y[2], } Example: y[n] = 2x[n] + 3x[n-1] + 4x[n-2] 2 FIR and IIR Systems FIR: Finite Impulse Response -- non-recursive y[n] = 2x[n] + 3x[n-1]

More information

ECGR4124 Digital Signal Processing Exam 2 Spring 2017

ECGR4124 Digital Signal Processing Exam 2 Spring 2017 ECGR4124 Digital Signal Processing Exam 2 Spring 2017 Name: LAST 4 NUMBERS of Student Number: Do NOT begin until told to do so Make sure that you have all pages before starting NO TEXTBOOK, NO CALCULATOR,

More information

Ch. 7: Z-transform Reading

Ch. 7: Z-transform Reading c J. Fessler, June 9, 3, 6:3 (student version) 7. Ch. 7: Z-transform Definition Properties linearity / superposition time shift convolution: y[n] =h[n] x[n] Y (z) =H(z) X(z) Inverse z-transform by coefficient

More information

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5.

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5. . Typical Discrete-Time Systems.1. All-Pass Systems (5.5).. Minimum-Phase Systems (5.6).3. Generalized Linear-Phase Systems (5.7) .1. All-Pass Systems An all-pass system is defined as a system which has

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 31, 2017 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information

INF3440/INF4440. Design of digital filters

INF3440/INF4440. Design of digital filters Last week lecture Today s lecture: Chapter 8.1-8.3, 8.4.2, 8.5.3 INF3440/INF4440. Design of digital filters October 2004 Last week lecture Today s lecture: Chapter 8.1-8.3, 8.4.2, 8.5.3 Last lectures:

More information

Very useful for designing and analyzing signal processing systems

Very useful for designing and analyzing signal processing systems z-transform z-transform The z-transform generalizes the Discrete-Time Fourier Transform (DTFT) for analyzing infinite-length signals and systems Very useful for designing and analyzing signal processing

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

LINEAR-PHASE FIR FILTERS DESIGN

LINEAR-PHASE FIR FILTERS DESIGN LINEAR-PHASE FIR FILTERS DESIGN Prof. Siripong Potisuk inimum-phase Filters A digital filter is a minimum-phase filter if and only if all of its zeros lie inside or on the unit circle; otherwise, it is

More information

Lecture 18: Stability

Lecture 18: Stability Lecture 18: Stability ECE 401: Signal and Image Analysis University of Illinois 4/18/2017 1 Stability 2 Impulse Response 3 Z Transform Outline 1 Stability 2 Impulse Response 3 Z Transform BIBO Stability

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

Signal Analysis, Systems, Transforms

Signal Analysis, Systems, Transforms Michael J. Corinthios Signal Analysis, Systems, Transforms Engineering Book (English) August 29, 2007 Springer Contents Discrete-Time Signals and Systems......................... Introduction.............................................2

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

DIGITAL SIGNAL PROCESSING LECTURE 1

DIGITAL SIGNAL PROCESSING LECTURE 1 DIGITAL SIGNAL PROCESSING LECTURE 1 Fall 2010 2K8-5 th Semester Tahir Muhammad tmuhammad_07@yahoo.com Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, 1999-2000

More information

TTT4120 Digital Signal Processing Suggested Solutions for Problem Set 2

TTT4120 Digital Signal Processing Suggested Solutions for Problem Set 2 Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT42 Digital Signal Processing Suggested Solutions for Problem Set 2 Problem (a) The spectrum X(ω) can be

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Signals & Systems Handout #4

Signals & Systems Handout #4 Signals & Systems Handout #4 H-4. Elementary Discrete-Domain Functions (Sequences): Discrete-domain functions are defined for n Z. H-4.. Sequence Notation: We use the following notation to indicate the

More information

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems.

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 1th, 016 Examination hours: 14:30 18.30 This problem set

More information

Z Transform (Part - II)

Z Transform (Part - II) Z Transform (Part - II). The Z Transform of the following real exponential sequence x(nt) = a n, nt 0 = 0, nt < 0, a > 0 (a) ; z > (c) for all z z (b) ; z (d) ; z < a > a az az Soln. The given sequence

More information

Digital Filters Ying Sun

Digital Filters Ying Sun Digital Filters Ying Sun Digital filters Finite impulse response (FIR filter: h[n] has a finite numbers of terms. Infinite impulse response (IIR filter: h[n] has infinite numbers of terms. Causal filter:

More information

EEL3135: Homework #4

EEL3135: Homework #4 EEL335: Homework #4 Problem : For each of the systems below, determine whether or not the system is () linear, () time-invariant, and (3) causal: (a) (b) (c) xn [ ] cos( 04πn) (d) xn [ ] xn [ ] xn [ 5]

More information

The Discrete-Time Fourier

The Discrete-Time Fourier Chapter 3 The Discrete-Time Fourier Transform 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 3-1-1 Continuous-Time Fourier Transform Definition The CTFT of

More information

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT Digital Signal Processing Lecture Notes and Exam Questions Convolution Sum January 31, 2006 Convolution Sum of Two Finite Sequences Consider convolution of h(n) and g(n) (M>N); y(n) = h(n), n =0... M 1

More information

Discrete Time Fourier Transform (DTFT)

Discrete Time Fourier Transform (DTFT) Discrete Time Fourier Transform (DTFT) 1 Discrete Time Fourier Transform (DTFT) The DTFT is the Fourier transform of choice for analyzing infinite-length signals and systems Useful for conceptual, pencil-and-paper

More information

7.17. Determine the z-transform and ROC for the following time signals: Sketch the ROC, poles, and zeros in the z-plane. X(z) = x[n]z n.

7.17. Determine the z-transform and ROC for the following time signals: Sketch the ROC, poles, and zeros in the z-plane. X(z) = x[n]z n. Solutions to Additional Problems 7.7. Determine the -transform and ROC for the following time signals: Sketch the ROC, poles, and eros in the -plane. (a) x[n] δ[n k], k > 0 X() x[n] n n k, 0 Im k multiple

More information

! z-transform. " Tie up loose ends. " Regions of convergence properties. ! Inverse z-transform. " Inspection. " Partial fraction

! z-transform.  Tie up loose ends.  Regions of convergence properties. ! Inverse z-transform.  Inspection.  Partial fraction Lecture Outline ESE 53: Digital Signal Processing Lec 6: January 3, 207 Inverse z-transform! z-transform " Tie up loose ends " gions of convergence properties! Inverse z-transform " Inspection " Partial

More information

Optimal Design of Real and Complex Minimum Phase Digital FIR Filters

Optimal Design of Real and Complex Minimum Phase Digital FIR Filters Optimal Design of Real and Complex Minimum Phase Digital FIR Filters Niranjan Damera-Venkata and Brian L. Evans Embedded Signal Processing Laboratory Dept. of Electrical and Computer Engineering The University

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture : Design of Digital IIR Filters (Part I) Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner (Univ.

More information

Module 4 : Laplace and Z Transform Problem Set 4

Module 4 : Laplace and Z Transform Problem Set 4 Module 4 : Laplace and Z Transform Problem Set 4 Problem 1 The input x(t) and output y(t) of a causal LTI system are related to the block diagram representation shown in the figure. (a) Determine a differential

More information

X (z) = n= 1. Ã! X (z) x [n] X (z) = Z fx [n]g x [n] = Z 1 fx (z)g. r n x [n] ª e jnω

X (z) = n= 1. Ã! X (z) x [n] X (z) = Z fx [n]g x [n] = Z 1 fx (z)g. r n x [n] ª e jnω 3 The z-transform ² Two advantages with the z-transform:. The z-transform is a generalization of the Fourier transform for discrete-time signals; which encompasses a broader class of sequences. The z-transform

More information

DIGITAL SIGNAL PROCESSING. Chapter 3 z-transform

DIGITAL SIGNAL PROCESSING. Chapter 3 z-transform DIGITAL SIGNAL PROCESSING Chapter 3 z-transform by Dr. Norizam Sulaiman Faculty of Electrical & Electronics Engineering norizam@ump.edu.my OER Digital Signal Processing by Dr. Norizam Sulaiman work is

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Issued: Tuesday, September 5. 6.: Discrete-Time Signal Processing Fall 5 Solutions for Problem Set Problem.

More information

UNIT - 7: FIR Filter Design

UNIT - 7: FIR Filter Design UNIT - 7: FIR Filter Design Dr. Manjunatha. P manjup.jnnce@gmail.com Professor Dept. of ECE J.N.N. College of Engineering, Shimoga October 5, 06 Unit 7 Syllabus Introduction FIR Filter Design:[,, 3, 4]

More information

If every Bounded Input produces Bounded Output, system is externally stable equivalently, system is BIBO stable

If every Bounded Input produces Bounded Output, system is externally stable equivalently, system is BIBO stable 1. External (BIBO) Stability of LTI Systems If every Bounded Input produces Bounded Output, system is externally stable equivalently, system is BIBO stable g(n) < BIBO Stability Don t care about what unbounded

More information

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002.

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002. The Johns Hopkins University Department of Electrical and Computer Engineering 505.460 Introduction to Linear Systems Fall 2002 Final exam Name: You are allowed to use: 1. Table 3.1 (page 206) & Table

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

ECGR4124 Digital Signal Processing Final Spring 2009

ECGR4124 Digital Signal Processing Final Spring 2009 ECGR4124 Digital Signal Processing Final Spring 2009 Name: LAST 4 NUMBERS of Student Number: Do NOT begin until told to do so Make sure that you have all pages before starting Open book, 2 sheet front/back

More information

Digital Signal Processing IIR Filter Design via Bilinear Transform

Digital Signal Processing IIR Filter Design via Bilinear Transform Digital Signal Processing IIR Filter Design via Bilinear Transform D. Richard Brown III D. Richard Brown III 1 / 12 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic

More information

Linear Convolution Using FFT

Linear Convolution Using FFT Linear Convolution Using FFT Another useful property is that we can perform circular convolution and see how many points remain the same as those of linear convolution. When P < L and an L-point circular

More information

3 Fourier Series Representation of Periodic Signals

3 Fourier Series Representation of Periodic Signals 65 66 3 Fourier Series Representation of Periodic Signals Fourier (or frequency domain) analysis constitutes a tool of great usefulness Accomplishes decomposition of broad classes of signals using complex

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

Solutions. Number of Problems: 10

Solutions. Number of Problems: 10 Final Exam February 2nd, 2013 Signals & Systems (151-0575-01) Prof. R. D Andrea Solutions Exam Duration: 150 minutes Number of Problems: 10 Permitted aids: One double-sided A4 sheet. Questions can be answered

More information

Lecture 4: FT Pairs, Random Signals and z-transform

Lecture 4: FT Pairs, Random Signals and z-transform EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 4: T Pairs, Rom Signals z-transform Wed., Oct. 10, 2001 Prof: J. Bilmes

More information

The Z transform (2) 1

The Z transform (2) 1 The Z transform (2) 1 Today Properties of the region of convergence (3.2) Read examples 3.7, 3.8 Announcements: ELEC 310 FINAL EXAM: April 14 2010, 14:00 pm ECS 123 Assignment 2 due tomorrow by 4:00 pm

More information

y[n] = = h[k]x[n k] h[k]z n k k= 0 h[k]z k ) = H(z)z n h[k]z h (7.1)

y[n] = = h[k]x[n k] h[k]z n k k= 0 h[k]z k ) = H(z)z n h[k]z h (7.1) 7. The Z-transform 7. Definition of the Z-transform We saw earlier that complex exponential of the from {e jwn } is an eigen function of for a LTI System. We can generalize this for signals of the form

More information

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Multimedia Signals and Systems - Audio and Video Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Kunio Takaya Electrical and Computer Engineering University of Saskatchewan December

More information

Practical Spectral Estimation

Practical Spectral Estimation Digital Signal Processing/F.G. Meyer Lecture 4 Copyright 2015 François G. Meyer. All Rights Reserved. Practical Spectral Estimation 1 Introduction The goal of spectral estimation is to estimate how the

More information

UNIT-II Z-TRANSFORM. This expression is also called a one sided z-transform. This non causal sequence produces positive powers of z in X (z).

UNIT-II Z-TRANSFORM. This expression is also called a one sided z-transform. This non causal sequence produces positive powers of z in X (z). Page no: 1 UNIT-II Z-TRANSFORM The Z-Transform The direct -transform, properties of the -transform, rational -transforms, inversion of the transform, analysis of linear time-invariant systems in the -

More information

DIGITAL SIGNAL PROCESSING UNIT 1 SIGNALS AND SYSTEMS 1. What is a continuous and discrete time signal? Continuous time signal: A signal x(t) is said to be continuous if it is defined for all time t. Continuous

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

Analog vs. discrete signals

Analog vs. discrete signals Analog vs. discrete signals Continuous-time signals are also known as analog signals because their amplitude is analogous (i.e., proportional) to the physical quantity they represent. Discrete-time signals

More information

Digital Control & Digital Filters. Lectures 1 & 2

Digital Control & Digital Filters. Lectures 1 & 2 Digital Controls & Digital Filters Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Spring 2017 Digital versus Analog Control Systems Block diagrams

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

LTI Discrete-Time Systems in Transform Domain Ideal Filters Zero Phase Transfer Functions Linear Phase Transfer Functions

LTI Discrete-Time Systems in Transform Domain Ideal Filters Zero Phase Transfer Functions Linear Phase Transfer Functions LTI Discrete-Time Systems in Transform Domain Ideal Filters Zero Pase Transfer Functions Linear Pase Transfer Functions Tania Stataki 811b t.stataki@imperial.ac.uk Types of Transfer Functions Te time-domain

More information