Galilei Space-times and Newton-Cartan Gravity. Tekin Dereli

Size: px
Start display at page:

Download "Galilei Space-times and Newton-Cartan Gravity. Tekin Dereli"

Transcription

1 Galilei Space-times and Newton-Cartan Gravity Tekin Dereli Department of Physics, Koç University, İstanbul and The Turkish Academy of Sciences 1st Erdal İnönü Conference on Group Theory in Physics Middle East Technical University, Ankara 31 October 2008

2 The 4-dimensional space-time description of Newtonian gravity goes back to 1920s to the work of E. Cartan [1] and K. Friedrichs [2]. In the absence of gravity, the geometry of the non-relativistic flat space-time can be given in terms of independent space and time metric tensors that are both degenerate and the corresponding unique metric-compatible, torsion-free linear connection whose curvature vanishes. The revival of interest in these theories started in 1960s with the work of Trautman [3, 4] who wrote down Newton s law of gravity in terms of the curvature tensor of a suitably chosen connection. At about the same times differential geometry of degenerate manifolds were also studied [5, 6] from a more mathematical point of view.

3 Galilei Structure Let M be a smooth 4-manifold, g be a (0, 2) tensor field and τ be a (nonsingular) 1-form on M. The triple (M, g, τ) is called a Galilei structure provided the following are satisfied: 1. g is symmetric and degenerate of rank There exists a vector field V 0 such that g(v, X) = 0 for any vector field X, and τ(v ) = 1. We will fix such a vector field V and consider it as part of the Galilei structure. g will be called the space metric. The tensor product τ τ on M is a (0, 2) tensor that is symmetric, degenerate of rank 1. It will be called the time metric.

4 The tensor field g ε = ετ τ + g (1) where ε is a non-zero real parameter, is symmetric and non-degenerate. ḡ determines a unique symmetric, non-degenerate tensor field h of type (2, 0). There exists a unique (2, 0) tensor field h that is symmetric, degenerate of rank 3 given by h = 1 ε V V + h ε (2) where in terms of local coordinate components of h and g h µν g νλ = δ µ λ V µ τ λ. (3) Remark: The same Galilei structure on M can be completely determined by any one of the pairs (g, τ), (h, V ), (g, V ) or (h, τ).

5 Newton-Cartan Connections Let (M, g, τ) be a Galilei structure and be a connection on (M, g). We will call a Newton-Cartan connection if 1. X τ = 0 for any vector field X on M. The non-metricity of is given by ( X g)(y, Z) = Q(X, Y, Z) (4) where Q is the (0, 3) non-metricity tensor while the torsion of is found from the Cartan structure equations where T is the (1, 2) torsion tensor. defined by X Y Y X [X, Y ] = T (X, Y ) (5) The curvature operator R X,Y Z of R X,Y Z = X Y Z Y X Z [X,Y ] Z (6) is a type-preserving tensor derivation. The Riemann curvature tensor R of is the (1, 3) tensor field determined by the relation where β is an arbitrary 1-form. R(X, Y, Z, β) = β(r X,Y Z) (7)

6 Main Theorem Let (M, g, τ) be a Galilei structure, T be a (1, 2) tensor field such that T (X, Y ) = T (Y, X) and Q be a (0,3) tensor field with the properties Q(X, Y, Z) = Q(X, Z, Y ) and Q(X, V, V ) = 0 for all vector fields X, Y, Z and time vector field V. Then there exists a unique Newton-Cartan connection with torsion T and non-metricity Q iff 1. dτ(x, Y ) = τ(t (X, Y )), 2.(L V g)(x, Y ) = Q(X, Y, V ) Q(Y, X, V )+Q(V, X, Y )+g(t (V, X), Y )+g(x, T (V, Y )) where d is the exterior derivative and L V vector field V given previously. Lie derivative with respect to the Remark: We will call (M, g, τ, ) where is a torsion-free Newton-Cartan connection with Q 0 a degenerate Weyl space-time.

7 In a local coordinate chart {x µ }, connection coefficients of a torsion-free Newton-Cartan connection with non-metricity Q are given by Γ λ µν = 1 2 hλκ ( µ g κν + nu g κµ κ g µν ) + V λ µ τ ν 1 2 hλκ (Q µνκ + Q νµκ Q κµν ). (8) Furthermore λ g µν = Q λµν, λ h µν = h µρ h νσ Q λρσ. (9) If and ˆ are two torsion-free Newton-Cartan connections then their difference is a tensor. It is well known that the torsion-free Newton-Cartan connections are in one-to-one correspondence with 2-forms ω on M [5]. That is to say, in a local coordinate system Γ λ µν ˆΓ λ µν = h λκ ω κ(µ τ ν). (10)

8 Suppose, in particular we start with the unique torsion-free, metric compatible (Q = 0) connection ˆ that is determined completely by the metrics g and τ in a local coordinate system as ˆΓ λ µν = 1 2 hλκ ( µ g κν + nu g κµ κ g µν ) + V λ µ τ ν. (11) Let us consider from now on a related connection determined in terms of an arbitrary 2-form ω. The resulting non-metricity tensor Q turns out to be Q λµν = V κ (ω κ(λ τ µ) τ ν + ω κ(λ τ ν) τ µ ) + ω λ(µ τ ν) (12) in a local coordinate system, where ω µν = ω νµ and the round parentheses denote symmetrization as usual: ω µ(ν τ λ) = 1 2 (ω µντ λ + ω µλ τ ν ). Then a straightforward calculation shows λ h µν = 0. (13)

9 Gravitational Field Equations The gravitational field equations are postulated to be Ric = 4πGρτ τ (14) where G is the universal gravitational coupling constant and ρ is the mass density. To cut down the number of independent degrees of freedom in a correct way, (14) must be supplemented by the Trautman conditions h µκ Rκρλ ν = hνκ R µ κλρ. (15) Together with the above field equations we also postulate the autoparallel equations of motion of a freely falling point mass ĊĊ = 0 (16) where C : [0, 1] M is a timelike curve parametrized in terms of the time variable t such that τ = dt.

10 To illustrate the physical content of the above postulates, let us consider an adapted locally inertial coordinate system {x 0 = t, x 1 = x, x 2 = y, x 3 = z} in terms of which g ij = δ ij g 00 = 0 h ij = δ ij h 00 = 0 τ i = 0 τ 0 = 1 V i = 0 V 0 = 1 (17) where i, j = 1, 2, 3. These coordinates are defined up to kinematical transformations t ±t + a, x j ±R(t) j k xk ± v j t + b j (18) where R j k describe SO(3) rotations. Then we calculate the following nonvanishing connection coefficients: If we let Γ k 00 = ω k0 Γ k i0 = Γk 0i = 1 2 ω ki. (19) ω = τ dφ, (20) then the Trautman conditions are identically satisfied and the remaining equations reduce to φ = 4πGρ, x = φ. (21)

11 Comments The Cartan-Friedrichs formalism provides a consistent way to determine the Newtonian limit of relativistic space-times [7]. It can be used to delineate the minimal coupling of Newtonian gravitational field to the Schrödinger equation [8, 9]. A non-relativistic spin-1/2 electron wave function satisfies the first order Levy-Leblond equation that iterates to the usual Schrödinger equation [10, 11]. It is possible to write the Levy-Leblond equation directly in a Galilean covariant way by constructing the Dirac operator on the degenerate spinor bundle over a Newton-Cartan space-time [12, 13]. Lévy-Leblond equations ( i σ iq c ( i σ iq c ) A ) A ξ i 2m (E V + qφ) η = 0 η i 2mξ = 0

12 References 1. E. Cartan, Sur les variétés a connexion affine et la théorie de la relativité generalisée, Ann. Ecole Norm Sup. 40 (1922) 326, ibid 41 (1924) 1 2. K. Friedrichs, Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz, Math. Ann. 98 (1927) A. Trautman, Sur la theorié Newtonienne de la gravitation, Comp. R. Acad. Sci. Paris 257 (1963) P. Havas, Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity, Rev. Mod. Phys. 36 (1964) H. D. Dombrowski, K. Horneffer, Die Differentialgeometrie des Galileischen Relativätsprinzips, Math. Zeitschr. 86 (1964) M. Crampin, On differentiable manifolds with degenerate metrics, Proc. Camb. Phil Soc. 64 (1968) 307

13 7. J. Ehlers, Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie in Grundlagenprobleme der Modernen Physik, J. Nitsch, J. Pfarr, E. W. Stachow (Eds.) (Bibliographisches Institut, Mannheim, 1981) 8. K. Kucha r, Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev. D22 (1980) C. Duval, H. P. Künzle, Minimal gravitational coupling in the Newtonian theory and the covariant Schrödinger equation, Gen. Rel. Grav. 16 (1984) J. -M. Lévy-Leblond, Nonrelativistic particles and wave equations, Comm. Math. Phys. 6 (1967) H. P. Künzle, C. Duval, Dirac field on Newtonian space-time, Ann. Inst. Henri Poincarè, (1984) M. Limoncu, Newton-Lévy-Leblond Denklemleri, Doktora Tezi (Türkçe), Anadolu Üniversitesi, Ekim T. Dereli, Ş. Koçak, M. Limoncu, Linear connections on light-like manifolds, Turk. J. Math. 32 (2008) 41

Comment on path integral derivation of Schrödinger equation in spaces with curvature and torsion

Comment on path integral derivation of Schrödinger equation in spaces with curvature and torsion J. Phys. A: Math. Gen. 29 (1996) 7619 7624. Printed in the UK Comment on path integral derivation of Schrödinger equation in spaces with curvature and torsion P Fiziev and H Kleinert Institut für Theoretische

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

N-C from the Noether Procedure and Galilean Electrodynamics

N-C from the Noether Procedure and Galilean Electrodynamics gen. Vertical version with logotype under the N-C from the Noether Procedure and Galilean Electrodynamics Dennis Hansen 10th Nordic String Theory Meeting, Bremen 2016 The Niels Bohr Institute and Niels

More information

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018 Consistency of conservation laws in SR and GR General Relativity j µ and for point particles van Nieuwenhuizen, Spring 2018 1 Introduction The Einstein equations for matter coupled to gravity read Einstein

More information

New representation of the field equations looking for a new vacuum solution for QMAG

New representation of the field equations looking for a new vacuum solution for QMAG New representation of the field equations looking for a new vacuum solution for QMAG Elvis Baraković University of Tuzla Department of Mathematics 19. rujna 2012. Structure of presentation Structure of

More information

Integration of non linear conservation laws?

Integration of non linear conservation laws? Integration of non linear conservation laws? Frédéric Hélein, Institut Mathématique de Jussieu, Paris 7 Advances in Surface Theory, Leicester, June 13, 2013 Harmonic maps Let (M, g) be an oriented Riemannian

More information

Chapter 7 Curved Spacetime and General Covariance

Chapter 7 Curved Spacetime and General Covariance Chapter 7 Curved Spacetime and General Covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 145 146 CHAPTER 7. CURVED SPACETIME

More information

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gauge Theory of Gravitation: Electro-Gravity Mixing Gauge Theory of Gravitation: Electro-Gravity Mixing E. Sánchez-Sastre 1,2, V. Aldaya 1,3 1 Instituto de Astrofisica de Andalucía, Granada, Spain 2 Email: sastre@iaa.es, es-sastre@hotmail.com 3 Email: valdaya@iaa.es

More information

Lecture: General Theory of Relativity

Lecture: General Theory of Relativity Chapter 8 Lecture: General Theory of Relativity We shall now employ the central ideas introduced in the previous two chapters: The metric and curvature of spacetime The principle of equivalence The principle

More information

The Continuity Equation in ECE Theory

The Continuity Equation in ECE Theory 23 The Continuity Equation in ECE Theory by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us) Abstract In Einstein Cartan Evans (ECE) field theory

More information

Conservation Theorem of Einstein Cartan Evans Field Theory

Conservation Theorem of Einstein Cartan Evans Field Theory 28 Conservation Theorem of Einstein Cartan Evans Field Theory by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us) Abstract The conservation theorems

More information

The principle of equivalence and its consequences.

The principle of equivalence and its consequences. The principle of equivalence and its consequences. Asaf Pe er 1 January 28, 2014 This part of the course is based on Refs. [1], [2] and [3]. 1. Introduction We now turn our attention to the physics of

More information

From holonomy reductions of Cartan geometries to geometric compactifications

From holonomy reductions of Cartan geometries to geometric compactifications From holonomy reductions of Cartan geometries to geometric compactifications 1 University of Vienna Faculty of Mathematics Berlin, November 11, 2016 1 supported by project P27072 N25 of the Austrian Science

More information

A Schrödinger approach to Newton-Cartan gravity. Miami 2015

A Schrödinger approach to Newton-Cartan gravity. Miami 2015 A Schrödinger approach to Newton-Cartan gravity Eric Bergshoeff Groningen University Miami 2015 A topical conference on elementary particles, astrophysics, and cosmology Fort Lauderdale, December 21 2015

More information

Introduction to supersymmetry

Introduction to supersymmetry Introduction to supersymmetry Vicente Cortés Institut Élie Cartan Université Henri Poincaré - Nancy I cortes@iecn.u-nancy.fr August 31, 2005 Outline of the lecture The free supersymmetric scalar field

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Gravitation: Gravitation

Gravitation: Gravitation An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Development of the Einstein Hilbert Field Equation into the Einstein Cartan Evans (ECE) Field Equation

Development of the Einstein Hilbert Field Equation into the Einstein Cartan Evans (ECE) Field Equation 10 Development of the Einstein Hilbert Field Equation into the Einstein Cartan Evans (ECE) Field Equation by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and

More information

Parallel and Killing Spinors on Spin c Manifolds. 1 Introduction. Andrei Moroianu 1

Parallel and Killing Spinors on Spin c Manifolds. 1 Introduction. Andrei Moroianu 1 Parallel and Killing Spinors on Spin c Manifolds Andrei Moroianu Institut für reine Mathematik, Ziegelstr. 3a, 0099 Berlin, Germany E-mail: moroianu@mathematik.hu-berlin.de Abstract: We describe all simply

More information

For Publisher s use EINSTEINS INTUITION AND THE POST-NEWTONIAN APPROXIMATION

For Publisher s use EINSTEINS INTUITION AND THE POST-NEWTONIAN APPROXIMATION EINSTEINS INTUITION AND THE POST-NEWTONIAN APPROXIMATION JOHN STACHEL Physics Department and Center for Einstein Studies Boston University One of the many topics in general relativity, to which Jerzy Plebański

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Going with the flow: A study of Lagrangian derivatives

Going with the flow: A study of Lagrangian derivatives 1 Going with the flow: A study of Lagrangian derivatives Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc/ 12 February

More information

Gravitation: Special Relativity

Gravitation: Special Relativity An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Metric Compatibility Condition And Tetrad Postulate

Metric Compatibility Condition And Tetrad Postulate Chapter 8 Metric Compatibility Condition And Tetrad Postulate by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Abstract

More information

arxiv:math/ v1 [math.dg] 29 Sep 1998

arxiv:math/ v1 [math.dg] 29 Sep 1998 Unknown Book Proceedings Series Volume 00, XXXX arxiv:math/9809167v1 [math.dg] 29 Sep 1998 A sequence of connections and a characterization of Kähler manifolds Mikhail Shubin Dedicated to Mel Rothenberg

More information

Normally hyperbolic operators & Low Regularity

Normally hyperbolic operators & Low Regularity Roland Steinbauer Faculty of Mathematics University of Vienna Summerschool Generalised Functions in PDE, Geometry, Stochastics and Microlocal Analysis Novi Sad, Serbia, September 2010 1 / 20 1 Non-smooth

More information

The Fundamental Origin of the Bianchi Identity of Cartan Geometry and ECE Theory

The Fundamental Origin of the Bianchi Identity of Cartan Geometry and ECE Theory 9 The Fundamental Origin of the Bianchi Identity of Cartan Geometry and ECE Theory by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us) Abstract

More information

PoS(WC2004)028. Torsion as Alternative to Curvature in the Description of Gravitation

PoS(WC2004)028. Torsion as Alternative to Curvature in the Description of Gravitation in the Description of Gravitation Universidade de Brasília Brasília DF, Brazil E-mail: andrade@fis.unb.br H. I. Arcos and J. G. Pereira Instituto de Física Teórica, UNESP São Paulo SP, Brazil E-mail: hiarcos@ift.unesp.br,

More information

Noncommutative Spacetime Geometries

Noncommutative Spacetime Geometries Munich 06.11.2008 Noncommutative Spacetime Geometries Paolo Aschieri Centro Fermi, Roma, U.Piemonte Orientale, Alessandria Memorial Conference in Honor of Julius Wess I present a general program in NC

More information

Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) f = m i a (4.1) f = m g Φ (4.2) a = Φ. (4.4)

Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) f = m i a (4.1) f = m g Φ (4.2) a = Φ. (4.4) Chapter 4 Gravitation Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) 4.1 Equivalence Principle The Newton s second law states that f = m i a (4.1) where m i is the inertial mass. The Newton s law

More information

1. Geometry of the unit tangent bundle

1. Geometry of the unit tangent bundle 1 1. Geometry of the unit tangent bundle The main reference for this section is [8]. In the following, we consider (M, g) an n-dimensional smooth manifold endowed with a Riemannian metric g. 1.1. Notations

More information

How to recognize a conformally Kähler metric

How to recognize a conformally Kähler metric How to recognize a conformally Kähler metric Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge MD, Paul Tod arxiv:0901.2261, Mathematical Proceedings of

More information

Notes on torsion. Arkadiusz Jadczyk. October 11, 2010

Notes on torsion. Arkadiusz Jadczyk. October 11, 2010 Notes on torsion Arkadiusz Jadczyk October 11, 2010 A torsion is a torsion of a linear connection. What is a linear connection? For this we need an n-dimensional manifold M (assumed here to be smooth).

More information

arxiv:gr-qc/ v1 11 Oct 1999

arxiv:gr-qc/ v1 11 Oct 1999 NIKHEF/99-026 Killing-Yano tensors, non-standard supersymmetries and an index theorem J.W. van Holten arxiv:gr-qc/9910035 v1 11 Oct 1999 Theoretical Physics Group, NIKHEF P.O. Box 41882, 1009 DB Amsterdam

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

PAPER 309 GENERAL RELATIVITY

PAPER 309 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 30 May, 2016 9:00 am to 12:00 pm PAPER 309 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

arxiv: v2 [gr-qc] 7 Jan 2019

arxiv: v2 [gr-qc] 7 Jan 2019 Classical Double Copy: Kerr-Schild-Kundt metrics from Yang-Mills Theory arxiv:1810.03411v2 [gr-qc] 7 Jan 2019 Metin Gürses 1, and Bayram Tekin 2, 1 Department of Mathematics, Faculty of Sciences Bilkent

More information

In Search of the Spacetime Torsion

In Search of the Spacetime Torsion In Search of the Spacetime Torsion J. G. Pereira Instituto de Física Teórica Universidade Estadual Paulista São Paulo, Brazil XLII Rencontres de Moriond: Gravitational Waves and Experimental Gravity La

More information

A GENERALLY COVARIANT WAVE EQUATION FOR GRAND UNIFIED FIELD THEORY. Alpha Foundation Institute for Advanced Studies

A GENERALLY COVARIANT WAVE EQUATION FOR GRAND UNIFIED FIELD THEORY. Alpha Foundation Institute for Advanced Studies A GENERALLY COVARIANT WAVE EQUATION FOR GRAND UNIFIED FIELD THEORY Myron W. Evans Alpha Foundation Institute for Advanced Studies E-mail: emyrone@aol.com Received 18 May 2003; revised 9 June 2003 A generally

More information

Galilean gauge theory from Poincare gauge theory

Galilean gauge theory from Poincare gauge theory Galilean gauge theory from Poincare gauge theory Rabin Banerjee a,b, Pradip Muherjee c,d arxiv:1810.03902v2 [gr-qc] 2 Jan 2019 a S. N. Bose National Centre for Basic Sciences, JD Bloc, Sector III, Salt

More information

Metric-affine vs Spectral Theoretic Characterization of the Massless Dirac Operator

Metric-affine vs Spectral Theoretic Characterization of the Massless Dirac Operator Metric-affine vs Spectral Theoretic Characterization of the Massless Dirac Operator Elvis Barakovic, Vedad Pasic University of Tuzla Department of Mathematics August 26, 2013 Structure of presentation

More information

On the Violation of the Bianchi Identity by the Einstein Field Equation and Big Bang Cosmologies

On the Violation of the Bianchi Identity by the Einstein Field Equation and Big Bang Cosmologies 19 On the Violation of the Bianchi Identity by the Einstein Field Equation and Big Bang Cosmologies by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us)

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Rank Three Tensors in Unified Gravitation and Electrodynamics

Rank Three Tensors in Unified Gravitation and Electrodynamics 5 Rank Three Tensors in Unified Gravitation and Electrodynamics by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us) Abstract The role of base

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

The Fundamental Origin of Curvature and Torsion

The Fundamental Origin of Curvature and Torsion 6 The Fundamental Origin of Curvature and Torsion by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us) Abstract The fundamental origin of curvature

More information

arxiv:gr-qc/ v1 7 Jan 1999

arxiv:gr-qc/ v1 7 Jan 1999 REMARKS ON SUPERENERGY TENSORS arxiv:gr-qc/9901019v1 7 Jan 1999 JOSÉ M.M. SENOVILLA a Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain We define (super)

More information

PAPER 52 GENERAL RELATIVITY

PAPER 52 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 1 June, 2015 9:00 am to 12:00 pm PAPER 52 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH 1. Differential Forms To start our discussion, we will define a special class of type (0,r) tensors: Definition 1.1. A differential form of order

More information

Observer dependent background geometries arxiv:

Observer dependent background geometries arxiv: Observer dependent background geometries arxiv:1403.4005 Manuel Hohmann Laboratory of Theoretical Physics Physics Institute University of Tartu DPG-Tagung Berlin Session MP 4 18. März 2014 Manuel Hohmann

More information

Classical aspects of Poincaré gauge theory of gravity

Classical aspects of Poincaré gauge theory of gravity Classical aspects of Poincaré gauge theory of gravity Jens Boos jboos@perimeterinstitute.ca Perimeter Institute for Theoretical Physics Wednesday, Nov 11, 2015 Quantum Gravity group meeting Perimeter Institute

More information

Metric-affine theories of gravity

Metric-affine theories of gravity Introduction Einstein-Cartan Poincaré gauge theories General action Higher orders EoM Physical manifestation Summary and the gravity-matter coupling (Vinc) CENTRA, Lisboa 100 yy, 24 dd and some hours later...

More information

The spectral action for Dirac operators with torsion

The spectral action for Dirac operators with torsion The spectral action for Dirac operators with torsion Christoph A. Stephan joint work with Florian Hanisch & Frank Pfäffle Institut für athematik Universität Potsdam Tours, ai 2011 1 Torsion Geometry, Einstein-Cartan-Theory

More information

New Geometric Formalism for Gravity Equation in Empty Space

New Geometric Formalism for Gravity Equation in Empty Space New Geometric Formalism for Gravity Equation in Empty Space Xin-Bing Huang Department of Physics, Peking University, arxiv:hep-th/0402139v3 10 Mar 2004 100871 Beijing, China Abstract In this paper, complex

More information

Twist deformation quantization, gravity and Einstein spaces. Paolo Aschieri U.Piemonte Orientale, Alessandria

Twist deformation quantization, gravity and Einstein spaces. Paolo Aschieri U.Piemonte Orientale, Alessandria Bayrischzell 15.5.2010 Noncommutativity and Physics: Spacetime Quantum Geometry Twist deformation quantization, gravity and Einstein spaces Paolo Aschieri U.Piemonte Orientale, Alessandria I recall the

More information

arxiv:hep-th/ v1 10 Apr 2006

arxiv:hep-th/ v1 10 Apr 2006 Gravitation with Two Times arxiv:hep-th/0604076v1 10 Apr 2006 W. Chagas-Filho Departamento de Fisica, Universidade Federal de Sergipe SE, Brazil February 1, 2008 Abstract We investigate the possibility

More information

Nonsingular big-bounce cosmology from spin and torsion

Nonsingular big-bounce cosmology from spin and torsion Nonsingular big-bounce cosmology from spin and torsion Nikodem J. Popławski Department of Physics, Indiana University, Bloomington, IN 22 nd Midwest Relativity Meeting University of Chicago, Chicago, IL

More information

matter The second term vanishes upon using the equations of motion of the matter field, then the remaining term can be rewritten

matter The second term vanishes upon using the equations of motion of the matter field, then the remaining term can be rewritten 9.1 The energy momentum tensor It will be useful to follow the analogy with electromagnetism (the same arguments can be repeated, with obvious modifications, also for nonabelian gauge theories). Recall

More information

On the Symmetry of the Connection in Relativity and ECE Theory

On the Symmetry of the Connection in Relativity and ECE Theory 29 On the Symmetry of the Connection in Relativity and ECE Theory by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us) Abstract It is shown that

More information

First structure equation

First structure equation First structure equation Spin connection Let us consider the differential of the vielbvein it is not a Lorentz vector. Introduce the spin connection connection one form The quantity transforms as a vector

More information

arxiv:gr-qc/ v1 16 Apr 2002

arxiv:gr-qc/ v1 16 Apr 2002 Local continuity laws on the phase space of Einstein equations with sources arxiv:gr-qc/0204054v1 16 Apr 2002 R. Cartas-Fuentevilla Instituto de Física, Universidad Autónoma de Puebla, Apartado Postal

More information

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction ACTA MATHEMATICA VIETNAMICA 205 Volume 29, Number 2, 2004, pp. 205-216 GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE HANDAN BALGETIR AND MAHMUT ERGÜT Abstract. In this paper, we define

More information

GENERAL RELATIVITY: THE FIELD THEORY APPROACH

GENERAL RELATIVITY: THE FIELD THEORY APPROACH CHAPTER 9 GENERAL RELATIVITY: THE FIELD THEORY APPROACH We move now to the modern approach to General Relativity: field theory. The chief advantage of this formulation is that it is simple and easy; the

More information

arxiv: v1 [gr-qc] 12 Sep 2018

arxiv: v1 [gr-qc] 12 Sep 2018 The gravity of light-waves arxiv:1809.04309v1 [gr-qc] 1 Sep 018 J.W. van Holten Nikhef, Amsterdam and Leiden University Netherlands Abstract Light waves carry along their own gravitational field; for simple

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

LINEAR CONNECTIONS ON NORMAL ALMOST CONTACT MANIFOLDS WITH NORDEN METRIC 1

LINEAR CONNECTIONS ON NORMAL ALMOST CONTACT MANIFOLDS WITH NORDEN METRIC 1 LINEAR CONNECTIONS ON NORMAL ALMOST CONTACT MANIFOLDS WITH NORDEN METRIC 1 Marta Teofilova Abstract. Families of linear connections are constructed on almost contact manifolds with Norden metric. An analogous

More information

Particle Notes. Ryan D. Reece

Particle Notes. Ryan D. Reece Particle Notes Ryan D. Reece July 9, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation that

More information

New Geometric Formalism for Gravity Equation in Empty Space

New Geometric Formalism for Gravity Equation in Empty Space New Geometric Formalism for Gravity Equation in Empty Space Xin-Bing Huang Department of Physics, Peking University, arxiv:hep-th/0402139v2 23 Feb 2004 100871 Beijing, China Abstract In this paper, complex

More information

=0 x i p j t + (pj v i )

=0 x i p j t + (pj v i ) The energy momentum tensor This is also a little exercise of inserting c at the correct places. We put c equal 1 for convenience and re-insert it at the end. Recall the Euler equations for an ideal fluid

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

arxiv:gr-qc/ v1 19 Feb 2003

arxiv:gr-qc/ v1 19 Feb 2003 Conformal Einstein equations and Cartan conformal connection arxiv:gr-qc/0302080v1 19 Feb 2003 Carlos Kozameh FaMAF Universidad Nacional de Cordoba Ciudad Universitaria Cordoba 5000 Argentina Ezra T Newman

More information

On angular momentum operator in quantum field theory

On angular momentum operator in quantum field theory On angular momentum operator in quantum field theory Bozhidar Z. Iliev Short title: Angular momentum operator in QFT Basic ideas: July October, 2001 Began: November 1, 2001 Ended: November 15, 2001 Initial

More information

Note 1: Some Fundamental Mathematical Properties of the Tetrad.

Note 1: Some Fundamental Mathematical Properties of the Tetrad. Note 1: Some Fundamental Mathematical Properties of the Tetrad. As discussed by Carroll on page 88 of the 1997 notes to his book Spacetime and Geometry: an Introduction to General Relativity (Addison-Wesley,

More information

Applied Newton-Cartan Geometry: A Pedagogical Review

Applied Newton-Cartan Geometry: A Pedagogical Review Applied Newton-Cartan Geometry: A Pedagogical Review Eric Bergshoeff Groningen University 10th Nordic String Meeting Bremen, March 15 2016 Newtonian Gravity Free-falling frames: Galilean symmetries Earth-based

More information

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 BRX TH-386 Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 S. Deser Department of Physics Brandeis University, Waltham, MA 02254, USA The usual equivalence between the Palatini

More information

Geometry of SpaceTime Einstein Theory. of Gravity. Max Camenzind CB Sept-2010-D5

Geometry of SpaceTime Einstein Theory. of Gravity. Max Camenzind CB Sept-2010-D5 Geometry of SpaceTime Einstein Theory of Gravity Max Camenzind CB Sept-2010-D5 Lorentz Transformations Still valid Locally Vector notation for events (µ,ν=0,..,3) x γ 1 x vγ = 2 x 0 0 3 x 0 vγ γ 0 0 x

More information

Gravitational Gauge Theory and the Existence of Time

Gravitational Gauge Theory and the Existence of Time Journal of Physics: Conference Series OPEN ACCESS Gravitational Gauge Theory and the Existence of Time To cite this article: James T Wheeler 2013 J. Phys.: Conf. Ser. 462 012059 View the article online

More information

Massive and Newton-Cartan Gravity in Action

Massive and Newton-Cartan Gravity in Action Massive and Newton-Cartan Gravity in Action Eric Bergshoeff Groningen University The Ninth Aegean Summer School on Einstein s Theory of Gravity and its Modifications: From Theory to Observations based

More information

arxiv:hep-th/ v1 11 Mar 1995

arxiv:hep-th/ v1 11 Mar 1995 New Action Principle for Classical Particle Trajectories in Spaces with Torsion arxiv:hep-th/9503074v1 11 Mar 1995 P. Fiziev and H. Kleinert Institut für Theoretische Physik, Freie Universität Berlin Arnimallee

More information

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7 Geometry of SpaceTime Einstein Theory of Gravity II Max Camenzind CB Oct-2010-D7 Textbooks on General Relativity Geometry of SpaceTime II Connection and curvature on manifolds. Sectional Curvature. Geodetic

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

arxiv:gr-qc/ v1 14 Jul 1994

arxiv:gr-qc/ v1 14 Jul 1994 LINEAR BIMETRIC GRAVITATION THEORY arxiv:gr-qc/9407017v1 14 Jul 1994 M.I. Piso, N. Ionescu-Pallas, S. Onofrei Gravitational Researches Laboratory 71111 Bucharest, Romania September 3, 2018 Abstract A general

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

Five-dimensional electromagnetism

Five-dimensional electromagnetism Five-dimensional electromagnetism By D. H. Delphenich ( ) Spring Valley, OH USA Abstract: The usual pre-metric Maxwell equations of electromagnetism in Minkowski space are extended to five dimensions,

More information

Gravitational Waves: Just Plane Symmetry

Gravitational Waves: Just Plane Symmetry Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 2006 Gravitational Waves: Just Plane Symmetry Charles G. Torre Utah State University Follow this and additional works at:

More information

Newton s Second Law is Valid in Relativity for Proper Time

Newton s Second Law is Valid in Relativity for Proper Time Newton s Second Law is Valid in Relativity for Proper Time Steven Kenneth Kauffmann Abstract In Newtonian particle dynamics, time is invariant under inertial transformations, and speed has no upper bound.

More information

Level sets of the lapse function in static GR

Level sets of the lapse function in static GR Level sets of the lapse function in static GR Carla Cederbaum Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 72076 Tübingen, Germany September 4, 2014 Abstract We present a novel

More information

Notes on General Relativity Linearized Gravity and Gravitational waves

Notes on General Relativity Linearized Gravity and Gravitational waves Notes on General Relativity Linearized Gravity and Gravitational waves August Geelmuyden Universitetet i Oslo I. Perturbation theory Solving the Einstein equation for the spacetime metric is tremendously

More information

Tensor Calculus, Part 2

Tensor Calculus, Part 2 Massachusetts Institute of Technology Department of Physics Physics 8.962 Spring 2002 Tensor Calculus, Part 2 c 2000, 2002 Edmund Bertschinger. 1 Introduction The first set of 8.962 notes, Introduction

More information

arxiv:math/ v1 [math.dg] 6 Feb 1998

arxiv:math/ v1 [math.dg] 6 Feb 1998 Cartan Spinor Bundles on Manifolds. Thomas Friedrich, Berlin November 5, 013 arxiv:math/980033v1 [math.dg] 6 Feb 1998 1 Introduction. Spinor fields and Dirac operators on Riemannian manifolds M n can be

More information

We used this in Eq without explaining it. Where does it come from? We know that the derivative of a scalar is a covariant vector, df

We used this in Eq without explaining it. Where does it come from? We know that the derivative of a scalar is a covariant vector, df Lecture 19: Covariant derivative of contravariant vector The covariant derivative of a (contravariant) vector is V µ ; ν = ν Vµ + µ ν V. (19.1) We used this in Eq. 18.2 without exlaining it. Where does

More information

A Brief Introduction to Relativistic Quantum Mechanics

A Brief Introduction to Relativistic Quantum Mechanics A Brief Introduction to Relativistic Quantum Mechanics Hsin-Chia Cheng, U.C. Davis 1 Introduction In Physics 215AB, you learned non-relativistic quantum mechanics, e.g., Schrödinger equation, E = p2 2m

More information

The Einstein-Hilbert type action on foliated metric-affine manifolds

The Einstein-Hilbert type action on foliated metric-affine manifolds The Einstein-Hilbert type action on foliated metric-affine manifolds Vladimir Rovenski Department of Mathematics, University of Haifa XIX Geometrical seminar, Zlatribor September 2, 2016 Vladimir Rovenski

More information

Application of the ECE Lemma to the fermion and electromagnetic fields

Application of the ECE Lemma to the fermion and electromagnetic fields Chapter 8 Application of the ECE Lemma to the fermion and electromagnetic fields Abstract (Paper 62) by Myron W. Evans Alpha Institute for Advanced Study (AIAS). (emyrone@aol.com, www.aias.us, www.atomicprecision.com)

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

Space-Times Admitting Isolated Horizons

Space-Times Admitting Isolated Horizons Space-Times Admitting Isolated Horizons Jerzy Lewandowski Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Hoża 69, 00-681 Warszawa, Poland, lewand@fuw.edu.pl Abstract We characterize a general

More information

Post-Newtonian mathematical methods: asymptotic expansion of retarded integrals

Post-Newtonian mathematical methods: asymptotic expansion of retarded integrals Post-Newtonian mathematical methods: asymptotic expansion of retarded integrals Guillaume Faye after the works by Luc Blanchet, Guillaume Faye, Samaya Nissanke and Oliver Poujade Institut d Astrophysique

More information