New representation of the field equations looking for a new vacuum solution for QMAG

Size: px
Start display at page:

Download "New representation of the field equations looking for a new vacuum solution for QMAG"

Transcription

1 New representation of the field equations looking for a new vacuum solution for QMAG Elvis Baraković University of Tuzla Department of Mathematics 19. rujna 2012.

2 Structure of presentation

3 Structure of presentation Metric affine gravity (MAG)

4 Structure of presentation Metric affine gravity (MAG) Quadratic metric affine gravity (QMAG)

5 Structure of presentation Metric affine gravity (MAG) Quadratic metric affine gravity (QMAG) Solutions of QMAG

6 Structure of presentation Metric affine gravity (MAG) Quadratic metric affine gravity (QMAG) Solutions of QMAG PP spaces

7 Structure of presentation Metric affine gravity (MAG) Quadratic metric affine gravity (QMAG) Solutions of QMAG PP spaces Main result

8 Structure of presentation Metric affine gravity (MAG) Quadratic metric affine gravity (QMAG) Solutions of QMAG PP spaces Main result Discussion

9 Metric affine gravity Alternative theory of gravity.

10 Metric affine gravity Alternative theory of gravity. Natural generalization of Einstein s GR, which is based on a spacetime with Riemannian matric g of Lorentzian signature.

11 Metric affine gravity Alternative theory of gravity. Natural generalization of Einstein s GR, which is based on a spacetime with Riemannian matric g of Lorentzian signature. We consider spacetime to be a connected real 4-manifold M equipped with Lorentzian metric g and an affine connection Γ. SPACETIME MAG={M, g, Γ}

12 Metric affine gravity MAG R 0 T 0, GR R 0 T = 0.

13 Metric affine gravity MAG R 0 T 0, GR R 0 T = 0. The 10 independent components of the symmetric metric tensor g µν and 64 connection coefficients Γ λ µν are unknowns of MAG.

14 Metric affine gravity In QMAG, we define our action as S := q(r) (1) where q(r) is a quadratic form on curvature R.

15 Metric affine gravity In QMAG, we define our action as S := q(r) (1) where q(r) is a quadratic form on curvature R. The quatratic form q(r) has 16 R 2 terms with 16 real coupling constants.

16 Metric affine gravity In QMAG, we define our action as S := q(r) (1) where q(r) is a quadratic form on curvature R. The quatratic form q(r) has 16 R 2 terms with 16 real coupling constants. Why we use quadratic form?

17 Quadratic metric affine gravity The system of Euler Lagrange equations: S g S Γ = 0, (2) = 0. (3)

18 Quadratic metric affine gravity The system of Euler Lagrange equations: S g S Γ = 0, (2) = 0. (3) Objective: To study the combined system of field equations (2) and (3) which is system of real nonlinear PDE with real unknowns.

19 Solutions of QMAG Special case of q(r) is q(r) := R κ µν λµν Rλ κ so we get Yang - Mills theory for the affine connection.

20 Solutions of QMAG Special case of q(r) is q(r) := R κ µν λµν Rλ κ so we get Yang - Mills theory for the affine connection. Riemannian and non Riemannain solutions.

21 Solutions of QMAG Special case of q(r) is q(r) := R κ µν λµν Rλ κ so we get Yang - Mills theory for the affine connection. Riemannian and non Riemannain solutions. Definition We call a spacetime {M, g, Γ} Riemannian if the connection is Levi Civita, i.e. Γ λ µν = { λ µν} and non Riemannian otherwise.

22 Solutions of QMAG Only after these variations we set the connection to be Levi Civita and consider Riemannian solutions of the field equations.

23 Solutions of QMAG Only after these variations we set the connection to be Levi Civita and consider Riemannian solutions of the field equations. D. Vassiliev proved that the following spacetimes

24 Solutions of QMAG Only after these variations we set the connection to be Levi Civita and consider Riemannian solutions of the field equations. D. Vassiliev proved that the following spacetimes Einstein spaces (Ric = Λg), pp-spaces with parallel Ricci curvature (pp metric+ Ric = 0), and Riemannian spacetimes which have zero scalar curvature and are locally a product of Einstein 2 manifolds (Levi Civita+R = 0), are solutions of the system (2),(3).

25 Solutions of QMAG Definition We call a spacetime {M, g, Γ} a pseudoinstanton if the connection is metric compatible and curvature is irreducible amd simple..

26 Solutions of QMAG Definition We call a spacetime {M, g, Γ} a pseudoinstanton if the connection is metric compatible and curvature is irreducible amd simple.. It is the case that there are only three types od pseudoinstantons:

27 Solutions of QMAG Definition We call a spacetime {M, g, Γ} a pseudoinstanton if the connection is metric compatible and curvature is irreducible amd simple.. It is the case that there are only three types od pseudoinstantons: scalar pseudoinstanton: R (1) 0, pseudoscalar pseudoinstanton: R (1) 0, Weyl pseudoinstanton: R (10) 0.

28 Solutions of QMAG Definition We call a spacetime {M, g, Γ} a pseudoinstanton if the connection is metric compatible and curvature is irreducible amd simple.. It is the case that there are only three types od pseudoinstantons: scalar pseudoinstanton: R (1) 0, pseudoscalar pseudoinstanton: R (1) 0, Weyl pseudoinstanton: R (10) 0. Theorem (Vassiliev) A pseudoinstanton is a solution of the field equations (2), (3).

29 Classical pp spaces PP spaces are well known spacetimes in GR (Brinkmann,Peres).

30 Classical pp spaces PP spaces are well known spacetimes in GR (Brinkmann,Peres). Meaning of the pp?

31 Classical pp spaces PP spaces are well known spacetimes in GR (Brinkmann,Peres). Meaning of the pp? A very simple formula for curvature: only trace free Ricci and Weyl.

32 Classical pp spaces PP spaces are well known spacetimes in GR (Brinkmann,Peres). Meaning of the pp? A very simple formula for curvature: only trace free Ricci and Weyl. Definition A pp wave is a Riemannian spacetime whose metric can be written locally in the form ds 2 = 2dx 0 dx 3 (dx 1 ) 2 (dx 2 ) 2 + f (x 1, x 2, x 3 )(dx 3 ) 2 (4) in some local coordinates (x 0, x 1, x 2, x 3 ).

33 Generalized pp-waves In a classical pp space we consider the polarized Maxwell equation da = ±ida. (5)

34 Generalized pp-waves In a classical pp space we consider the polarized Maxwell equation da = ±ida. (5) We seek plane wave solution of (5): A = h(ϕ)m + k(ϕ)l ϕ : M R, ϕ(x) := l dx. M

35 Generalized pp-waves In a classical pp space we consider the polarized Maxwell equation da = ±ida. (5) We seek plane wave solution of (5): A = h(ϕ)m + k(ϕ)l ϕ : M R, ϕ(x) := l dx. Definition A generalized pp-wave is a metric compatible spacetime with pp metric and torsion M T := 1 Re(A da). 2

36 New representation of the field equations We write down explicitly our field equations (2), (3) under following assumptions:

37 New representation of the field equations We write down explicitly our field equations (2), (3) under following assumptions: (i) our spacetime is metric compatible, (ii) curvature has symmetries R κλµν = R µνκλ, ε κλµν R κλµν = 0, (iii) scalar curvature is zero.

38 Main result The main result is

39 Main result The main result is Lemma Under the above assumptions (i) (iii), the field equations (2), (3) are

40 Main result The main result is Lemma Under the above assumptions (i) (iii), the field equations (2), (3) are 0 = d 1 W κλµν Ric κµ + d 3 ( Ric λκ Ric ν κ 1 4 g λν Ric κµ Ric κµ ) (6)

41 New representation of the field equations where d 1, d 3, d 6, d 7, b 10 are some real constants. 0 = d 6 λ Ric κµ d 7 κric λµ ( + d 6 Ricκ η ( d 7 Ric η λ (K µηλ K µλη ) g λµw ηζ κξ (K ξ ηζ K ξ ζη ) g µλric η ξ K ξ ηκ +g µλ Ricκ η K ξ ξη K ξ ξλ Ricκµ + 1 ) 2 g µλricκ ξ (K η ξη K η ηξ ) (Kµηκ Kµκη) gκµwκζ λξ (K ξ ηζ K ξ ζη ) gµκric η ξ K ξ ηλ +g κµric η λ K ξ ξη K ξ ξκ Ric λµ + 1 ) 2 gµκric ξ λ (K η ξη K η ηξ ) + b 10 (g µλ W ηζ κξ (K ξ ζη K ξ ηζ ) + gµκwηζ λξ (K ξ ηζ K ξ ζη ) +g µλ Ricκ ξ (K η ηξ K η ξη ) + gµκric ξ λ (K η ξη K η ηξ ) +g κµric η λ K ξ ξη g λµricκ η K ξ ξη + RicµκK η λη Ric µλk η κη + 2b 10 (W η µκξ (K ξ ηλ K ξ λη ) + Wη µλξ (K ξ κη K ξ ηκ ) ) K µξη W ηξ κλ K ξ ξη Wη µλκ ) (7)

42 Discussion Theorem Generalized pp spaces of parallel Ricci curvature are solutions of the system (6), (7).

43 Discussion Theorem Generalized pp spaces of parallel Ricci curvature are solutions of the system (6), (7). The proof is done by brute force.

44 Discussion Theorem Generalized pp spaces of parallel Ricci curvature are solutions of the system (6), (7). The proof is done by brute force. Singh: On axial vector torsion in vacuum quadratic Poincaré gauge field theory solutions of the vacuum field equations with purely axial torsion.

45 Discussion Theorem Generalized pp spaces of parallel Ricci curvature are solutions of the system (6), (7). The proof is done by brute force. Singh: On axial vector torsion in vacuum quadratic Poincaré gauge field theory solutions of the vacuum field equations with purely axial torsion. Conjecture There exits a purely axial torsion waves which are solution of the field equations (2), (3).

46 Discussion We are going to try to generalize pp waves as follows

47 Discussion We are going to try to generalize pp waves as follows Conjecture There exists a new class of spacetimes with pp metrics and purely axial torsion which are solution of the field equations (2), (3).

48 Discussion We are going to try to generalize pp waves as follows Conjecture There exists a new class of spacetimes with pp metrics and purely axial torsion which are solution of the field equations (2), (3). Expectations:

49 Discussion We are going to try to generalize pp waves as follows Conjecture There exists a new class of spacetimes with pp metrics and purely axial torsion which are solution of the field equations (2), (3). Expectations: to prove two conjectures above.

50 Discussion We are going to try to generalize pp waves as follows Conjecture There exists a new class of spacetimes with pp metrics and purely axial torsion which are solution of the field equations (2), (3). Expectations: to prove two conjectures above. to give a physical interpretation of the new solutions and compare them with existing Riemannian solutions.

51 Structure of presentation Metric affine gravity Solutions of QMAG PP spaces New representation of the field equations Discussion Thank you! Welcome to Tuzla! Elvis Baraković New representation of the field equations looking for a new vac

Metric-affine vs Spectral Theoretic Characterization of the Massless Dirac Operator

Metric-affine vs Spectral Theoretic Characterization of the Massless Dirac Operator Metric-affine vs Spectral Theoretic Characterization of the Massless Dirac Operator Elvis Barakovic, Vedad Pasic University of Tuzla Department of Mathematics August 26, 2013 Structure of presentation

More information

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 BRX TH-386 Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 S. Deser Department of Physics Brandeis University, Waltham, MA 02254, USA The usual equivalence between the Palatini

More information

Lecture: General Theory of Relativity

Lecture: General Theory of Relativity Chapter 8 Lecture: General Theory of Relativity We shall now employ the central ideas introduced in the previous two chapters: The metric and curvature of spacetime The principle of equivalence The principle

More information

Lorentzian elasticity arxiv:

Lorentzian elasticity arxiv: Lorentzian elasticity arxiv:1805.01303 Matteo Capoferri and Dmitri Vassiliev University College London 14 July 2018 Abstract formulation of elasticity theory Consider a manifold M equipped with non-degenerate

More information

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu Zhejiang University UCLA Page 1 of 41 Outline Introduction Hyperbolic geometric flow Local existence and nonlinear stability Wave character of metrics and curvatures

More information

CENTROAFFINE HYPEROVALOIDS WITH EINSTEIN METRIC

CENTROAFFINE HYPEROVALOIDS WITH EINSTEIN METRIC CENTROAFFINE HYPEROVALOIDS WITH EINSTEIN METRIC Udo Simon November 2015, Granada We study centroaffine hyperovaloids with centroaffine Einstein metric. We prove: the hyperovaloid must be a hyperellipsoid..

More information

On the (non-)uniqueness of the Levi-Civita solution in the Einstein-Hilbert-Palatini formalism

On the (non-)uniqueness of the Levi-Civita solution in the Einstein-Hilbert-Palatini formalism On the (non-)uniqueness of the Levi-Civita solution in the Einstein-Hilbert-Palatini formalism José Alberto Orejuela Oviedo V Postgraduate Meeting On Theoretical Physics arxiv:1606.08756: Antonio N. Bernal,

More information

Chapter 7 Curved Spacetime and General Covariance

Chapter 7 Curved Spacetime and General Covariance Chapter 7 Curved Spacetime and General Covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 145 146 CHAPTER 7. CURVED SPACETIME

More information

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu CMS and UCLA August 20, 2007, Dong Conference Page 1 of 51 Outline: Joint works with D. Kong and W. Dai Motivation Hyperbolic geometric flow Local existence and nonlinear

More information

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gauge Theory of Gravitation: Electro-Gravity Mixing Gauge Theory of Gravitation: Electro-Gravity Mixing E. Sánchez-Sastre 1,2, V. Aldaya 1,3 1 Instituto de Astrofisica de Andalucía, Granada, Spain 2 Email: sastre@iaa.es, es-sastre@hotmail.com 3 Email: valdaya@iaa.es

More information

arxiv: v2 [gr-qc] 7 Jan 2019

arxiv: v2 [gr-qc] 7 Jan 2019 Classical Double Copy: Kerr-Schild-Kundt metrics from Yang-Mills Theory arxiv:1810.03411v2 [gr-qc] 7 Jan 2019 Metin Gürses 1, and Bayram Tekin 2, 1 Department of Mathematics, Faculty of Sciences Bilkent

More information

GENERAL RELATIVITY: THE FIELD THEORY APPROACH

GENERAL RELATIVITY: THE FIELD THEORY APPROACH CHAPTER 9 GENERAL RELATIVITY: THE FIELD THEORY APPROACH We move now to the modern approach to General Relativity: field theory. The chief advantage of this formulation is that it is simple and easy; the

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations Outline General Relativity from Basic Principles General Relativity as an Extended Canonical Gauge Theory Jürgen Struckmeier GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany j.struckmeier@gsi.de,

More information

New Geometric Formalism for Gravity Equation in Empty Space

New Geometric Formalism for Gravity Equation in Empty Space New Geometric Formalism for Gravity Equation in Empty Space Xin-Bing Huang Department of Physics, Peking University, arxiv:hep-th/0402139v2 23 Feb 2004 100871 Beijing, China Abstract In this paper, complex

More information

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

Self-dual conformal gravity

Self-dual conformal gravity Self-dual conformal gravity Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge MD, Paul Tod arxiv:1304.7772., Comm. Math. Phys. (2014). Dunajski (DAMTP, Cambridge)

More information

New Geometric Formalism for Gravity Equation in Empty Space

New Geometric Formalism for Gravity Equation in Empty Space New Geometric Formalism for Gravity Equation in Empty Space Xin-Bing Huang Department of Physics, Peking University, arxiv:hep-th/0402139v3 10 Mar 2004 100871 Beijing, China Abstract In this paper, complex

More information

The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes

The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes DigitalCommons@USU Presentations and Publications 3-20-2015 The Riemann curvature tensor, its invariants, and their use in the classification of spacetimes Follow this and additional works at: http://digitalcommons.usu.edu/dg_pres

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

PAPER 52 GENERAL RELATIVITY

PAPER 52 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 1 June, 2015 9:00 am to 12:00 pm PAPER 52 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Conservation Theorem of Einstein Cartan Evans Field Theory

Conservation Theorem of Einstein Cartan Evans Field Theory 28 Conservation Theorem of Einstein Cartan Evans Field Theory by Myron W. Evans, Alpha Institute for Advanced Study, Civil List Scientist. (emyrone@aol.com and www.aias.us) Abstract The conservation theorems

More information

Metric-affine theories of gravity

Metric-affine theories of gravity Introduction Einstein-Cartan Poincaré gauge theories General action Higher orders EoM Physical manifestation Summary and the gravity-matter coupling (Vinc) CENTRA, Lisboa 100 yy, 24 dd and some hours later...

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

First structure equation

First structure equation First structure equation Spin connection Let us consider the differential of the vielbvein it is not a Lorentz vector. Introduce the spin connection connection one form The quantity transforms as a vector

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain γ κ γ λ, S µν] = γ κ γ λ, S µν] + γ κ, S µν] γ λ = γ κ( ig λµ γ ν ig

More information

Lattice Gauge Theory and the Maxwell-Klein-Gordon equations

Lattice Gauge Theory and the Maxwell-Klein-Gordon equations Lattice Gauge Theory and the Maxwell-Klein-Gordon equations Tore G. Halvorsen Centre of Mathematics for Applications, UiO 19. February 2008 Abstract In this talk I will present a discretization of the

More information

Galilei Space-times and Newton-Cartan Gravity. Tekin Dereli

Galilei Space-times and Newton-Cartan Gravity. Tekin Dereli Galilei Space-times and Newton-Cartan Gravity Tekin Dereli Department of Physics, Koç University, İstanbul and The Turkish Academy of Sciences 1st Erdal İnönü Conference on Group Theory in Physics Middle

More information

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L

Problem 1(a): As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as L (D µ φ) L PHY 396 K. Solutions for problem set #. Problem 1a: As discussed in class, Euler Lagrange equations for charged fields can be written in a manifestly covariant form as D µ D µ φ φ = 0. S.1 In particularly,

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

arxiv: v1 [gr-qc] 13 Nov 2008

arxiv: v1 [gr-qc] 13 Nov 2008 Hodge dual for soldered bundles Tiago Gribl Lucas and J. G. Pereira Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo, Brazil arxiv:0811.2066v1 [gr-qc]

More information

Notes on General Relativity Linearized Gravity and Gravitational waves

Notes on General Relativity Linearized Gravity and Gravitational waves Notes on General Relativity Linearized Gravity and Gravitational waves August Geelmuyden Universitetet i Oslo I. Perturbation theory Solving the Einstein equation for the spacetime metric is tremendously

More information

arxiv: v1 [gr-qc] 12 Sep 2018

arxiv: v1 [gr-qc] 12 Sep 2018 The gravity of light-waves arxiv:1809.04309v1 [gr-qc] 1 Sep 018 J.W. van Holten Nikhef, Amsterdam and Leiden University Netherlands Abstract Light waves carry along their own gravitational field; for simple

More information

A simplicial gauge theory on spacetime

A simplicial gauge theory on spacetime A simplicial gauge theory on spacetime Tore G. Halvorsen, NTNU, Trondheim Norway. Joint work with Snorre H. Christiansen, UiO. 1 Abstract In this talk I will introduce the variational form of the SU(N)

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

Gravitation: Gravitation

Gravitation: Gravitation An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Brane Gravity from Bulk Vector Field

Brane Gravity from Bulk Vector Field Brane Gravity from Bulk Vector Field Merab Gogberashvili Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 380077, Georgia E-mail: gogber@hotmail.com September 7, 00 Abstract It is shown

More information

How to recognise a conformally Einstein metric?

How to recognise a conformally Einstein metric? How to recognise a conformally Einstein metric? Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge MD, Paul Tod arxiv:1304.7772., Comm. Math. Phys. (2014).

More information

Let M be a Riemannian manifold with Levi-Civita connection D. For X, Y, W Γ(TM), we have R(X, Y )Z = D Y D X Z D X D Y Z D [X,Y ] Z,

Let M be a Riemannian manifold with Levi-Civita connection D. For X, Y, W Γ(TM), we have R(X, Y )Z = D Y D X Z D X D Y Z D [X,Y ] Z, Let M be a Riemannian manifold with Levi-Civita connection D. For X, Y, W Γ(TM), we have R(X, Y )Z = D Y D X Z D X D Y Z D [X,Y ] Z, where R is the curvature tensor of D. We have Proposition 1. For any

More information

Tubelike Wormholes and Charge Confinement

Tubelike Wormholes and Charge Confinement Tubelike Wormholes and Charge Confinement p.1/4 Tubelike Wormholes and Charge Confinement Talk at the 7th Mathematical Physics Meeting, Belgrade, Sept 09-19, 01 Eduardo Guendelman 1, Alexander Kaganovich

More information

Diffeomorphism Invariant Gauge Theories

Diffeomorphism Invariant Gauge Theories Diffeomorphism Invariant Gauge Theories Kirill Krasnov (University of Nottingham) Oxford Geometry and Analysis Seminar 25 Nov 2013 Main message: There exists a large new class of gauge theories in 4 dimensions

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Quantising Gravitational Instantons

Quantising Gravitational Instantons Quantising Gravitational Instantons Kirill Krasnov (Nottingham) GARYFEST: Gravitation, Solitons and Symmetries MARCH 22, 2017 - MARCH 24, 2017 Laboratoire de Mathématiques et Physique Théorique Tours This

More information

PoS(WC2004)028. Torsion as Alternative to Curvature in the Description of Gravitation

PoS(WC2004)028. Torsion as Alternative to Curvature in the Description of Gravitation in the Description of Gravitation Universidade de Brasília Brasília DF, Brazil E-mail: andrade@fis.unb.br H. I. Arcos and J. G. Pereira Instituto de Física Teórica, UNESP São Paulo SP, Brazil E-mail: hiarcos@ift.unesp.br,

More information

The Einstein-Hilbert type action on foliated metric-affine manifolds

The Einstein-Hilbert type action on foliated metric-affine manifolds The Einstein-Hilbert type action on foliated metric-affine manifolds Vladimir Rovenski Department of Mathematics, University of Haifa XIX Geometrical seminar, Zlatribor September 2, 2016 Vladimir Rovenski

More information

Is there any torsion in your future?

Is there any torsion in your future? August 22, 2011 NBA Summer Institute Is there any torsion in your future? Dmitri Diakonov Petersburg Nuclear Physics Institute DD, Alexander Tumanov and Alexey Vladimirov, arxiv:1104.2432 and in preparation

More information

Symmetries of the Einstein-Hilbert action

Symmetries of the Einstein-Hilbert action Symmetries of the Einstein-Hilbert action Thomas Eckert eckert(@)mathematik.uni-marburg.de 2005/11/24 Abstract Like the related paper Grundbegriffe Differentialgeometrie für Gravitationstheorien (in German)

More information

Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity

Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity Eduardo Rodríguez Departamento de Matemática y Física Aplicadas Universidad Católica de la Santísima Concepción Concepción, Chile CosmoConce,

More information

Mass, quasi-local mass, and the flow of static metrics

Mass, quasi-local mass, and the flow of static metrics Mass, quasi-local mass, and the flow of static metrics Eric Woolgar Dept of Mathematical and Statistical Sciences University of Alberta ewoolgar@math.ualberta.ca http://www.math.ualberta.ca/~ewoolgar Nov

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

matter The second term vanishes upon using the equations of motion of the matter field, then the remaining term can be rewritten

matter The second term vanishes upon using the equations of motion of the matter field, then the remaining term can be rewritten 9.1 The energy momentum tensor It will be useful to follow the analogy with electromagnetism (the same arguments can be repeated, with obvious modifications, also for nonabelian gauge theories). Recall

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

A Short Note on D=3 N=1 Supergravity

A Short Note on D=3 N=1 Supergravity A Short Note on D=3 N=1 Supergravity Sunny Guha December 13, 015 1 Why 3-dimensional gravity? Three-dimensional field theories have a number of unique features, the massless states do not carry helicity,

More information

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham)

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham) Gravity vs Yang-Mills theory Kirill Krasnov (Nottingham) This is a meeting about Planck scale The problem of quantum gravity Many models for physics at Planck scale This talk: attempt at re-evaluation

More information

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH 1. Differential Forms To start our discussion, we will define a special class of type (0,r) tensors: Definition 1.1. A differential form of order

More information

Introduction to General Relativity

Introduction to General Relativity Introduction to General Relativity Lectures by Igor Pesando Slides by Pietro Fré Virgo Site May 22nd 2006 The issue of reference frames Since oldest and observers antiquity the Who is at motion? The Sun

More information

PAPER 309 GENERAL RELATIVITY

PAPER 309 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 30 May, 2016 9:00 am to 12:00 pm PAPER 309 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Supersymmetric field theories

Supersymmetric field theories Supersymmetric field theories Antoine Van Proeyen KU Leuven Summer school on Differential Geometry and Supersymmetry, September 10-14, 2012, Hamburg Based on some chapters of the book Supergravity Wess,

More information

arxiv:gr-qc/ v1 19 Feb 2003

arxiv:gr-qc/ v1 19 Feb 2003 Conformal Einstein equations and Cartan conformal connection arxiv:gr-qc/0302080v1 19 Feb 2003 Carlos Kozameh FaMAF Universidad Nacional de Cordoba Ciudad Universitaria Cordoba 5000 Argentina Ezra T Newman

More information

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes of of Institute of Theoretical Physics, Charles University in Prague April 28th, 2014 scholtz@troja.mff.cuni.cz 1 / 45 Outline of 1 2 3 4 5 2 / 45 Energy-momentum in special Lie algebra of the Killing

More information

arxiv:gr-qc/ v1 10 Nov 1995

arxiv:gr-qc/ v1 10 Nov 1995 Dirac Equation in Gauge and Affine-Metric Gravitation Theories arxiv:gr-qc/9511035v1 10 Nov 1995 1 Giovanni Giachetta Department of Mathematics and Physics University of Camerino, 62032 Camerino, Italy

More information

From holonomy reductions of Cartan geometries to geometric compactifications

From holonomy reductions of Cartan geometries to geometric compactifications From holonomy reductions of Cartan geometries to geometric compactifications 1 University of Vienna Faculty of Mathematics Berlin, November 11, 2016 1 supported by project P27072 N25 of the Austrian Science

More information

Stationarity of non-radiating spacetimes

Stationarity of non-radiating spacetimes University of Warwick April 4th, 2016 Motivation Theorem Motivation Newtonian gravity: Periodic solutions for two-body system. Einstein gravity: Periodic solutions? At first Post-Newtonian order, Yes!

More information

A Brief Introduction to Mathematical Relativity

A Brief Introduction to Mathematical Relativity A Brief Introduction to Mathematical Relativity Arick Shao Imperial College London Arick Shao (Imperial College London) Mathematical Relativity 1 / 31 Special Relativity Postulates and Definitions Einstein

More information

Applications of Fisher Information

Applications of Fisher Information Applications of Fisher Information MarvinH.J. Gruber School of Mathematical Sciences Rochester Institute of Technology 85 Lomb Memorial Drive Rochester,NY 14623 jgsma@rit.edu www.people.rit.edu/mjgsma/syracuse/talk.html

More information

Non-Abelian and gravitational Chern-Simons densities

Non-Abelian and gravitational Chern-Simons densities Non-Abelian and gravitational Chern-Simons densities Tigran Tchrakian School of Theoretical Physics, Dublin nstitute for Advanced Studies (DAS) and Department of Computer Science, Maynooth University,

More information

THE MAXWELL LAGRANGIAN IN PURELY AFFINE GRAVITY

THE MAXWELL LAGRANGIAN IN PURELY AFFINE GRAVITY International Journal of Modern Physics A Vol. 23, Nos. 3 & 4 (2008) 567 579 DOI: 10.1142/S0217751X08039578 c World Scientific Publishing Co. THE MAXWELL LAGRANGIAN IN PURELY AFFINE GRAVITY Nikodem J.

More information

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016 The Divergence Myth in Gauss-Bonnet Gravity William O. Straub Pasadena, California 91104 November 11, 2016 Abstract In Riemannian geometry there is a unique combination of the Riemann-Christoffel curvature

More information

Introduction to Chern-Simons forms in Physics - II

Introduction to Chern-Simons forms in Physics - II Introduction to Chern-Simons forms in Physics - II 7th Aegean Summer School Paros September - 2013 Jorge Zanelli Centro de Estudios Científicos CECs - Valdivia z@cecs.cl Lecture I: 1. Topological invariants

More information

General Relativity (225A) Fall 2013 Assignment 8 Solutions

General Relativity (225A) Fall 2013 Assignment 8 Solutions University of California at San Diego Department of Physics Prof. John McGreevy General Relativity (5A) Fall 013 Assignment 8 Solutions Posted November 13, 013 Due Monday, December, 013 In the first two

More information

AdS and Af Horndeski black hole solutions in four dimensions

AdS and Af Horndeski black hole solutions in four dimensions AdS and Af Horndeski black hole solutions in four dimensions Physics and Mathematics Department, Universidad Austral de Chile December 17, 2014 (UACh) AdS and Af Horndeski black hole solutions December

More information

The principle of equivalence and its consequences.

The principle of equivalence and its consequences. The principle of equivalence and its consequences. Asaf Pe er 1 January 28, 2014 This part of the course is based on Refs. [1], [2] and [3]. 1. Introduction We now turn our attention to the physics of

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Einstein Finsler Metrics and Ricci flow

Einstein Finsler Metrics and Ricci flow Einstein Finsler Metrics and Ricci flow Nasrin Sadeghzadeh University of Qom, Iran Jun 2012 Outline - A Survey of Einstein metrics, - A brief explanation of Ricci flow and its extension to Finsler Geometry,

More information

New Constraints on Cosmic Polarization Rotation (CPR) including SPTpol B-Mode polarization observations

New Constraints on Cosmic Polarization Rotation (CPR) including SPTpol B-Mode polarization observations New Constraints on Cosmic Polarization Rotation (CPR) including SPTpol B-Mode polarization observations Wei-Tou Ni National Tsing Hua U. Ref.: [1] W.-T. Ni, Spacetime structure, PLA 379(2015)1297 1303

More information

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods

A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods A Higher Derivative Extension of the Salam-Sezgin Model from Superconformal Methods Frederik Coomans KU Leuven Workshop on Conformal Field Theories Beyond Two Dimensions 16/03/2012, Texas A&M Based on

More information

Quasi-local Mass in General Relativity

Quasi-local Mass in General Relativity Quasi-local Mass in General Relativity Shing-Tung Yau Harvard University For the 60th birthday of Gary Horowtiz U. C. Santa Barbara, May. 1, 2015 This talk is based on joint work with Po-Ning Chen and

More information

Geometric Methods in Hyperbolic PDEs

Geometric Methods in Hyperbolic PDEs Geometric Methods in Hyperbolic PDEs Jared Speck jspeck@math.princeton.edu Department of Mathematics Princeton University January 24, 2011 Unifying mathematical themes Many physical phenomena are modeled

More information

Cosmology and Gravitational Bags via Metric-Independent Volume-Form Dynamics

Cosmology and Gravitational Bags via Metric-Independent Volume-Form Dynamics 1 Cosmology and Gravitational Bags via Metric-Independent Volume-Form Dynamics XI International Workshop Lie Theory and Its Applications, Varna 2015 Eduardo Guendelman 1, Emil Nissimov 2, Svetlana Pacheva

More information

GAUGE THEORY OF GRAVITATION ON A SPACE-TIME WITH TORSION

GAUGE THEORY OF GRAVITATION ON A SPACE-TIME WITH TORSION GAUGE THEORY OF GRAVITATION ON A SPACE-TIME WITH TORSION GHEORGHE ZET, CRISTIAN-DAN OPRISAN, and SIMONA BABETI Abstract. A solution of the gravitational field equations within the teleparallel gravity

More information

Rigidity of Black Holes

Rigidity of Black Holes Rigidity of Black Holes Sergiu Klainerman Princeton University February 24, 2011 Rigidity of Black Holes PREAMBLES I, II PREAMBLE I General setting Assume S B two different connected, open, domains and

More information

3 Parallel transport and geodesics

3 Parallel transport and geodesics 3 Parallel transport and geodesics 3.1 Differentiation along a curve As a prelude to parallel transport we consider another form of differentiation: differentiation along a curve. A curve is a parametrized

More information

EMERGENT GEOMETRY FROM QUANTISED SPACETIME

EMERGENT GEOMETRY FROM QUANTISED SPACETIME EMERGENT GEOMETRY FROM QUANTISED SPACETIME M.SIVAKUMAR UNIVERSITY OF HYDERABAD February 24, 2011 H.S.Yang and MS - (Phys Rev D 82-2010) Quantum Field Theory -IISER-Pune Organisation Quantised space time

More information

EINSTEIN METRICS. Andrzej Derdzinski. The Ohio State University, Columbus, Ohio, USA. August 8, 2009

EINSTEIN METRICS. Andrzej Derdzinski. The Ohio State University, Columbus, Ohio, USA. August 8, 2009 The Ohio State University, Columbus, Ohio, USA August 8, 2009 Workshop on Riemannian and Non-Riemannian Geometry Indiana University - Purdue University, Indianapolis August 8-9, 2009 these notes are posted

More information

CHAPTER 4 GENERAL COORDINATES. 4.1 General coordinate transformations

CHAPTER 4 GENERAL COORDINATES. 4.1 General coordinate transformations CHAPTER 4 GENERAL COORDINATES No one can understand the new law of gravitation without a thorough knowledge of the theory of invariants and of the calculus of variations J. J. Thomson Royal Society, 1919

More information

Research Article New Examples of Einstein Metrics in Dimension Four

Research Article New Examples of Einstein Metrics in Dimension Four International Mathematics and Mathematical Sciences Volume 2010, Article ID 716035, 9 pages doi:10.1155/2010/716035 Research Article New Examples of Einstein Metrics in Dimension Four Ryad Ghanam Department

More information

Comment on path integral derivation of Schrödinger equation in spaces with curvature and torsion

Comment on path integral derivation of Schrödinger equation in spaces with curvature and torsion J. Phys. A: Math. Gen. 29 (1996) 7619 7624. Printed in the UK Comment on path integral derivation of Schrödinger equation in spaces with curvature and torsion P Fiziev and H Kleinert Institut für Theoretische

More information

Two simple ideas from calculus applied to Riemannian geometry

Two simple ideas from calculus applied to Riemannian geometry Calibrated Geometries and Special Holonomy p. 1/29 Two simple ideas from calculus applied to Riemannian geometry Spiro Karigiannis karigiannis@math.uwaterloo.ca Department of Pure Mathematics, University

More information

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7 Geometry of SpaceTime Einstein Theory of Gravity II Max Camenzind CB Oct-2010-D7 Textbooks on General Relativity Geometry of SpaceTime II Connection and curvature on manifolds. Sectional Curvature. Geodetic

More information

Variational Geometry

Variational Geometry Variational Geometry Hung Tran Texas Tech University Feb 20th, 2018 Junior Scholar Symposium, Texas Tech University Hung Tran (TTU) Variational Geometry Feb 20th, 2018 1 / 15 Geometric Variational Problems

More information

Solar system tests for linear massive conformal gravity arxiv: v1 [gr-qc] 8 Apr 2016

Solar system tests for linear massive conformal gravity arxiv: v1 [gr-qc] 8 Apr 2016 Solar system tests for linear massive conformal gravity arxiv:1604.02210v1 [gr-qc] 8 Apr 2016 F. F. Faria Centro de Ciências da Natureza, Universidade Estadual do Piauí, 64002-150 Teresina, PI, Brazil

More information

Note 1: Some Fundamental Mathematical Properties of the Tetrad.

Note 1: Some Fundamental Mathematical Properties of the Tetrad. Note 1: Some Fundamental Mathematical Properties of the Tetrad. As discussed by Carroll on page 88 of the 1997 notes to his book Spacetime and Geometry: an Introduction to General Relativity (Addison-Wesley,

More information

Law of Gravity and Gravitational Radiation

Law of Gravity and Gravitational Radiation Law of Gravity and Gravitational Radiation Tian Ma, Shouhong Wang Supported in part by NSF and ONR http://www.indiana.edu/ fluid Blog: https://physicalprinciples.wordpress.com I. Laws of Gravity, Dark

More information

Einstein Double Field Equations

Einstein Double Field Equations Einstein Double Field Equations Stephen Angus Ewha Woman s University based on arxiv:1804.00964 in collaboration with Kyoungho Cho and Jeong-Hyuck Park (Sogang Univ.) KIAS Workshop on Fields, Strings and

More information

On Torsion Fields in Higher Derivative Quantum Gravity

On Torsion Fields in Higher Derivative Quantum Gravity Annales de la Fondation Louis de Broglie, Volume 3 no -3, 007 33 On Torsion Fields in Higher Derivative Quantum Gravity S.I. Kruglov University of Toronto at Scarborough, Physical and Environmental Sciences

More information

Chapter 2 Lorentz Connections and Inertia

Chapter 2 Lorentz Connections and Inertia Chapter 2 Lorentz Connections and Inertia In Special Relativity, Lorentz connections represent inertial effects present in non-inertial frames. In these frames, any relativistic equation acquires a manifestly

More information

Infinitesimal Einstein Deformations. Kähler Manifolds

Infinitesimal Einstein Deformations. Kähler Manifolds on Nearly Kähler Manifolds (joint work with P.-A. Nagy and U. Semmelmann) Gemeinsame Jahrestagung DMV GDM Berlin, March 30, 2007 Nearly Kähler manifolds Definition and first properties Examples of NK manifolds

More information

arxiv:hep-th/ v3 28 Dec 1996

arxiv:hep-th/ v3 28 Dec 1996 HEP-TH/9509142, UPR-660T CONSISTENT SPIN-TWO COUPLING AND QUADRATIC GRAVITATION AHMED HINDAWI, BURT A. OVRUT, AND DANIEL WALDRAM Department of Physics, University of Pennsylvania Philadelphia, PA 19104-6396,

More information