Gravitation: Gravitation

Size: px
Start display at page:

Download "Gravitation: Gravitation"

Transcription

1 An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

2 Gravitation Einstein Equations Lagrangian Formulations Properties of the Einstein Equations Energy Conditions Equivalence Principle

3 Physics in Curved Spacetime We are now ready to address: how the curvature of spacetime acts on matter to manifest itself as gravity how energy and momentum influence spacetime to create curvature. Weak Principle of Equivalence (WEP) The inertial mass and gravitational mass of any object are equal. Recall Newton s Second Law. f = m i a. with m i the inertial mass. On the other hand, f g = m g Φ. with Φ the gravitational potential and m g the gravitational mass. In principle, there is no reason to believe that m g = m i. However, Galileo showed that the response of matter to gravitation was universal. That is, in Newtonian mechanics m i = m g. Therefore, a = Φ.

4 Minimal Coupling Principle Take a law of physics, valid in inertial coordinates in flat spacetime Write it in a coordinate-invariant (tensorial) form Assert that the resulting law remains true in curved spacetime Operationally, this principle boils down to replacing the flat metric η µν by a general metric g µν the partial derivative µ by the covariant derivative µ Example: Motion of freely-falling particles. In Flat spacetime d 2 x µ dλ 2 = 0 Rewrite Substitute Thus d 2 x µ dλ 2 dx ν µ dx dλ ν dλ d 2 x µ dλ 2 = dx ν µ dx dλ ν dλ = 0 dx ν µ dx dλ ν dλ + dx ρ dx σ Γµ ρσ dλ dλ = 0.

5 The Newtonian Limit Given a General Relativistic expression, one recover the Newtonian counterparts by particles move slowly with respect to the speed of light. the gravitational field is weak, namely a perturbation of spacetime. the gravitational field is static. Consider the geodesic equation. Moving slowly implies so d 2 x µ dx i dτ << dτ 2 + Γµ 00 dt dτ, ( ) dt 2 = 0. dτ Static gravitational field implies Γ µ 00 1 = 2 gµλ ( 0 g λ0 + 0 g 0λ λ g 00 ) = 1 2 gµλ λ g 00. Weakness of the gravitational field implies g µν = η µν + h µν, h µν << 1.

6 From g µν g νσ = δ µ σ, g µν = η µν h µν, where h µν = η µρ η νσ h ρσ. Thus Γ µ 00 = 1 2 gµλ λ g 00 = 1 2 ηµλ λ h 00. Therefore d 2 x µ dτ 2 = 1 ( ) dt 2 2 ηµλ λ h 00. dτ Using 0 h 00 = 0, the µ = 0 component of this is just d 2 t dτ 2 = 0. That is, dt is constant and dτ d can then be rewritten as 2 x i dτ 2 = 1 ( ) dt 2 i h dτ d 2 x i dt 2 = 1 2 i h 00 If we introduce h 00 = 2Φ or g 00 = (1 + 2Φ), we recover a = Φ

7 Einstein Equations Poisson equation 2 Φ = 4πGρ where Φ is the Newtonian potential, 2 = δ ij i j is the Laplacian in space and ρ is the mass density. We need a tensor equation. Recall that h 00 = 2Φ, thus 2 h 00 = 8πGT 00 where we introduce T 00 = ρ. Notice that this is only the time-time component of an equation and also h 00 is a perturbation. Let s try g µν = α αg µν = 8πGT µν but g µν = 0 because of metric compatibility. Try instead R µν = κt µν for some constant κ since R ρ σµν contains second derivatives (and first derivatives) of the metric that do not vanish. But, from conservation of energy µ T µν = 0 thus µ R µν = 0 not true in general!

8 Given the contracted Bianchi identities µ R µν 1 2 ν R = µ ( R µν 1 2 gµν R ) = µ G µν = 0 Einstein proposed instead Einstein Equations G µν = κt µν where T µν is the energy-momentum tensor. For a perfect fluid, this tensor is given by T µν = (ρ + p)u µu ν + p g µν with ρ and p the rest-frame energy and momentum respectively and U µ the 4-velocity of the fluid. Next, we find κ from the Newtonian limit. First rewrite the Einstein equation G µν = κt µν R µν 1 R gµν 2 = κtµν R = κt R µν = κ(t µν 1 2 T gµν ) In the Newtonian limit, the rest energy ρ = T µν U µ U ν will be much larger than the other terms in T µν, so we want to focus on the µ = 0, ν = 0

9 In the fluid rest frame, U µ = (U 0, 0, 0, 0) In the weak-field limit, g 00 = 1 + h 00, g 00 = 1 h 00. Thus, from g µν U µ U ν = 1, we get that U 0 = 1 and U 0 = 1 andt 00 = ρ. Therefore, T = g 00 T 00 = T 00. yields R 00 = 1 2 κt 00. We need to evaluate R 00 = R λ 0λ0 = R i 0i0, since R0 000 = 0; that is, R i 0j0 = j Γ i 00 0Γ i j0 + Γi jλ Γλ 00 Γi 0λ Γλ j0 R i 0j0 j Γ i 00 + Γi jλ Γλ 00 Γi 0λ Γλ j0 R i 0j0 j Γ i 00 Thus ( ) 1 R 00 = i 2 giλ ( 0 g λ0 + 0 g 0λ λ g 00 ) = 1 2 ηij i j h 00 = h 00

10 Therefore but h 00 = 2Φ and ρ = T 00, yielding 2 h 00 = κt 00 2 Φ = κ 2 ρ Thus we need to set κ = 8πG to recover the Poisson equation. Einstein Equations G µν = 8π G T µν Notice: in vacuum T µν = 0, Einstein equations become R µν = 0.

11 Lagrangian Formulation Another approach for deriving the Einstein s equations is through the Principle of Least Action. Let s consider the action S = L d n x Since d n x is a density, L is also a density in order for S to be a scalar. Thus, define L = g L, with L a scalar. For the case of a scalar field Φ, L = 1 2 µφ µ Φ V (Φ) the variational principle yields the Euler-Lagrange equations L ( ) L Φ µ = 0 µφ yield Φ d V dφ = 0 where µ µ = g µν µ ν

12 Hilbert Action S H = L H d n x What scalars can we make out of the metric? Since we can locally always set g µν = η µν and Γ µ = 0, any νδ nontrivial scalar must involve αβ g µν. Therefore, the simplest choice is L H = g R thus Hilbert Action g n S H = R d x Using R = g µν R µν, δs H = = g n R d x d n [ µν x gg δrµν + gr µν δg µν + Rδ g] = (δs) 1 + (δs) 2 + (δs) 3

13 Let s consider first the term Recall that (δs) 1 = d n x gg µν δr µν R ρ µλν = λ Γ λ νµ + Γρ λσ Γσ νµ (λ ν). Thus, when varying the Ricci tensor, we are going to also need variations of the connection δγ ρ νµ with respect to the metric. Since the difference of two connections is a tensor, the variation δγ ρ νµ will also be a tensor. In addition, we are going to need λ (δγ ρ νµ ). To obtain this, we take its covariant derivative, λ (δγ ρ νµ ) = λ(δγ ρ νµ ) + Γρ λσ δγσ νµ Γσ λν δγρ σµ Γσ λµ δγρ νσ. It is very easy to show that δr ρ µλν = λ (δγ ρ νµ ) ν (δγρ λµ ). Therefore (δs) 1 = = d n x g g µν [ λ (δγ λ νµ ) ν (δγλ λµ ) ] d n x g σ [ g µν (δγ σ µν ) gµσ (δγ λ λµ ) ]

14 Next we use Stoke s theorem with Σ σ σv g d n x = n σ σv γ d n 1 x Σ V σ = g µν (δγ σ µν ) gµσ (δγ λ λµ ). Finally, δγ ρ νµ in terms of δgµν yields δγ ρ νµ = 1 2 [ g λµ ν (δg λσ ) + g λν µ(δg λσ ) g µαg νβ σ (δg αβ ] ) and thus V σ = g µν σ (δg µν ) λ (δg σλ ). If we take the boundary term to infinity and make the variation vanish at infinity, we have that (δs) 1 = 0

15 Next (δs) 3 = d n x R δ g. That is, we need to find δ g. We make use Tr(ln M) = ln(det M). which yields Tr(M 1 δm) = 1 δ(det M). det M Set M = g µν. Then, det M = g 1 and δ(g 1 ) = 1 gµν δgµν g thus δ g = δ[( g 1 ) 1/2 ] = 1 2 ( g 1 ) 3/2 δ( g 1 ) = 1 ggµν δg µν 2 and (δs) 3 = d n x g ( 12 ) R gµν δg µν

16 Finally, with the new expressions for (δs) 2 and (δs) 3, we arrive to δs = d n x g [R µν 12 ] Rgµν δg µν. Recall that the functional derivative of the action satisfies ( ) δs δs = δφ i d n x δφ i i with stationary points satisfying δs/δφ i = 0 This yields 1 g δs δg µν = Rµν 1 2 Rgµν = 0. namely the Einstein s equations in vacuum.

17 We need now to include matter S = 1 8πG S H + S M, where S M is the action for matter. Following through the same procedure as above leads to 1 δs g δg µν = 1 (R µν 12 ) 8πG Rgµν + 1 δs M g δg µν = 0, and we recover Einstein s equations if we set T µν = 1 g δs M δg µν. Einstein Equations G µν = 8π G T µν

18 Energy Conditions What metrics obey Einstein s equations? Answer: any metric is a solution if T µν is not restricted! We want solutions to Einstein s equations with realistic sources of energy and momentum. For instance, only positive energy densities are allowed. Energy Conditions: Weak Energy Condition: T µν t µ t ν 0 Null Energy Condition: T µν k µ k ν 0 Dominant Energy Condition: T µν t µ t ν 0 and (T µν t µ )(T ν αt α ) 0 Null Dominant Energy Condition: T µν k µ k ν 0 and (T µν k µ )(T ν αk α ) 0 Strong Energy Condition: T µν t µ t ν 1 2 T λ λt σ t σ where t µ and k µ are arbitrary time-like and null vectors, respectively. For T µν = (ρ + p)u µu ν + p g µν these conditions read Weak Energy Condition: ρ 0 and ρ + p 0 Null Energy Condition: ρ + p 0 Dominant Energy Condition: ρ p Null Dominant Energy Condition: ρ p and p = ρ is allowed. Strong Energy Condition: ρ + p 0 and ρ + 3 p 0

19 Cosmological Constant Einstein: the biggest mistake of his S = d n x g(r 2Λ), where Λ is some constant. The resulting field equations in vaccum are G µν + Λ g µν = 0 If the cosmological constant is tuned just right, it is possible to find a static but unstable solution. If instead one considers G µν = Λ g µν = 8 π T µν then T µν = Λ g µν /8 π. The cosmological constant Λ can be then interpreted as the energy density of the vacuum. Recall that T µν = (ρ + p)u µu ν + p g µν for a perfect fluid. Thus, we need ρ = p (null dominant energy condition) and ρ = Λ g µν /8 π

20 Alternative Theories of Gravity Generalization of the Hilbert action S = d n x g(r + α 1 R 2 + α 2 R µν R µν + α 3 g µν µr ν R + ), where the α s are coupling constants. Scalar-tensor theories: S = d n x [ g f (λ)r + 1 ] 2 gµν ( µλ)( ν λ) V (λ), where f (λ) and V (λ) are functions which define the theory.

21 Equivalence Principle Again The Equivalence Principle is used to justify: Principle of Covariance: Laws of physics should be expressible in a covariant form. That is, the equations are manifestly tensorial and thus coordinate invariant. Example: µf µν = J ν µf µν = J ν There exists a metric on spacetime, the curvature of which is interpreted as gravity. That is, gravitation is identified with the effects of spacetime curvature. There do not exist any other fields that resemble gravity. The interactions of matter fields to curvature are minimal. That is, there is no direct coupling of matter with the Reimann tensor. Example: F µν R ν αβγ or d 2 x µ dλ 2 + dx ρ dx σ µ dx dx σ Γµ ρσ = α σr dλ dλ dλ dλ Since dimensionally, [Γ] = L 1 and [R] = L 2, to be dimensionally consistent [α] = L 2. The only reasonable choice is α l 2 P where l P = ( G/c3 ) 1/2 = cm (Planck s length). It is at those scales that one could in principle measure the coupling to σr

Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) f = m i a (4.1) f = m g Φ (4.2) a = Φ. (4.4)

Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) f = m i a (4.1) f = m g Φ (4.2) a = Φ. (4.4) Chapter 4 Gravitation Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) 4.1 Equivalence Principle The Newton s second law states that f = m i a (4.1) where m i is the inertial mass. The Newton s law

More information

Lecture: General Theory of Relativity

Lecture: General Theory of Relativity Chapter 8 Lecture: General Theory of Relativity We shall now employ the central ideas introduced in the previous two chapters: The metric and curvature of spacetime The principle of equivalence The principle

More information

matter The second term vanishes upon using the equations of motion of the matter field, then the remaining term can be rewritten

matter The second term vanishes upon using the equations of motion of the matter field, then the remaining term can be rewritten 9.1 The energy momentum tensor It will be useful to follow the analogy with electromagnetism (the same arguments can be repeated, with obvious modifications, also for nonabelian gauge theories). Recall

More information

The principle of equivalence and its consequences.

The principle of equivalence and its consequences. The principle of equivalence and its consequences. Asaf Pe er 1 January 28, 2014 This part of the course is based on Refs. [1], [2] and [3]. 1. Introduction We now turn our attention to the physics of

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Variational Principle and Einstein s equations

Variational Principle and Einstein s equations Chapter 15 Variational Principle and Einstein s equations 15.1 An useful formula There exists an useful equation relating g µν, g µν and g = det(g µν ) : g x α = ggµν g µν x α. (15.1) The proof is the

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Week 9: Einstein s field equations

Week 9: Einstein s field equations Week 9: Einstein s field equations Riemann tensor and curvature We are looking for an invariant characterisation of an manifold curved by gravity. As the discussion of normal coordinates showed, the first

More information

GENERAL RELATIVITY: THE FIELD THEORY APPROACH

GENERAL RELATIVITY: THE FIELD THEORY APPROACH CHAPTER 9 GENERAL RELATIVITY: THE FIELD THEORY APPROACH We move now to the modern approach to General Relativity: field theory. The chief advantage of this formulation is that it is simple and easy; the

More information

Chapter 7 Curved Spacetime and General Covariance

Chapter 7 Curved Spacetime and General Covariance Chapter 7 Curved Spacetime and General Covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 145 146 CHAPTER 7. CURVED SPACETIME

More information

Schwarzschild Solution to Einstein s General Relativity

Schwarzschild Solution to Einstein s General Relativity Schwarzschild Solution to Einstein s General Relativity Carson Blinn May 17, 2017 Contents 1 Introduction 1 1.1 Tensor Notations......................... 1 1.2 Manifolds............................. 2

More information

Chapter 2 General Relativity and Black Holes

Chapter 2 General Relativity and Black Holes Chapter 2 General Relativity and Black Holes In this book, black holes frequently appear, so we will describe the simplest black hole, the Schwarzschild black hole and its physics. Roughly speaking, a

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

? Can we formulate General Relativity in a Lagrangian picture?

? Can we formulate General Relativity in a Lagrangian picture? 6. General Relativity Astro Particle Physics description of the very early universe: curved space-time in the context of particle physics we need the particle physics description formulated in Hamiltonian

More information

PAPER 52 GENERAL RELATIVITY

PAPER 52 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 1 June, 2015 9:00 am to 12:00 pm PAPER 52 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Einstein s Theory of Gravity. December 13, 2017

Einstein s Theory of Gravity. December 13, 2017 December 13, 2017 Newtonian Gravity Poisson equation 2 U( x) = 4πGρ( x) U( x) = G ρ( x) x x d 3 x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 BRX TH-386 Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 S. Deser Department of Physics Brandeis University, Waltham, MA 02254, USA The usual equivalence between the Palatini

More information

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018 Consistency of conservation laws in SR and GR General Relativity j µ and for point particles van Nieuwenhuizen, Spring 2018 1 Introduction The Einstein equations for matter coupled to gravity read Einstein

More information

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France)

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France) An introduction to gravitational waves Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France) Outline of lectures (1/2) The world's shortest introduction to General Relativity The linearized

More information

arxiv:physics/ v1 [physics.ed-ph] 21 Aug 1999

arxiv:physics/ v1 [physics.ed-ph] 21 Aug 1999 arxiv:physics/9984v [physics.ed-ph] 2 Aug 999 Gravitational Waves: An Introduction Indrajit Chakrabarty Abstract In this article, I present an elementary introduction to the theory of gravitational waves.

More information

Gravitation: Special Relativity

Gravitation: Special Relativity An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

A873: Cosmology Course Notes. II. General Relativity

A873: Cosmology Course Notes. II. General Relativity II. General Relativity Suggested Readings on this Section (All Optional) For a quick mathematical introduction to GR, try Chapter 1 of Peacock. For a brilliant historical treatment of relativity (special

More information

The Geometric Scalar Gravity Theory

The Geometric Scalar Gravity Theory The Geometric Scalar Gravity Theory M. Novello 1 E. Bittencourt 2 J.D. Toniato 1 U. Moschella 3 J.M. Salim 1 E. Goulart 4 1 ICRA/CBPF, Brazil 2 University of Roma, Italy 3 University of Insubria, Italy

More information

Lecture IX: Field equations, cosmological constant, and tides

Lecture IX: Field equations, cosmological constant, and tides Lecture IX: Field equations, cosmological constant, and tides Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: October 28, 2011) I. OVERVIEW We are now ready to construct Einstein

More information

CHAPTER 6 EINSTEIN EQUATIONS. 6.1 The energy-momentum tensor

CHAPTER 6 EINSTEIN EQUATIONS. 6.1 The energy-momentum tensor CHAPTER 6 EINSTEIN EQUATIONS You will be convinced of the general theory of relativity once you have studied it. Therefore I am not going to defend it with a single word. A. Einstein 6.1 The energy-momentum

More information

Review of General Relativity

Review of General Relativity Lecture 3 Review of General Relativity Jolien Creighton University of Wisconsin Milwaukee July 16, 2012 Whirlwind review of differential geometry Coordinates and distances Vectors and connections Lie derivative

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

On the (non-)uniqueness of the Levi-Civita solution in the Einstein-Hilbert-Palatini formalism

On the (non-)uniqueness of the Levi-Civita solution in the Einstein-Hilbert-Palatini formalism On the (non-)uniqueness of the Levi-Civita solution in the Einstein-Hilbert-Palatini formalism José Alberto Orejuela Oviedo V Postgraduate Meeting On Theoretical Physics arxiv:1606.08756: Antonio N. Bernal,

More information

JHEP11(2013)135. Mimetic dark matter. Ali H. Chamseddine a,b and Viatcheslav Mukhanov c,d,e

JHEP11(2013)135. Mimetic dark matter. Ali H. Chamseddine a,b and Viatcheslav Mukhanov c,d,e Published for SISSA by Springer Received: September 23, 2013 Revised: October 24, 2013 Accepted: October 25, 2013 Published: November 18, 2013 Mimetic dark matter Ali H. Chamseddine a,b and Viatcheslav

More information

Longitudinal Waves in Scalar, Three-Vector Gravity

Longitudinal Waves in Scalar, Three-Vector Gravity Longitudinal Waves in Scalar, Three-Vector Gravity Kenneth Dalton email: kxdalton@yahoo.com Abstract The linear field equations are solved for the metrical component g 00. The solution is applied to the

More information

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016 The Divergence Myth in Gauss-Bonnet Gravity William O. Straub Pasadena, California 91104 November 11, 2016 Abstract In Riemannian geometry there is a unique combination of the Riemann-Christoffel curvature

More information

Notes on General Relativity Linearized Gravity and Gravitational waves

Notes on General Relativity Linearized Gravity and Gravitational waves Notes on General Relativity Linearized Gravity and Gravitational waves August Geelmuyden Universitetet i Oslo I. Perturbation theory Solving the Einstein equation for the spacetime metric is tremendously

More information

Symmetry Transformations, the Einstein-Hilbert Action, and Gauge Invariance

Symmetry Transformations, the Einstein-Hilbert Action, and Gauge Invariance Massachusetts Institute of Technology Department of Physics Physics 8.962 Spring 2002 Symmetry Transformations, the Einstein-Hilbert Action, and Gauge Invariance c 2000, 2002 Edmund Bertschinger. 1 Introduction

More information

A solution in Weyl gravity with planar symmetry

A solution in Weyl gravity with planar symmetry Utah State University From the SelectedWorks of James Thomas Wheeler Spring May 23, 205 A solution in Weyl gravity with planar symmetry James Thomas Wheeler, Utah State University Available at: https://works.bepress.com/james_wheeler/7/

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

Physics on Curved Spaces 2

Physics on Curved Spaces 2 Physics on Curved Spaces 2 May 11, 2017 2 Based on: General Relativity M.P.Hobson, G. Efstahiou and A.N. Lasenby, Cambridge 2006 (Chapter 6 ) Gravity E. Poisson, C.M. Will, Cambridge 2014 Physics on Curved

More information

Light Propagation in the Averaged Universe. arxiv:

Light Propagation in the Averaged Universe. arxiv: Light Propagation in the Averaged Universe arxiv: 1404.2185 Samae Bagheri Dominik Schwarz Bielefeld University Cosmology Conference, Centre de Ciencias de Benasque Pedro Pascual, 11.Aug, 2014 Outline 1

More information

arxiv: v1 [physics.gen-ph] 18 Mar 2010

arxiv: v1 [physics.gen-ph] 18 Mar 2010 arxiv:1003.4981v1 [physics.gen-ph] 18 Mar 2010 Riemann-Liouville Fractional Einstein Field Equations Joakim Munkhammar October 22, 2018 Abstract In this paper we establish a fractional generalization of

More information

THE MAXWELL LAGRANGIAN IN PURELY AFFINE GRAVITY

THE MAXWELL LAGRANGIAN IN PURELY AFFINE GRAVITY International Journal of Modern Physics A Vol. 23, Nos. 3 & 4 (2008) 567 579 DOI: 10.1142/S0217751X08039578 c World Scientific Publishing Co. THE MAXWELL LAGRANGIAN IN PURELY AFFINE GRAVITY Nikodem J.

More information

Kinetic screening of fields and stability of NEC violating configurations

Kinetic screening of fields and stability of NEC violating configurations Kinetic screening of fields and stability of NEC violating configurations Peder Forfang Thesis submitted for the degree of Master of Science in Astronomy Institute of Theoretical Astrophysics University

More information

Solar system tests for linear massive conformal gravity arxiv: v1 [gr-qc] 8 Apr 2016

Solar system tests for linear massive conformal gravity arxiv: v1 [gr-qc] 8 Apr 2016 Solar system tests for linear massive conformal gravity arxiv:1604.02210v1 [gr-qc] 8 Apr 2016 F. F. Faria Centro de Ciências da Natureza, Universidade Estadual do Piauí, 64002-150 Teresina, PI, Brazil

More information

Holomorphic Gravity. Christiaan L. M. Mantz

Holomorphic Gravity. Christiaan L. M. Mantz Holomorphic Gravity Christiaan L. M. Mantz The Waterfall by M.C.Escher is displayed on the cover. The water symbolizes anti-symmetric space-time-momentum-energy curvature, better known as torsion. Holomorphic

More information

BRANE COSMOLOGY and Randall-Sundrum model

BRANE COSMOLOGY and Randall-Sundrum model BRANE COSMOLOGY and Randall-Sundrum model M. J. Guzmán June 16, 2009 Standard Model of Cosmology CMB and large-scale structure observations provide us a high-precision estimation of the cosmological parameters:

More information

arxiv:gr-qc/ v1 19 Feb 2003

arxiv:gr-qc/ v1 19 Feb 2003 Conformal Einstein equations and Cartan conformal connection arxiv:gr-qc/0302080v1 19 Feb 2003 Carlos Kozameh FaMAF Universidad Nacional de Cordoba Ciudad Universitaria Cordoba 5000 Argentina Ezra T Newman

More information

Einstein s Equations. July 1, 2008

Einstein s Equations. July 1, 2008 July 1, 2008 Newtonian Gravity I Poisson equation 2 U( x) = 4πGρ( x) U( x) = G d 3 x ρ( x) x x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for r

More information

arxiv: v2 [gr-qc] 28 Jan 2009

arxiv: v2 [gr-qc] 28 Jan 2009 Boundary Terms, ariational Principles and Higher Derivative Modified Gravity Ethan Dyer 1 and Kurt Hinterbichler 2 arxiv:0809.4033v2 [gr-qc] 28 Jan 2009 Institute for Strings, Cosmology and Astroparticle

More information

= (length of P) 2, (1.1)

= (length of P) 2, (1.1) I. GENERAL RELATIVITY A SUMMARY A. Pseudo-Riemannian manifolds Spacetime is a manifold that is continuous and differentiable. This means that we can define scalars, vectors, 1-forms and in general tensor

More information

General Relativity (225A) Fall 2013 Assignment 8 Solutions

General Relativity (225A) Fall 2013 Assignment 8 Solutions University of California at San Diego Department of Physics Prof. John McGreevy General Relativity (5A) Fall 013 Assignment 8 Solutions Posted November 13, 013 Due Monday, December, 013 In the first two

More information

Properties of Traversable Wormholes in Spacetime

Properties of Traversable Wormholes in Spacetime Properties of Traversable Wormholes in Spacetime Vincent Hui Department of Physics, The College of Wooster, Wooster, Ohio 44691, USA. (Dated: May 16, 2018) In this project, the Morris-Thorne metric of

More information

A Curvature Primer. With Applications to Cosmology. Physics , General Relativity

A Curvature Primer. With Applications to Cosmology. Physics , General Relativity With Applications to Cosmology Michael Dine Department of Physics University of California, Santa Cruz November/December, 2009 We have barely three lectures to cover about five chapters in your text. To

More information

Physics on Curved Spaces 2

Physics on Curved Spaces 2 Physics on Curved Spaces 2 November 29, 2017 2 Based on: General Relativity M.P.Hobson, G. Efstahiou and A.N. Lasenby, Cambridge 2006 (Chapter 6 ) Gravity E. Poisson, C.M. Will, Cambridge 2014 Physics

More information

arxiv:hep-th/ v3 28 Dec 1996

arxiv:hep-th/ v3 28 Dec 1996 HEP-TH/9509142, UPR-660T CONSISTENT SPIN-TWO COUPLING AND QUADRATIC GRAVITATION AHMED HINDAWI, BURT A. OVRUT, AND DANIEL WALDRAM Department of Physics, University of Pennsylvania Philadelphia, PA 19104-6396,

More information

2.1 The metric and and coordinate transformations

2.1 The metric and and coordinate transformations 2 Cosmology and GR The first step toward a cosmological theory, following what we called the cosmological principle is to implement the assumptions of isotropy and homogeneity withing the context of general

More information

Cosmology (Cont.) Lecture 19

Cosmology (Cont.) Lecture 19 Cosmology (Cont.) Lecture 19 1 General relativity General relativity is the classical theory of gravitation, and as the gravitational interaction is due to the structure of space-time, the mathematical

More information

Lecture VIII: Linearized gravity

Lecture VIII: Linearized gravity Lecture VIII: Linearized gravity Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: November 5, 2012) I. OVERVIEW We are now ready to consider the solutions of GR for the case of

More information

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7 Geometry of SpaceTime Einstein Theory of Gravity II Max Camenzind CB Oct-2010-D7 Textbooks on General Relativity Geometry of SpaceTime II Connection and curvature on manifolds. Sectional Curvature. Geodetic

More information

The Schwarzschild Metric

The Schwarzschild Metric The Schwarzschild Metric The Schwarzschild metric describes the distortion of spacetime in a vacuum around a spherically symmetric massive body with both zero angular momentum and electric charge. It is

More information

arxiv:gr-qc/ v2 8 Dec 1994

arxiv:gr-qc/ v2 8 Dec 1994 UTPT-94-36 Field Equations and Conservation Laws in the Nonsymmetric Gravitational Theory J. Légaré and J. W. Moffat arxiv:gr-qc/941009v 8 Dec 1994 Department of Physics, University of Toronto, Toronto,

More information

Metric-affine theories of gravity

Metric-affine theories of gravity Introduction Einstein-Cartan Poincaré gauge theories General action Higher orders EoM Physical manifestation Summary and the gravity-matter coupling (Vinc) CENTRA, Lisboa 100 yy, 24 dd and some hours later...

More information

General Relativity and Differential

General Relativity and Differential Lecture Series on... General Relativity and Differential Geometry CHAD A. MIDDLETON Department of Physics Rhodes College November 1, 2005 OUTLINE Distance in 3D Euclidean Space Distance in 4D Minkowski

More information

Imperial College 4th Year Physics UG, General Relativity Revision lecture. Toby Wiseman; Huxley 507,

Imperial College 4th Year Physics UG, General Relativity Revision lecture. Toby Wiseman; Huxley 507, Imperial College 4th Year Physics UG, 2012-13 General Relativity Revision lecture Toby Wiseman; Huxley 507, email: t.wiseman@imperial.ac.uk 1 1 Exam This is 2 hours. There is one compulsory question (

More information

Thermodynamics of f(r) Gravity with the Disformal Transformation

Thermodynamics of f(r) Gravity with the Disformal Transformation Thermodynamics of f(r) Gravity with the Disformal Transformation Jhih-Rong Lu National Tsing Hua University(NTHU) Collaborators: Chao-Qiang Geng(NCTS, NTHU), Wei-Cheng Hsu(NTHU), Ling-Wei Luo(AS) Outline

More information

Continuity Equations and the Energy-Momentum Tensor

Continuity Equations and the Energy-Momentum Tensor Physics 4 Lecture 8 Continuity Equations and the Energy-Momentum Tensor Lecture 8 Physics 4 Classical Mechanics II October 8th, 007 We have finished the definition of Lagrange density for a generic space-time

More information

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Astr 0 Tues. May, 07 Today s Topics Chapter : Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Field Equations The Primeval Fireball Standard Big Bang Model Chapter

More information

Problem Set #1: 1.1, 1.3, 1.7, 1.10, 1.13 (Due Monday Sept. 23rd)

Problem Set #1: 1.1, 1.3, 1.7, 1.10, 1.13 (Due Monday Sept. 23rd) Chapter 1 Special Relativity Problem Set #1: 1.1, 1.3, 1.7, 1.10, 1.13 (Due Monday Sept. 23rd) 1.1 Minkowski space In Newtonian physics the three spatial dimensions x, y and z are connected by coordinate

More information

u r u r +u t u t = 1 g rr (u r ) 2 +g tt u 2 t = 1 (u r ) 2 /(1 2M/r) 1/(1 2M/r) = 1 (u r ) 2 = 2M/r.

u r u r +u t u t = 1 g rr (u r ) 2 +g tt u 2 t = 1 (u r ) 2 /(1 2M/r) 1/(1 2M/r) = 1 (u r ) 2 = 2M/r. 1 Orthonormal Tetrads, continued Here s another example, that combines local frame calculations with more global analysis. Suppose you have a particle at rest at infinity, and you drop it radially into

More information

General Relativity Lecture 20

General Relativity Lecture 20 General Relativity Lecture 20 1 General relativity General relativity is the classical (not quantum mechanical) theory of gravitation. As the gravitational interaction is a result of the structure of space-time,

More information

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations Outline General Relativity from Basic Principles General Relativity as an Extended Canonical Gauge Theory Jürgen Struckmeier GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany j.struckmeier@gsi.de,

More information

Problem Sets on Cosmology and Cosmic Microwave Background

Problem Sets on Cosmology and Cosmic Microwave Background Problem Sets on Cosmology and Cosmic Microwave Background Lecturer: Prof. Dr. Eiichiro Komatsu October 16, 2014 1 Expansion of the Universe In this section, we will use Einstein s General Relativity to

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

Curvature. Asaf Pe er 1

Curvature. Asaf Pe er 1 Curvature. Asaf Pe er 1 January 31, 2014 This part of the course is based on Refs. [1], [2] and [3]. All figures are taken from Sean Carroll s notes in Level 5: A Knowledgebase for Extragalactic Astronomy

More information

GRAVITATION, ELECTROMAGNETISM AND COSMOLOGICAL CONSTANT IN PURELY AFFINE GRAVITY

GRAVITATION, ELECTROMAGNETISM AND COSMOLOGICAL CONSTANT IN PURELY AFFINE GRAVITY Foundations of Physics Vol. 39, No. 3 (2009) 307 330 DOI: 10.1007/s10701-009-9284-y c Springer Science+Business Media, LLC GRAVITATION, ELECTROMAGNETISM AND COSMOLOGICAL CONSTANT IN PURELY AFFINE GRAVITY

More information

2 Post-Keplerian Timing Parameters for General Relativity

2 Post-Keplerian Timing Parameters for General Relativity 1 Introduction General Relativity has been one of the pilars of modern physics for over 100 years now. Testing the theory and its consequences is therefore very important to solidifying our understand

More information

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes.

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes. Relativistic Electrodynamics An inertial frame = coordinate system where Newton's 1st law of motion - the law of inertia - is true. An inertial frame moves with constant velocity with respect to any other

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

Gravitational Waves and Black Holes

Gravitational Waves and Black Holes NIKHEF/97-017 HD-THEP-97-6 arxiv:gr-qc/9704043 v1 15 Apr 1997 Gravitational Waves and Black Holes An Introduction to General Relativity J.W. van Holten NIKHEF, P.O. Box 41882 1009 DB Amsterdam NL Abstract

More information

Lorentz Transformations and Special Relativity

Lorentz Transformations and Special Relativity Lorentz Transformations and Special Relativity Required reading: Zwiebach 2.,2,6 Suggested reading: Units: French 3.7-0, 4.-5, 5. (a little less technical) Schwarz & Schwarz.2-6, 3.-4 (more mathematical)

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

Delta-gravity. Jorge Alfaro Pontificia Universidad Católica de Chile. Segundo Encuentro CosmoConce Concepción, March 16, Motivation...

Delta-gravity. Jorge Alfaro Pontificia Universidad Católica de Chile. Segundo Encuentro CosmoConce Concepción, March 16, Motivation... Delta-gravity Jorge Alfaro Pontificia Universidad Católica de Chile Segundo Encuentro CosmoConce Concepción, March 16, 2012 Table of contents Motivation........................................................

More information

Chapter 4. COSMOLOGICAL PERTURBATION THEORY

Chapter 4. COSMOLOGICAL PERTURBATION THEORY Chapter 4. COSMOLOGICAL PERTURBATION THEORY 4.1. NEWTONIAN PERTURBATION THEORY Newtonian gravity is an adequate description on small scales (< H 1 ) and for non-relativistic matter (CDM + baryons after

More information

Einstein s Theory of Gravity. June 10, 2009

Einstein s Theory of Gravity. June 10, 2009 June 10, 2009 Newtonian Gravity Poisson equation 2 U( x) = 4πGρ( x) U( x) = G d 3 x ρ( x) x x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for r >

More information

Geometry of the Universe: Cosmological Principle

Geometry of the Universe: Cosmological Principle Geometry of the Universe: Cosmological Principle God is an infinite sphere whose centre is everywhere and its circumference nowhere Empedocles, 5 th cent BC Homogeneous Cosmological Principle: Describes

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

Physics 411 Lecture 22. E&M and Sources. Lecture 22. Physics 411 Classical Mechanics II

Physics 411 Lecture 22. E&M and Sources. Lecture 22. Physics 411 Classical Mechanics II Physics 411 Lecture 22 E&M and Sources Lecture 22 Physics 411 Classical Mechanics II October 24th, 2007 E&M is a good place to begin talking about sources, since we already know the answer from Maxwell

More information

Gravitation: Cosmology

Gravitation: Cosmology An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Set 3: Cosmic Dynamics

Set 3: Cosmic Dynamics Set 3: Cosmic Dynamics FRW Dynamics This is as far as we can go on FRW geometry alone - we still need to know how the scale factor a(t) evolves given matter-energy content General relativity: matter tells

More information

Lecture Notes for General Relativity Fall 2010

Lecture Notes for General Relativity Fall 2010 Lecture Notes for General Relativity Fall 2010 Lecturer: Professor Lam Hui Transcriber: Alexander Chen December 9, 2010 Contents 1 Lecture 1 4 1.1 Basic Information..........................................

More information

From Gravitation Theories to a Theory of Gravitation

From Gravitation Theories to a Theory of Gravitation From Gravitation Theories to a Theory of Gravitation Thomas P. Sotiriou SISSA/ISAS, Trieste, Italy based on 0707.2748 [gr-qc] in collaboration with V. Faraoni and S. Liberati Sep 27th 2007 A theory of

More information

Universality of affine formulation in General Relativity theory

Universality of affine formulation in General Relativity theory Universality of affine formulation in General Relativity theory Jerzy Kijowski and Roman Werpachowski arxiv:gr-qc/0406088v4 29 Jan 2007 Center for Theoretical Physics, Polish cademy of Sciences e-mail:

More information

Theoretical Cosmology and Astrophysics Lecture notes - Chapter 7

Theoretical Cosmology and Astrophysics Lecture notes - Chapter 7 Theoretical Cosmology and Astrophysics Lecture notes - Chapter 7 A. Refregier April 24, 2017 7 Cosmological Perturbations 1 In this chapter, we will consider perturbations to the FRW smooth model of the

More information

CHAPTER 4 GENERAL COORDINATES. 4.1 General coordinate transformations

CHAPTER 4 GENERAL COORDINATES. 4.1 General coordinate transformations CHAPTER 4 GENERAL COORDINATES No one can understand the new law of gravitation without a thorough knowledge of the theory of invariants and of the calculus of variations J. J. Thomson Royal Society, 1919

More information

The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant

The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant Jared Speck & Igor Rodnianski jspeck@math.princeton.edu University of Cambridge & Princeton University October

More information

Higher Derivative Theories of Gravity

Higher Derivative Theories of Gravity Imperial College London Department of Theoretical Physics Higher Derivative Theories of Gravity Simon Arthur Woolliams September 20, 2013 Supervised by Prof. Kellogg Stelle Submitted in partial fulfillment

More information

Curved Spacetime... A brief introduction

Curved Spacetime... A brief introduction Curved Spacetime... A brief introduction May 5, 2009 Inertial Frames and Gravity In establishing GR, Einstein was influenced by Ernst Mach. Mach s ideas about the absolute space and time: Space is simply

More information