The Dynamic Dictionary of Mathematical Functions

Size: px
Start display at page:

Download "The Dynamic Dictionary of Mathematical Functions"

Transcription

1 The Dynamic Dictionary of Mathematical Functions AISC July 6, 2010 Joint work with: Alexandre Benoit, Alin Bostan, Frédéric Chyzak, Alexis Darrasse, Stefan Gerhold, Marc Mezzarobba 1 / 31

2 I Motivation 2 / 31

3 Mathematical Functions exp, log, sin, cos, tan, sinh, cosh, tanh, arcsin, arccos, arctan, arcsinh, arccosh, arctanh, Bessel J ν, I ν, Y ν, K ν, Airy Ai and Bi, hypergeometric, generalized hypergeometric, classical orthogonal polynomials, Struve H ν, L ν, M ν, K ν, Lommel s µ,ν and S µ,ν, Anger J ν, Weber E ν, Whittaker W κ,µ, M κ,µ... Special functions Functions that have been met sufficiently often to deserve a name. Scientists need help with these functions 3 / 31

4 Dictionaries Motivation Demonstration DynaMoW Symbolic Computation Among the most cited documents in the scientific literature. Thousands of useful mathematical formulas, computed, compiled and edited by hand. Started between 60 and 30 years ago. 4 / 31

5 Motivation Demonstration DynaMoW Symbolic Computation Progress in the Past 30 Years Two important changes in the way we work: Symbolic Computation. Several million users. Mathematical functions implemented from these dictionaries. The Web New kinds of interaction with documents. 5 / 31

6 First Step: the NIST DLMF Navigation, Exports, Search Engine Still computed, compiled and edited by hand. 6 / 31

7 Motivation Demonstration DynaMoW Symbolic Computation Aim of the project DDMF = Mathematical Handbooks + Computer Algebra + Web 1 Computer algebra algorithms to generate the formulas; 2 Web-like interaction with the document and the computation. Building Blocks: 1 Linear differential equations as a data-structure; 2 New language for maths on the web. (compatible with browsers!). 7 / 31

8 II Demonstration 8 / 31

9 Demo Motivation Demonstration DynaMoW Symbolic Computation 9 / 31

10 III DynaMoW: Dynamic Mathematics on the Web 10 / 31

11 DynaMoW Motivation Demonstration DynaMoW Symbolic Computation Principle The document being generated by the computer algebra system is an object of the language. Consequences: 1 the structure of the document may depend on values that have been computed; 2 intermediate steps can be turned into a mathematical proof in natural language; 3 easy to write demo code. 11 / 31

12 Motivation Demonstration DynaMoW Symbolic Computation Architecture l Web Server Dynamow l Symbolic Computation Engine 12 / 31

13 DynaMoW, an OCaml Library DynaMoW = ocaml + quotations + antiquotations Symbolic result, converted to LaTeX, put into a paragraph let res = <:symb< symbolic expression >> in <:par< some text <:imath< some latex $(symb:res) >> >> Using ocaml values in symbolic computations let n = 23 and s = "foo" in <:symb< f($(int:n), $(str:s)) >> Symbolic objects cast to ocaml types let n = 23 + <:int< symbolic expression >> in... if <:bool< symbolic expression >> then... else... <:unit< f := symbolic expression >> [ChyzakDarrasse] 13 / 31

14 Example Motivation Demonstration DynaMoW Symbolic Computation The proof that a function is odd 14 / 31

15 15 / 31

16 IV Symbolic Computation 16 / 31

17 Defining a Mathematical Function by an Equation Classical: polynomials represent their roots better than radicals. Algorithms: Euclidean division and algorithm, Gröbner bases. More Recent: same for linear differential or recurrence equations. Algorithms: non-commutative analogues & gen. func. About 25% of Sloane s encyclopedia, 60% of Abramowitz & Stegun. eqn+ini. cond.=data structure 17 / 31

18 Guaranteed Numerical Evaluation 1. Inside the disk of convergence 1 Effective majorant-series analysis; 2 Efficient evaluation of truncated series; 3 Time complexity quasi-linear wrt precision. 2. Effective analytic continuation Path: [MezzarobbaSalvy2010] 18 / 31

19 Computation of Identities by Confinement Starting Point k + 1 vectors in dimension k an identity. 19 / 31

20 First Example: Contiguity of Hypergeometric Series F (a, b; c; z) := n=0 (a) n (b) n (c) n n! zn, (x) n := x(x +1) (x +n 1). { z(1 z)f + (c (a + b + 1)z)F abf = 0. S a F := F (a + 1, b; c; z) = z a F + F. S a Gauss 1812: contiguity relation. dim=2 S 2 a F, S a F, F linearly dependent. z 20 / 31

21 Second Example: Mehler s Identity by Confinement n=0 ( ) H n (x)h n (y) un exp 4u(xy u(x 2 +y 2 )) n! = 1 4u 2 1 4u 2 1 Definition of Hermite polynomials H n (t): recurrence of order 2 vector space of dimension 2 over Q(t, n); 2 Product: vector space over Q(x, y, n) generated by H n (x)h n (y) n!, H n+1(x)h n (y) n!, H n(x)h n+1 (y), H n+1(x)h n+1 (y) n! n! recurrence of order at most 4; (confinement) 3 Translate into differential equation (and solve). 21 / 31

22 I. Definition O R 1 := {H(n C 2 ) =(K2 n K 2 ) H(n ) C 2 H(n C 1 ) x, H(0 ) = 1, H(1 ) = 2 x } : O R 2 := subs0h = H 2, x = y, R 1 1; II. Product O R 3 := gfun :- poltorec0 H(n )$ H 2 (n )$ v (n ), 2 R 1, R 2, {v (n C 1 ) $ (n C 1 ) = v (n ), v (1 ) = 1 } 3, 2 H(n ), H 2 (n ), v (n ) 3, c (n ) 1; O gfun :- rectodiffeq0 R 3, c (n ), f (u ) 1; u 3 K 16 u 2 y x K 4 u C 8 u y 2 C 8 u x 2 K 4 x y1 f (u ) C 0 16 u 4 K 8 u 2 C 1 1 Z d \ du f (u ) ] _, f (0 ) = 1 5 O dsolve(%, f (u ) ); O R 2 := 4 H 2 (0 ) = 1, H 2 (n C 2 ) = (K2 n K 2 ) H 2 (n ) C 2 H 2 (n C 1 ) y, H 2 (1 ) = 2 y5 R 3 := 4c (0 ) = 1, c (1 ) = 4 x y, c (2 ) = 8 x 2 y 2 C 2 K 4 y 2 K 4 x 2, c (3 ) = 32 3 x3 y 3 C 24 x y K 16 x y 3 K 16 x 3 y, (16 n C 16 ) c (n ) K 16 x y c (n C 1 ) C 0 K8 n K 20 C 8 y 2 C 8 x 2 1 c (n C 2 ) K 4 x c (n C 3 ) y C (n C 4 ) c (n C 4 )5 III. Differential Equation Z [ K4 x y u C y 2 C x 2 ] ^ \ (2 u K 1 ) (2 u C 1 ) _ I e f (u ) = e 0 Ky 2 K x u C 1 2 u K 1 22 / 31

23 Data-Structure 1 Univariate case: linear differential/recurrence equation + ini. conds; 2 Multivariate case: operators (a Gröbner basis of them) + ini. conds. D-finiteness finite dimension 23 / 31

24 Confinement: Beyond Finite Dimension + Use the Hilbert dimension to drive the computation by increasing degrees. 24 / 31

25 Diff. under + Integration by Parts Algorithm? 1 Ex.: cos zt dt = π 0 1 t 2 2 J 0(z), }{{} (zj zj 0 = 0, J 0 (0) = 1). f (z,t) Proof: initial conditions and z 2 z 2 f (z, t) + z f (z, t) + zf (z, t) = t ( t 2 1 t f (z, t) z ) Creative Telescoping [Zeilberger] Input: (a basis of) linear operators that annihilate f ; Output: A free of t, / t, certificate B, such that A(f ) = B(f ). t Algorithm: sometimes. (Why would they exist?) + variants for multiple sum/int. 25 / 31

26 Algorithms Motivation Demonstration DynaMoW Symbolic Computation z1 1 Hypergeometric case [Zeilberger 1990]; 2 D-finite case: [Chyzak 2000]; 3 Non-D-finite: t z2 Algorithm [ChyzakKauersSalvy2009] for s = 0, 1, 2,..., until dim H J bound: 1 reduce A t B with A := η α (z) z α, B := φ β (z, t) β, α s β M s(i) for undetermined rational η α (z), φ β (z, t). 2 extract coeffs of M s+1 (I) to form a linear system of first order w.r.t. t 3 solve and set J to the ideal of the A s return the pairs (A, B). 26 / 31

27 Typical Examples n k= πi n=0 ( ) H n (x)h n (y) un exp 4u(xy u(x 2 +y 2 )) n! = 1 4u 2 1 4u 2 q k2 (q; q) k (q; q) n k = n k= n ( 1) k q (5k2 k)/2 (q; q) n k (q; q) n+k xj 1 (ax)i 1 (ax)y 0 (x)k 0 (x) dx = ln(1 a4 ) 2πa 2 (1 + 2xy + 4y 2 ) exp ( 4x 2 y 2 1+4y 2 ) y n+1 (1 + 4y 2 ) 3 2 dy = H n(x) n/2! [Mehler1866] [Andrews1974] [GlasserMontaldi1994] [Doetsch1930] 27 / 31

28 Examples of Non-D-Finite Identities 0 0 n k=0 ( ) n i(k + i) k 1 (n k + j) n k = (n + i + j) n k n ( ) { } n k ( 1) m k n + 1 n k! = m k k + 1 m k=0 m k=0 ( ) m B n+k = ( 1) m+n k n k=0 ( ) n B m+k k x k 1 ζ(n, α + βx) dx = β k B(k, n k)ζ(n k, α) x α 1 Li n ( xy) dx = π( α)n y α 0 sin(απ) x s 1 πy s Γ(s) exp(xy)γ(a, xy) dx = sin((a + s)π) Γ(1 a) [Abel1826] [Frobenius1910] [Gessel2003] 28 / 31

29 Special Cases with Specific Algorithms 1 Recurrence for the Taylor coefficients: 1 f (z) dz 2πi z n+1 ; 2 Recurrence for the Chebyshev coefficients: [BenoitSalvy2009] 2 1 f (t)t n (t) π dt; 1 1 t 2 3 Laplace transform: + 0 e zt f (t) dt. 29 / 31

30 Future Work Motivation Demonstration DynaMoW Symbolic Computation More expansions on bases of functions; more integral transforms; families of functions or functions with parameters; automatic generation of numerical code; information on the zeros of functions; user-defined functions. Summary: you want to bookmark / 31

31 THE END 31 / 31

Automatic Proofs of Identities: Beyond A=B

Automatic Proofs of Identities: Beyond A=B Bruno.Salvy@inria.fr FPSAC, Linz, July 20, 2009 Joint work with F. Chyzak and M. Kauers 1 / 28 I Introduction 2 / 28 Examples of Identities: Definite Sums, q-sums, Integrals n k=0 + 0 1 2πi n=0 ( ) H n

More information

Linear Differential Equations as a Data-Structure

Linear Differential Equations as a Data-Structure Linear Differential Equations as a Data-Structure Bruno Salvy Inria & ENS de Lyon FoCM, July 14, 2017 Computer Algebra Effective mathematics: what can we compute exactly? And complexity: how fast? (also,

More information

Linear differential and recurrence equations viewed as data-structures

Linear differential and recurrence equations viewed as data-structures Linear differential and recurrence equations viewed as data-structures Bruno Salvy Inria & ENS de Lyon Leçons de Mathématiques et d'informatique d'aujourd'hui Bordeaux, Mai 2015 Computer Algebra Effective

More information

Automatisches Beweisen von Identitäten

Automatisches Beweisen von Identitäten Automatisches Beweisen von Identitäten Stefan Gerhold 30. Oktober 2006 The General Scheme Parametric sums summand(n, k) = answer(n) Parametric integrals k integrand(x, y)dy = answer(x) Zeilberger s Summation

More information

PHYS 404 Lecture 1: Legendre Functions

PHYS 404 Lecture 1: Legendre Functions PHYS 404 Lecture 1: Legendre Functions Dr. Vasileios Lempesis PHYS 404 - LECTURE 1 DR. V. LEMPESIS 1 Legendre Functions physical justification Legendre functions or Legendre polynomials are the solutions

More information

In this chapter we study several functions that are useful in calculus and other areas of mathematics.

In this chapter we study several functions that are useful in calculus and other areas of mathematics. Calculus 5 7 Special functions In this chapter we study several functions that are useful in calculus and other areas of mathematics. 7. Hyperbolic trigonometric functions The functions we study in this

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Diagonals: Combinatorics, Asymptotics and Computer Algebra

Diagonals: Combinatorics, Asymptotics and Computer Algebra Diagonals: Combinatorics, Asymptotics and Computer Algebra Bruno Salvy Inria & ENS de Lyon Families of Generating Functions (a n ) 7! A(z) := X n 0 a n z n counts the number of objects of size n captures

More information

Rigorous Polynomial Approximations and Applications

Rigorous Polynomial Approximations and Applications Rigorous Polynomial Approximations and Applications Mioara Joldeș under the supervision of: Nicolas Brisebarre and Jean-Michel Muller École Normale Supérieure de Lyon, Arénaire Team, Laboratoire de l Informatique

More information

Asymptotics of Integrals of. Hermite Polynomials

Asymptotics of Integrals of. Hermite Polynomials Applied Mathematical Sciences, Vol. 4, 010, no. 61, 04-056 Asymptotics of Integrals of Hermite Polynomials R. B. Paris Division of Complex Systems University of Abertay Dundee Dundee DD1 1HG, UK R.Paris@abertay.ac.uk

More information

Math 122 Test 2. October 15, 2013

Math 122 Test 2. October 15, 2013 SI: Math 1 Test October 15, 013 EF: 1 3 4 5 6 7 Total Name Directions: 1. No books, notes or Government shut-downs. You may use a calculator to do routine arithmetic computations. You may not use your

More information

Closed Form Solutions

Closed Form Solutions Closed Form Solutions Mark van Hoeij 1 Florida State University Slides of this talk: www.math.fsu.edu/ hoeij/issac2017.pdf 1 Supported by NSF 1618657 1 / 29 What is a closed form solution? Example: Solve

More information

MATH 1231 S2 2010: Calculus. Section 2: Techniques of integration.

MATH 1231 S2 2010: Calculus. Section 2: Techniques of integration. MATH 1231 S2 2010: Calculus For use in Dr Chris Tisdell s lectures Section 2: Techniques of integration. Created and compiled by Chris Tisdell S1: Motivation S2: What you should already know S3: Integrals

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

A Proof of a Recursion for Bessel Moments

A Proof of a Recursion for Bessel Moments A Proof of a Recursion for Bessel Moments Jonathan M. Borwein Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 2W5, Canada jborwein@cs.dal.ca Bruno Salvy Algorithms Project, Inria Paris-Rocquencourt,

More information

DYCK AND MOTZKIN TRIANGLES WITH MULTIPLICITIES

DYCK AND MOTZKIN TRIANGLES WITH MULTIPLICITIES MOSCOW MATHEMATICAL JOURNAL Volume 10, Number 3, July September 2010, Pages 611 628 DYCK AND MOTZKIN TRIANGLES WITH MULTIPLICITIES V.R. MESHKOV, A.V. OMELCHENKO, M.I. PETROV, AND E.A. TROPP Abstract. Exponential

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

ELLIPSES AND ELLIPTIC CURVES. M. Ram Murty Queen s University

ELLIPSES AND ELLIPTIC CURVES. M. Ram Murty Queen s University ELLIPSES AND ELLIPTIC CURVES M. Ram Murty Queen s University Planetary orbits are elliptical What is an ellipse? x 2 a 2 + y2 b 2 = 1 An ellipse has two foci From: gomath.com/geometry/ellipse.php Metric

More information

A note on Gaussian distributions in R n

A note on Gaussian distributions in R n Proc. Indian Acad. Sci. (Math. Sci. Vol., No. 4, November 0, pp. 635 644. c Indian Academy of Sciences A note on Gaussian distributions in R n B G MANJUNATH and K R PARTHASARATHY Indian Statistical Institute,

More information

Closed Form Solutions

Closed Form Solutions Closed Form Solutions Mark van Hoeij 1 Florida State University ISSAC 2017 1 Supported by NSF 1618657 1 / 26 What is a closed form solution? Example: Solve this equation for y = y(x). y = 4 x 3 (1 x) 2

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS HANDBOOK OF MATHEMATICAL FORMULAS AND INTEGRALS Second Edition ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom ACADEMIC PRESS A Harcourt

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Algorithmic Tools for the Asymptotics of Diagonals

Algorithmic Tools for the Asymptotics of Diagonals Algorithmic Tools for the Asymptotics of Diagonals Bruno Salvy Inria & ENS de Lyon Lattice walks at the Interface of Algebra, Analysis and Combinatorics September 19, 2017 Asymptotics & Univariate Generating

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Efficient Experimental Mathematics for Lattice Path Combinatorics

Efficient Experimental Mathematics for Lattice Path Combinatorics 1/45 Efficient Experimental Mathematics for Lattice Path Combinatorics Alin Bostan based on joint works with M. Bousquet-Mélou, F. Chyzak, M. van Hoeij, M. Kauers, S. Melczer, L. Pech, K. Raschel, B. Salvy

More information

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01 ENGI 940 Lecture Notes - ODEs Page.0. Ordinary Differential Equations An equation involving a function of one independent variable and the derivative(s) of that function is an ordinary differential equation

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

APPM 1350 Final Exam Fall 2017

APPM 1350 Final Exam Fall 2017 APPM 350 Final Exam Fall 207. (26 pts) Evaluate the following. (a) Let g(x) cos 3 (π 2x). Find g (π/3). (b) Let y ( x) x. Find y (4). (c) lim r 0 e /r ln(r) + (a) (9 pt) g (x) 3 cos 2 (π 2x)( sin(π 2x))(

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information

arxiv:math/ v1 [math.ca] 19 Apr 1994

arxiv:math/ v1 [math.ca] 19 Apr 1994 arxiv:math/9404220v1 [math.ca] 19 Apr 1994 Algorithmic Work with Orthogonal Polynomials and Special Functions Wolfram Koepf Konrad-Zuse-Zentrum für Informationstechnik Berlin, Heilbronner Str. 10, D-10711

More information

Laplace s Method for Ordinary Differential Equations

Laplace s Method for Ordinary Differential Equations Physics 2400 Spring 2016 Laplace s Method for Ordinary Differential Equations Lecture notes by M. G. Rozman Last modified: March 31, 2016 We can [1, pp. 124-8], [2, h. VIII], [3, Apps. a-b], [4, h. 18],

More information

such as the ratio test. However, even without knowing the formula for a n and y 4

such as the ratio test. However, even without knowing the formula for a n and y 4 5.2 Series Solutions near an Ordinary Point, Part I 247 such as the ratio test. However, even without knowing the formula for a n we shall see in Section 5.3 that it is possible to establish that the series

More information

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2.

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2. Throughout this module we use x to denote the positive square root of x; for example, 4 = 2. You may often see (although not in FLAP) the notation sin 1 used in place of arcsin. sinh and cosh are pronounced

More information

Bon anniversaire Marc!

Bon anniversaire Marc! Bon anniversaire Marc! The full counting function of Gessel walks is algebraic Alin Bostan (INRIA) joint work with Manuel Kauers (INRIA/RISC) Journées GECKO/TERA 2008 Context: restricted lattice walks

More information

Mathematics of Physics and Engineering II: Homework problems

Mathematics of Physics and Engineering II: Homework problems Mathematics of Physics and Engineering II: Homework problems Homework. Problem. Consider four points in R 3 : P (,, ), Q(,, 2), R(,, ), S( + a,, 2a), where a is a real number. () Compute the coordinates

More information

The Big 50 Revision Guidelines for C3

The Big 50 Revision Guidelines for C3 The Big 50 Revision Guidelines for C3 If you can understand all of these you ll do very well 1. Know how to recognise linear algebraic factors, especially within The difference of two squares, in order

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

MATH 1231 MATHEMATICS 1B Calculus Section 1: - Integration.

MATH 1231 MATHEMATICS 1B Calculus Section 1: - Integration. MATH 1231 MATHEMATICS 1B 2007. For use in Dr Chris Tisdell s lectures: Tues 11 + Thur 10 in KBT Calculus Section 1: - Integration. 1. Motivation 2. What you should already know 3. Useful integrals 4. Integrals

More information

Experimental mathematics and integration

Experimental mathematics and integration Experimental mathematics and integration David H. Bailey http://www.davidhbailey.com Lawrence Berkeley National Laboratory (retired) Computer Science Department, University of California, Davis October

More information

On the singularities of non-linear ODEs

On the singularities of non-linear ODEs On the singularities of non-linear ODEs Galina Filipuk Institute of Mathematics University of Warsaw G.Filipuk@mimuw.edu.pl Collaborators: R. Halburd (London), R. Vidunas (Tokyo), R. Kycia (Kraków) 1 Plan

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Series Solutions of ODEs. Special Functions

Series Solutions of ODEs. Special Functions C05.tex 6/4/0 3: 5 Page 65 Chap. 5 Series Solutions of ODEs. Special Functions We continue our studies of ODEs with Legendre s, Bessel s, and the hypergeometric equations. These ODEs have variable coefficients

More information

Linear DifferentiaL Equation

Linear DifferentiaL Equation Linear DifferentiaL Equation Massoud Malek The set F of all complex-valued functions is known to be a vector space of infinite dimension. Solutions to any linear differential equations, form a subspace

More information

Theory and Practice of Symbolic Integration in Maple

Theory and Practice of Symbolic Integration in Maple Theory and Practice of Symbolic Integration in Maple John May Senior Developer Mathematical Software September 2010 Introduction When the talking version of a popular doll said Math is Hard!, she was almost

More information

Research Article Operator Representation of Fermi-Dirac and Bose-Einstein Integral Functions with Applications

Research Article Operator Representation of Fermi-Dirac and Bose-Einstein Integral Functions with Applications Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2007, Article ID 80515, 9 pages doi:10.1155/2007/80515 Research Article Operator Representation of Fermi-Dirac

More information

Techniques of Integration

Techniques of Integration Chapter 8 Techniques of Integration 8. Trigonometric Integrals Summary (a) Integrals of the form sin m x cos n x. () sin k+ x cos n x = ( cos x) k cos n x (sin x ), then apply the substitution u = cos

More information

Nonconstant Coefficients

Nonconstant Coefficients Chapter 7 Nonconstant Coefficients We return to second-order linear ODEs, but with nonconstant coefficients. That is, we consider (7.1) y + p(t)y + q(t)y = 0, with not both p(t) and q(t) constant. The

More information

A Note on the Differential Equations with Distributional Coefficients

A Note on the Differential Equations with Distributional Coefficients MATEMATIKA, 24, Jilid 2, Bil. 2, hlm. 115 124 c Jabatan Matematik, UTM. A Note on the Differential Equations with Distributional Coefficients Adem Kilicman Department of Mathematics, Institute for Mathematical

More information

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv V Problem 1 (Equations with the dependent variable missing) By means of the substitutions v = dy dt, dv dt = d2 y dt 2 solve the following second-order differential equations 1. t 2 d2 y dt + 2tdy 1 =

More information

Is Analysis Necessary?

Is Analysis Necessary? Is Analysis Necessary? Ira M. Gessel Brandeis University Waltham, MA gessel@brandeis.edu Special Session on Algebraic and Analytic Combinatorics AMS Fall Eastern Meeting University of Connecticut, Storrs

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Power Series Solutions And Special Functions: Review of Power Series

Power Series Solutions And Special Functions: Review of Power Series Power Series Solutions And Special Functions: Review of Power Series Pradeep Boggarapu Department of Mathematics BITS PILANI K K Birla Goa Campus, Goa September, 205 Pradeep Boggarapu (Dept. of Maths)

More information

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions...

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions... Legendre Polynomials and Functions Reading Problems Outline Background and Definitions...2 Definitions...3 Theory...4 Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and

More information

A = (a + 1) 2 = a 2 + 2a + 1

A = (a + 1) 2 = a 2 + 2a + 1 A = (a + 1) 2 = a 2 + 2a + 1 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 A = ( (a + b) + 1 ) 2 = (a + b) 2 + 2(a + b) + 1 = a 2 + 2ab + b 2 + 2a + 2b + 1 3 A = (

More information

Irregular continued fractions

Irregular continued fractions 9 Irregular continued fractions We finish our expedition with a look at irregular continued fractions and pass by some classical gems en route. 9. General theory There exist many generalisations of classical

More information

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36 We saw in Example 5.4. that we sometimes need to apply integration by parts several times in the course of a single calculation. Example 5.4.4: For n let S n = x n cos x dx. Find an expression for S n

More information

Review session Midterm 1

Review session Midterm 1 AS.110.109: Calculus II (Eng) Review session Midterm 1 Yi Wang, Johns Hopkins University Fall 2018 7.1: Integration by parts Basic integration method: u-sub, integration table Integration By Parts formula

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 612 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #5 due October 2, 2012 == show all your work for maximum credit, == put labels, title,

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

Alphonse Magnus, Université Catholique de Louvain.

Alphonse Magnus, Université Catholique de Louvain. Rational interpolation to solutions of Riccati difference equations on elliptic lattices. Alphonse Magnus, Université Catholique de Louvain. http://www.math.ucl.ac.be/membres/magnus/ Elliptic Riccati,

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3 1 M 13-Lecture Contents: 1) Taylor Polynomials 2) Taylor Series Centered at x a 3) Applications of Taylor Polynomials Taylor Series The previous section served as motivation and gave some useful expansion.

More information

5.4 Bessel s Equation. Bessel Functions

5.4 Bessel s Equation. Bessel Functions SEC 54 Bessel s Equation Bessel Functions J (x) 87 # with y dy>dt, etc, constant A, B, C, D, K, and t 5 HYPERGEOMETRIC ODE At B (t t )(t t ), t t, can be reduced to the hypergeometric equation with independent

More information

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS. Special Functions GEORGE E. ANDREWS RICHARD ASKEY RANJAN ROY CAMBRIDGE UNIVERSITY PRESS

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS. Special Functions GEORGE E. ANDREWS RICHARD ASKEY RANJAN ROY CAMBRIDGE UNIVERSITY PRESS ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Special Functions GEORGE E. ANDREWS RICHARD ASKEY RANJAN ROY CAMBRIDGE UNIVERSITY PRESS Preface page xiii 1 The Gamma and Beta Functions 1 1.1 The Gamma

More information

BESSEL FUNCTIONS APPENDIX D

BESSEL FUNCTIONS APPENDIX D APPENDIX D BESSEL FUNCTIONS D.1 INTRODUCTION Bessel functions are not classified as one of the elementary functions in mathematics; however, Bessel functions appear in the solution of many physical problems

More information

Diagonals and Walks. Alin Bostan 1 Louis Dumont 1 Bruno Salvy 2. November 4, Introduction Diagonals Walks. 1 INRIA, SpecFun.

Diagonals and Walks. Alin Bostan 1 Louis Dumont 1 Bruno Salvy 2. November 4, Introduction Diagonals Walks. 1 INRIA, SpecFun. and Alin Bostan 1 Louis Dumont 1 Bruno Salvy 2 1 INRIA, SpecFun 2 INRIA, AriC November 4, 2014 1/16 Louis Dumont and 2/16 Louis Dumont and Motivations In combinatorics: Lattice walks w i,j : number of

More information

Section 5.2 Series Solution Near Ordinary Point

Section 5.2 Series Solution Near Ordinary Point DE Section 5.2 Series Solution Near Ordinary Point Page 1 of 5 Section 5.2 Series Solution Near Ordinary Point We are interested in second order homogeneous linear differential equations with variable

More information

On the Complexity of Gröbner Basis Computation for Regular and Semi-Regular Systems

On the Complexity of Gröbner Basis Computation for Regular and Semi-Regular Systems On the Complexity of Gröbner Basis Computation for Regular and Semi-Regular Systems Bruno.Salvy@inria.fr Algorithms Project, Inria Joint work with Magali Bardet & Jean-Charles Faugère September 21st, 2006

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

Calculus-Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus-Lab ) lim. 2.7) lim. 2.

Calculus-Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus-Lab ) lim. 2.7) lim. 2. ) Solve the following inequalities.) ++.) 4 > 3.3) Calculus-Lab { + > + 5 + < 3 +. ) Graph the functions f() = 3, g() = + +, h() = 3 cos( ), r() = 3 +. 3) Find the domain of the following functions 3.)

More information

1 Ordinary points and singular points

1 Ordinary points and singular points Math 70 honors, Fall, 008 Notes 8 More on series solutions, and an introduction to \orthogonal polynomials" Homework at end Revised, /4. Some changes and additions starting on page 7. Ordinary points and

More information

Compact symetric bilinear forms

Compact symetric bilinear forms Compact symetric bilinear forms Mihai Mathematics Department UC Santa Barbara IWOTA 2006 IWOTA 2006 Compact forms [1] joint work with: J. Danciger (Stanford) S. Garcia (Pomona

More information

The Generating Functions for Pochhammer

The Generating Functions for Pochhammer The Generating Functions for Pochhammer Symbol { }, n N Aleksandar Petoević University of Novi Sad Teacher Training Faculty, Department of Mathematics Podgorička 4, 25000 Sombor SERBIA and MONTENEGRO Email

More information

Chapter 6: Messy Integrals

Chapter 6: Messy Integrals Chapter 6: Messy Integrals Review: Solve the following integrals x 4 sec x tan x 0 0 Find the average value of 3 1 x 3 3 Evaluate 4 3 3 ( x 1), then find the area of ( x 1) 4 Section 6.1: Slope Fields

More information

Summary: Primer on Integral Calculus:

Summary: Primer on Integral Calculus: Physics 2460 Electricity and Magnetism I, Fall 2006, Primer on Integration: Part I 1 Summary: Primer on Integral Calculus: Part I 1. Integrating over a single variable: Area under a curve Properties of

More information

Algorithmic Tools for the Asymptotics of Linear Recurrences

Algorithmic Tools for the Asymptotics of Linear Recurrences Algorithmic Tools for the Asymptotics of Linear Recurrences Bruno Salvy Inria & ENS de Lyon Computer Algebra in Combinatorics, Schrödinger Institute, Vienna, Nov. 2017 Motivation p 0 (n)a n+k + + p k (n)a

More information

Power Series in Computer Algebra

Power Series in Computer Algebra J. Symbolic Computation (99), 58 603 Power Series in Computer Algebra WOLFRAM KOEPF Fachbereich Mathematik, Freie Universität Berlin, Deutschland (Received 7 September 99) Formal power series (FPS) of

More information

Recurrence Relations and Fast Algorithms

Recurrence Relations and Fast Algorithms Recurrence Relations and Fast Algorithms Mark Tygert Research Report YALEU/DCS/RR-343 December 29, 2005 Abstract We construct fast algorithms for decomposing into and reconstructing from linear combinations

More information

Introduction to Differential Equations

Introduction to Differential Equations Introduction to Differential Equations J. M. Veal, Ph. D. version 13.08.30 Contents 1 Introduction to Differential Equations 2 1.1 Definitions and Terminology.................... 2 1.2 Initial-Value Problems.......................

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES Taylor Series of a function f at x = a is ( f k )( a) ( x a) k k! It is a Power Series centered at a. Maclaurin Series of a function

More information

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists Data provided: Formula sheet MAS53/MAS59 SCHOOL OF MATHEMATICS AND STATISTICS Mathematics (Materials Mathematics For Chemists Spring Semester 203 204 3 hours All questions are compulsory. The marks awarded

More information

Math 715 Homework 1 Solutions

Math 715 Homework 1 Solutions . [arrier, Krook and Pearson Section 2- Exercise ] Show that no purely real function can be analytic, unless it is a constant. onsider a function f(z) = u(x, y) + iv(x, y) where z = x + iy and where u

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

An Efficient Algorithm for Deriving Summation Identities from Mutual Recurrences

An Efficient Algorithm for Deriving Summation Identities from Mutual Recurrences Discrete Mathematics, Algorithms and Applications c World Scientific Publishing Company An Efficient Algorithm for Deriving Summation Identities from Mutual Recurrences BERKELEY R CHURCHILL Department

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

ODE Homework Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation. n(n 1)a n x n 2 = n=0

ODE Homework Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation. n(n 1)a n x n 2 = n=0 ODE Homework 6 5.2. Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation y + k 2 x 2 y = 0, k a constant about the the point x 0 = 0. Find the recurrence relation;

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

arxiv:math/ v1 [math.ca] 9 Jul 1993

arxiv:math/ v1 [math.ca] 9 Jul 1993 Some Integrals Involving Bessel Functions arxiv:math/9373v [math.ca] 9 Jul 993 M.L. Glasser Department of Physics and Department of Mathematics and Computer Science, Clarkson University, Potsdam, N.Y.

More information

OR MSc Maths Revision Course

OR MSc Maths Revision Course OR MSc Maths Revision Course Tom Byrne School of Mathematics University of Edinburgh t.m.byrne@sms.ed.ac.uk 15 September 2017 General Information Today JCMB Lecture Theatre A, 09:30-12:30 Mathematics revision

More information

Bessel function - Wikipedia, the free encyclopedia

Bessel function - Wikipedia, the free encyclopedia Bessel function - Wikipedia, the free encyclopedia Bessel function Page 1 of 9 From Wikipedia, the free encyclopedia In mathematics, Bessel functions, first defined by the mathematician Daniel Bernoulli

More information

B 2k. E 2k x 2k-p : collateral. 2k ( 2k-n -1)!

B 2k. E 2k x 2k-p : collateral. 2k ( 2k-n -1)! 13 Termwise Super Derivative In this chapter, for the function whose super derivatives are difficult to be expressed with easy formulas, we differentiate the series expansion of these functions non integer

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

A new method to compute the probability of collision for short-term space encounters

A new method to compute the probability of collision for short-term space encounters A new method to compute the probability of collision for short-term space encounters R. Serra, D. Arzelier, M. Joldes, J-B. Lasserre, A. Rondepierre and B. Salvy ANR FastRelax Meeting May, 2015 Fiction...

More information

Week 1: need to know. November 14, / 20

Week 1: need to know. November 14, / 20 Week 1: need to know How to find domains and ranges, operations on functions (addition, subtraction, multiplication, division, composition), behaviors of functions (even/odd/ increasing/decreasing), library

More information