Experimental studies of springing and whipping of container vessels

Size: px
Start display at page:

Download "Experimental studies of springing and whipping of container vessels"

Transcription

1 Experimental studies of springing and whipping of container vessels Ole Andreas Hermundstad CeSOS Highlights and AMOS Visions Conference 27-29th May 2013 in Trondheim

2 Outline Background and motivation Description of containership models and instrumentation Test program and sample results Conclusions

3 Pitch [deg], Rel. wave [m], VBM/50 [knm] Background and motivation Wave impact in the bow may give large high-frequency hull girder vibrations (whipping). This occurs in rough seas and adds to the wave-frequency loads Hence, the loads under such impacts will generally be the most severe wave loads experienced by the ship. Whipping will also contribute to fatigue Pitch Rel. wave elev. VBM amidships Press. lower panel Press. upper panel Pressure [kpa] time [s]

4 Background and motivation (II) If the frequency of the wave loads coincide with one of the natural frequencies of the hull girder, resonant vibrations (springing) will occur. This will contribute to fatigue Wave elevation Bending moment Power spectrum Ordinary wave loads Resonance (springing) Frekvens (Hz) 4

5 Background and motivation (III) Ultra Large Containerships (ULCS) Larger ships Larger natural periods in bending and torsion Larger ships generally go faster More high-frequency wave loads Larger bow flare More nonlinear wave loads Little experience with large (>9000 TEU) containerships in N. Atlantic / N. Pacific. Classification rule formulae uncertain. Need for model tests with realistic designs JIP : DNV, CeSOS,, BV and Hyundai (HHI) Objective: Perform model tests with two large containerships in realistic conditions to provide data for further analysis: How important is springing and whipping wrt. fatigue and extreme loading? Which sea-states contribute the most? How well do available numerical methods predict the loads and responses?

6 Two large containerships 8600 TEU TEU Lpp [m] B [m] Design draught [m] Displacement [ton] node bending freq. [Hz] Torsional freq. [Hz] Damping ratio [%]

7 Design of models Criteria: Realistic natural frequencies in the 2-node vertical mode and in torsion Measure 6 DOF forces and moments at 3 locations Low damping Speeds up to 27 knots Significant wave heights up to 11.5 m To be tested in head and oblique seas To be towed

8 Ship model concepts Fully elastic Backbone Hinged

9 Fully elastic models The hull itself is made flexible Realistic deformation pattern Expensive to produce Difficult to adjust flexibility Forces and moment measurements require extensive strain gauge instrumentation and calibration

10 Elastic backbone models Flexibility modelled with an elastic backbone Hull is segmented Responses measured at the backbone (strain gauges) Difficult to adjust stiffness after production 10

11 Segmented models Flexibility is only in the hinges Relatively easy to manufacture Hinges can be made with adjustable stiffness -> Model can be calibrated to give the correct vibration frequencies in the lowest modes Forces and moments measured close to the hinges New challenge: Include torsional flexibility top view MS A B C D E longitudinal at centre line propeller motor A B C D E horizontal at 267 mm above base line 11

12 Segmented containership models 4 segments. 3 flexible connections Forces and moments are measured close to the flexible connections.

13 Requirements to the flexible connections Minimum damping Flexible in vertical bending and torsion Adjustable stiffness Low complexity, robust

14 Design of frame and connection details Verified using finite element analysis

15 Flexible connection

16 Instrumentation 6 DOF motion measurements (optical system) Accelerometers (x,y,z-directions) Wave probes (conductive and acoustic types) Slamming panels Pressure gauges Force/moment transducers close to the flexible connections Measure towing speed and towing forces

17 Slamming panels in the flare Sampled at 4800 Hz

18 Accelerometers Located fore, aft and amidships

19 Wave probes Some fixed to the model Some fixed to the carriage

20 Optical motion measurement system Pressure gauge Slamming panel Wave probes

21 Pressure gauge for green water events

22 Test set-up Towed model Towing connection at the aft segment

23 Test program Decay tests To measure eigenperiods and damping Forward speed tests in calm water To measure steady forces and moments Forward speed tests in regular waves For comparison with numerical predictions Forward speed tests in irregular waves Focus on realistic conditions In head seas: 16 sea-states (4 Tp and 4 Hs values) + 2 extreme In oblique seas (13000TEU only): 9 longcrested + 9 shortcrested Speed is adjusted to obtain a realistic speed in each sea-state Test duration: At least 30 min in each sea-state. Up to 3 hours for selected extreme conditions.

24 13000TEU model in head seas

25 13000TEU model in oblique seas

26 Spectrum of VSF (N 2 S) VSF (N) VSF (N) VSF (N) 4 x 10 7 Project 8600TEU Run 4161 Comparison of low pass f iltered VSF at Cut3 ( < 0.35Hz ) TEU Time(s) x 10 7 Comparison of high pass f iltered VSF at Cut3 ( > 0.35Hz ) 4 2 VSF V=24 knots Hs=5.5m, Tp=10.5s Time(s) x 10 7 Comparison of total VSF at Cut Time(s) x Comparison of Calculated and Measured Power Density Spectrum of Total VSF 15 Calculation 10 Measurement Frequency (Hz) 26

27 References with analysis of measured data Focus on fatigue and extreme hull girder loads Storhaug et al. Consequence of whipping and springing on fatigue for a 8600TEU container vessel in different trades based on model tests. PRADS Storhaug et al. Consequence of whipping and springing on fatigue and extreme loading for a 13000TEU container vessel based on model tests. PRADS Storhaug et al. Effect of whipping on fatigue and extreme loading of a 13000TEU container vessel in bow quartering seas based on model tests. OMAE 2011.

28 References where measured data is used for validation of numerical tools Wu et al. Comparative Study of Springing and Whipping Effects in Ultra Large Container Ships, ITTC Workshop on Seakeeping Suji Zhu, Investigation of Wave-Induced Nonlinear Load Effects in Open Ships considering Hull Girder Vibrations in Bending and Torsion, Ph.D. thesis CeSOS, 2012.

29 Conclusions Most of the fatigue damage comes from high-frequency hull girder vibrations, caused by whipping and springing Changing the ship's course is from head seas to bow quartering seas is not effective to reduce fatigue Wave energy spreading does not reduce fatigue significantly Extreme VBM was higher in oblique seas than in head seas, and well above the IACS rule values. Whipping was found to give a significant contribution to the extreme vertical, torsional and horizontal bending moments. Current numerical tools do not completely capture all mechanisms that produce the whipping and springing loads.

30 References Storhaug G., Choi, B-K, Moan, T. and Hermundstad, O.A Consequence of whipping and springing on fatigue for a 8600TEU container vessel in different trades based on model tests. Proc. PRADS Storhaug G., Malenica, S., Choi, B-K, Zhu, S. and Hermundstad, O.A Consequence of whipping and springing on fatigue and extreme loading for a 13000TEU container vessel based on model tests. Proc. PRADS Storhaug G., Derbanne, Q., Choi, B-K, Moan, T. and Hermundstad, O.A Effect of whipping on fatigue and extreme loading of a 13000TEU container vessel in bow quartering seas based on model tests. Proc. OMAE Wu, M-K, Hermundstad, O.A. and Zhu, S. Comparative Study of Springing and Whipping Effects in Ultra Large Container Ships, Proc. ITTC Workshop on Seakeeping Zhu, S., Hermundstad, O.A. Iijima, K. and Moan T. 2010, Wave-induced Load Effects of a Backbone Model under Oblique Seas in a Towing Tank. Proc. PRADS Suji Zhu, Investigation of Wave-Induced Nonlinear Load Effects in Open Ships considering Hull Girder Vibrations in Bending and Torsion, Ph.D. thesis CeSOS, 2012.

Hull loads and response, hydroelasticity

Hull loads and response, hydroelasticity Transactions on the Built Environment vol 1, 1993 WIT Press, www.witpress.com, ISSN 1743-3509 Hull loads and response, hydroelasticity effects on fast monohulls E. Jullumstr0 & J.V. Aarsnes Division of

More information

Aalto University School of Engineering

Aalto University School of Engineering Aalto University School of Engineering Kul-24.4120 Ship Structural Design (P) Lecture 8 - Local and Global Vibratory Response Kul-24.4120 Ship Structures Response Lecture 5: Tertiary Response: Bending

More information

ASSESSMENT OF STRESS CONCENTRATIONS IN LARGE CONTAINER SHIPS USING BEAM HYDROELASTIC MODEL

ASSESSMENT OF STRESS CONCENTRATIONS IN LARGE CONTAINER SHIPS USING BEAM HYDROELASTIC MODEL ASSESSMENT OF STRESS CONCENTRATIONS IN LARGE CONTAINER SHIPS USING BEAM HYDROELASTIC MODEL Ivo Senjanović, Nikola Vladimir Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb,

More information

Full and Model Scale testing of a New Class of US Coast Guard Cutter

Full and Model Scale testing of a New Class of US Coast Guard Cutter Full and Model Scale testing of a New Class of US Coast Guard Cutter Ingo 1, Marcus Schiere 1, Reint Dallinga 2, and Karl Stambaugh 3 1. MARIN, Hydro-Structural Services 2. MARIN, Ships Department 3. USCG,

More information

RESPONSE ANALYSIS OF SHIP STRUCTURES SUBJECTED TO A CLUSTER OF IMPULSIVE EXCITATIONS. Elena Ciappi 1, Daniele Dessi 1

RESPONSE ANALYSIS OF SHIP STRUCTURES SUBJECTED TO A CLUSTER OF IMPULSIVE EXCITATIONS. Elena Ciappi 1, Daniele Dessi 1 ICSV14 Cairns Australia 9-12 July, 2007 RESPONSE ANALYSIS OF SHIP STRUCTURES SUBJECTED TO A CLUSTER OF IMPULSIVE EXCITATIONS Abstract Elena Ciappi 1, Daniele Dessi 1 1 INSEAN-Istituto Nazionale per Studi

More information

COMMITTEE II.2 DYNAMIC RESPONSE

COMMITTEE II.2 DYNAMIC RESPONSE 17 th INTERNATIONAL SHIP AND OFFSHORE STRUCTURES CONGRESS 16-21 AUGUST 2009 SEOUL, KOREA VOLUME 1 COMMITTEE II.2 DYNAMIC RESPONSE COMMITTEE MANDATE Concern for the dynamic structural response of ships

More information

ShipRight Design and Construction

ShipRight Design and Construction ShipRight Design and Construction Structural Design Assessment Global Design Loads of Container Ships and Other Ships Prone to Whipping and Springing January 2018 Working together for a safer world Document

More information

series of ship structural stresses

series of ship structural stresses TimeWhipping/springing response in the time series analysis series of ship structural stresses in marine science and applicat Wengang Mao*, Igor Rychlik ions for industry Chalmers University of Technology,

More information

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads csnak, 214 Int. J. Nav. Archit. Ocean Eng. (214) 6:164~181 http://dx.doi.org/1.2478/ijnaoe-213-231 pissn: 292-6782, eissn: 292-679 Comparison of fully coupled hydroelastic computation and segmented model

More information

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS 1 Macchiavello, Sergio *, 2 Tonelli, Angelo 1 D Appolonia S.p.A., Italy, 2 Rina Services S.p.A., Italy KEYWORDS pleasure vessel, vibration analysis,

More information

SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS

SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS Guide for Slamming Loads and Strength Assessment for Vessels GUIDE FOR SLAMMING LOADS AND STRENGTH ASSESSMENT FOR VESSELS MARCH 2011 (Updated February 2016 see next page) American Bureau of Shipping Incorporated

More information

Dessi, D., D Orazio, D.

Dessi, D., D Orazio, D. CORRELATION OF MODEL-SCALE AND FULL-SCALE DATA: SENSOR VALIDATION AND ELASTIC SCALING EVALUATION Dessi, D., D Orazio, D. INSEAN-CNR Rome - Italy 1 Project structure hydroelastic side This work was funded

More information

Longitudinal strength standard

Longitudinal strength standard (1989) (Rev. 1 199) (Rev. Nov. 001) Longitudinal strength standard.1 Application This requirement applies only to steel ships of length 90 m and greater in unrestricted service. For ships having one or

More information

Ship structure dynamic analysis - effects of made assumptions on computation results

Ship structure dynamic analysis - effects of made assumptions on computation results Ship structure dynamic analysis - effects of made assumptions on computation results Lech Murawski Centrum Techniki Okrętowej S. A. (Ship Design and Research Centre) ABSTRACT The paper presents identification

More information

Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves

Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves by Tsugukiyo Hirayama*, Member Xuefeng Wang*, Member Summary Experiments in transient water waves are

More information

Overview of BV R&D activities in Marine Hydrodynamics

Overview of BV R&D activities in Marine Hydrodynamics Overview of BV R&D activities in Marine Hydrodynamics Special attention to hydro-structure interactions Šime Malenica Bureau Veritas Marine & Offshore Division Research Department Harbin, 29th of June

More information

UNCERTAINTY IN HULL GIRDER FATIGUE ASSESSMENT OF CONTAINERSHIP

UNCERTAINTY IN HULL GIRDER FATIGUE ASSESSMENT OF CONTAINERSHIP Nenad Varda, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture I. Lučića 5, 10000 Zagreb, e-mail: nenad.varda@fsb.hr Zrinka Čižmek, University of Zagreb, Faculty of Mechanical

More information

Methodology for sloshing induced slamming loads and response. Olav Rognebakke Det Norske Veritas AS

Methodology for sloshing induced slamming loads and response. Olav Rognebakke Det Norske Veritas AS Methodology for sloshing induced slamming loads and response Olav Rognebakke Det Norske Veritas AS Post doc. CeSOS 2005-2006 1 Presentation overview Physics of sloshing and motivation Sloshing in rectangular

More information

AN EXPERIMENTAL STUDY OF HULL GIRDER LOADS ON AN INTACT AND DAMAGED NAVAL SHIP

AN EXPERIMENTAL STUDY OF HULL GIRDER LOADS ON AN INTACT AND DAMAGED NAVAL SHIP AN EXPERIMENTAL STUDY OF HULL GIRDER LOADS ON AN INTACT AND DAMAGED NAVAL SHIP E.Begovic 1, A.H. Day 2, A. Incecik 2 1 - Department of Industrial Engineering, University of Naples Federico II, Via Claudio

More information

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 4 Loads. Edition January 2017 DNV GL AS

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 4 Loads. Edition January 2017 DNV GL AS RULES FOR CLASSIFICATION Ships Edition January 2017 Part 3 Hull Chapter 4 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

Research Activity of LRETC: Structures

Research Activity of LRETC: Structures Research Activity of LRETC: Structures Y. Kim, W.I. Lee, M.H. Cho (MAE) and In-Sik Nho (CNU) Seoul National University The Lloyd s Register Educational Trust (LRET) y g ( ) Marine & Offshore Research Workshop

More information

Improving the Accuracy of Dynamic Vibration Fatigue Simulation

Improving the Accuracy of Dynamic Vibration Fatigue Simulation Improving the Accuracy of Dynamic Vibration Fatigue Simulation Kurt Munson HBM Prenscia Agenda 2 1. Introduction 2. Dynamics and the frequency response function (FRF) 3. Using finite element analysis (FEA)

More information

Slamming and Whipping Analysis in Preliminary Structural Design

Slamming and Whipping Analysis in Preliminary Structural Design Slamming and Whipping Analysis in Preliminary Structural Design Bruce L. Hutchison, P.E., (FSNAME, The Glosten Associates, Inc.) Justin M. Morgan, P.E., (MSNAME, The Glosten Associates, Inc.) Low-order

More information

SAFEHULL-DYNAMIC LOADING APPROACH FOR VESSELS

SAFEHULL-DYNAMIC LOADING APPROACH FOR VESSELS Guide for SafeHull- Dynamic Loading Approach for Vessels GUIDE FOR SAFEHULL-DYNAMIC LOADING APPROACH FOR VESSELS DECEMBER 2006 (Updated February 2014 see next page) American Bureau of Shipping Incorporated

More information

SPRINGING ASSESSMENT FOR CONTAINER CARRIERS

SPRINGING ASSESSMENT FOR CONTAINER CARRIERS Guidance Notes on Springing Assessment for Container Carriers GUIDANCE NOTES ON SPRINGING ASSESSMENT FOR CONTAINER CARRIERS FEBRUARY 2014 American Bureau of Shipping Incorporated by Act of Legislature

More information

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2.

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2. Gian Carlo Matheus Torres 6 th EMship cycle: October 2015 February 2017 Master Thesis Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation

More information

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP 1995 Publications P (Additional Rule Requirements), issued by Polski Rejestr Statków, complete or extend the

More information

INVESTIGATION OF PARAMETRIC ROLL OF A CONTAINER SHIP IN IRREGULAR SEAS BY NUMERICAL SIMULATION

INVESTIGATION OF PARAMETRIC ROLL OF A CONTAINER SHIP IN IRREGULAR SEAS BY NUMERICAL SIMULATION 10 th International Conference 549 INVESTIGATION OF PARAMETRIC ROLL OF A CONTAINER SHIP IN IRREGULAR SEAS BY NUMERICAL SIMULATION Sa Young Hong, MOERI/KORDI,171 Jang-dong, Daejeon,305-343 KOREA, sayhong@moeri.re.kr,

More information

Comparison of Present Wave Induced Load Criteria with Loads Induced by an Abnormal Wave

Comparison of Present Wave Induced Load Criteria with Loads Induced by an Abnormal Wave Rogue Waves 2004 1 Comparison of Present Wave Induced Load Criteria with Loads Induced by an Abnormal Wave C. Guedes Soares, N. Fonseca, R. Pascoal Unit of Marine Engineering and Technology, Technical

More information

Time domain assessment of nonlinear coupled ship motions and sloshing in free surface tanks

Time domain assessment of nonlinear coupled ship motions and sloshing in free surface tanks Time domain assessment of nonlinear coupled ship motions and sloshing in free surface tanks 1 outline 1.Motivation & state-of-the-art 2.Simulation approach 1.SHIXDOF: nonlinear ship motion TD 6DOF 2.AQUAgpusph:

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Consideration of medium-speed four-stroke engines in ship vibration analyses I. Asmussen, A. Muller-Schmerl GermanischerLloyd, P.O. Box 111606, 20416Hamburg, Germany Abstract Vibration problems were recently

More information

Hull Girder Fatigue Damage Estimations of a Large Container Vessel by Spectral Analysis

Hull Girder Fatigue Damage Estimations of a Large Container Vessel by Spectral Analysis Downloaded from orbit.dtu.dk on: Jul 1, 218 Hull Girder Fatigue Damage Estimations of a Large Container Vessel by Spectral Analysis Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher Published in:

More information

VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD

VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD Proceedings of COBEM 2007 Copyright 2007 by ABCM 19th International Congress of Mechanical Engineering November 5-9, 2007, Brasília, DF VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD Luiz

More information

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2011 32th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-10124 APPLYING STRIP THEORY BASED LINEAR SEAKEEPING

More information

OTG-13. Prediction of air gap for column stabilised units. Won Ho Lee 01 February Ungraded. 01 February 2017 SAFER, SMARTER, GREENER

OTG-13. Prediction of air gap for column stabilised units. Won Ho Lee 01 February Ungraded. 01 February 2017 SAFER, SMARTER, GREENER OTG-13 Prediction of air gap for column stabilised units Won Ho Lee 1 SAFER, SMARTER, GREENER Contents Air gap design requirements Purpose of OTG-13 OTG-13 vs. OTG-14 Contributions to air gap Linear analysis

More information

Chenyu Luan - CeSOS 1. Chenyu Luan a,b,c, Valentin Chabaud a,d, Erin E. Bachynski b,c,d, Zhen Gao b,c,d and Torgeir Moan a,b,c,d

Chenyu Luan - CeSOS 1. Chenyu Luan a,b,c, Valentin Chabaud a,d, Erin E. Bachynski b,c,d, Zhen Gao b,c,d and Torgeir Moan a,b,c,d Validation of a time-domain numerical approach for determining forces and moments in floaters by using measured data of a semi-submersible wind turbine model test Chenyu Luan a,b,c, Valentin Chabaud a,d,

More information

Boundary element methods in the prediction of the acoustic damping of ship whipping vibrations

Boundary element methods in the prediction of the acoustic damping of ship whipping vibrations ANZIAM J. 45 (E) ppc845 C856, 2004 C845 Boundary element methods in the prediction of the acoustic damping of ship whipping vibrations D. S. Holloway G. A. Thomas M. R. Davis (Received 8 August 2003) Abstract

More information

Rules for Classification and Construction Analysis Techniques

Rules for Classification and Construction Analysis Techniques V Rules for Classification and Construction Analysis Techniques 1 Hull Structural Design Analyses 2 Guidelines for Fatigue Strength Analyses of Ship Structures Edition 2004 The following Guidelines come

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering. Written Preliminary Examination Information

Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering. Written Preliminary Examination Information Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering Written Preliminary Examination Information Faculty: Professors W. Neu, O. Hughes, A. Brown, M. Allen Test

More information

On an Advanced Shipboard Information and Decision-making System for Safe and Efficient Passage Planning

On an Advanced Shipboard Information and Decision-making System for Safe and Efficient Passage Planning International Journal on Marine Navigation and Safety of Sea Transportation Volume 2 Number 1 March 28 On an Advanced Shipboard Information and Decision-making System for Safe and Efficient Passage Planning

More information

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads Qianwen HUANG 1 ; Jia LIU 1 ; Cong ZHANG 1,2 ; inping YAN 1,2 1 Reliability Engineering Institute,

More information

MAXIMUM LOADS ON A 1-DOF MODEL-SCALE OFFSHORE WIND TURBINE

MAXIMUM LOADS ON A 1-DOF MODEL-SCALE OFFSHORE WIND TURBINE MAXIMUM LOADS ON A 1-DOF MODEL-SCALE OFFSHORE WIND TURBINE Loup Suja-Thauvin (Industry PhD) Jørgen Krokstad (prof II) Joakim Fürst Frimann-Dahl (DNV-GL) Table of contents 1. Motivation 2. Presentation

More information

Appendix A Satellite Mechanical Loads

Appendix A Satellite Mechanical Loads Appendix A Satellite Mechanical Loads Mechanical loads can be static or dynamic. Static loads are constant or unchanging, and dynamic loads vary with time. Mechanical loads can also be external or self-contained.

More information

Dynamic Stress Analysis of a Bus Systems

Dynamic Stress Analysis of a Bus Systems Dynamic Stress Analysis of a Bus Systems *H. S. Kim, # Y. S. Hwang, # H. S. Yoon Commercial Vehicle Engineering & Research Center Hyundai Motor Company 772-1, Changduk, Namyang, Whasung, Kyunggi-Do, Korea

More information

Fluid-structure interaction during ship slamming

Fluid-structure interaction during ship slamming Fluid-structure interaction during ship slamming Kevin Maki Dominic J. Piro Donghee Lee Department of Naval Architecture and Marine Engineering University of Michigan Fifth OpenFOAM Workshop June 21-24

More information

Breu, Frequency Detuning of Parametric Roll

Breu, Frequency Detuning of Parametric Roll Frequency Detuning of Parametric Roll Conference on CeSOS Highlights and AMOS Visions, May 29, 2013 Dominik Breu Department of Engineering Cybernetics, NTNU, Trondheim, Norway Centre for Ships and Ocean

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2017 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

Measurement of speed loss due to waves

Measurement of speed loss due to waves Third International Symposium on Marine Propulsors smp 13, Launceston, Tasmania, Australia, May 213 Measurement of speed loss due to waves Sverre Steen 1 and Zhenju Chuang 1 1 Department of Marine Technology,

More information

SLAMMING INDUCED DYNAMIC RESPONSE OF A FLOATING STRUCTURE

SLAMMING INDUCED DYNAMIC RESPONSE OF A FLOATING STRUCTURE Journal of Marine Science and Technology, Vol., No., pp. 1-9 (1) 1 SLAMMING INDUCED DYNAMIC RESPONSE OF A FLOATING STRUCTURE Mohammad Ali Lotfollahi-Yaghin 1, Mehdi Rastgar, and Hamid Ahmadi 1 Key words:

More information

Seakeeping Models in the Frequency Domain

Seakeeping Models in the Frequency Domain Seakeeping Models in the Frequency Domain (Module 6) Dr Tristan Perez Centre for Complex Dynamic Systems and Control (CDSC) Prof. Thor I Fossen Department of Engineering Cybernetics 18/09/2007 One-day

More information

Influence of yaw-roll coupling on the behavior of a FPSO: an experimental and numerical investigation

Influence of yaw-roll coupling on the behavior of a FPSO: an experimental and numerical investigation Influence of yaw-roll coupling on the behavior of a FPSO: an experimental and numerical investigation Claudio Lugni a,b, Marilena Greco a,b, Odd Magnus Faltinsen b a CNR-INSEAN, The Italian Ship Model

More information

A Comparative Study on Fatigue Damage using a Wave Load Sequence Model

A Comparative Study on Fatigue Damage using a Wave Load Sequence Model 6th Engineering, Science and Technology Conference (207) Volume 208 Conference Paper A Comparative Study on Fatigue Damage using a Wave Load Sequence Model Luis De Gracia, Naoki Osawa, Hitoi Tamaru 2,

More information

HOMER - INTEGRATED HYDRO-STRUCTURE INTERACTIONS TOOL FOR NAVAL AND OFF-SHORE APPLICATIONS

HOMER - INTEGRATED HYDRO-STRUCTURE INTERACTIONS TOOL FOR NAVAL AND OFF-SHORE APPLICATIONS HOMER - INTEGRATED HYDRO-STRUCTURE INTERACTIONS TOOL FOR NAVAL AND OFF-SHORE APPLICATIONS S.Malenica, Q.Derbanne, F.X.Sireta, F.Bigot, E.Tiphine, G.De-Hauteclocque and X.B.Chen, Bureau Veritas, France

More information

Gian Carlo Matheus Torres

Gian Carlo Matheus Torres Development of simplified formulas to determine wave induced loads on inland vessels operated in stretches of water within the range of navigation IN(0.6 x 2) Master Thesis presented in partial fulfillment

More information

Analysis of shock force measurements for the model based dynamic calibration

Analysis of shock force measurements for the model based dynamic calibration 8 th Worshop on Analysis of Dynamic Measurements May 5-6, 4 Turin Analysis of shoc force measurements for the model based dynamic calibration Michael Kobusch, Sascha Eichstädt, Leonard Klaus, and Thomas

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system

Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system Inter J Nav Archit Oc Engng (2010) 2:87~95 DOI 10.3744/JNAOE.2010.2.2.087 Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system Dae-Seung Cho 1, Kyung-Soo

More information

Aalto University School of Engineering

Aalto University School of Engineering Aalto University School of Engineering Kul-24.4140 Ship Dynamics (P) Lecture 9 Loads Where is this lecture on the course? Design Framework Lecture 5: Equations of Motion Environment Lecture 6: Strip Theory

More information

M.S Comprehensive Examination Analysis

M.S Comprehensive Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive

More information

Study on Motions of a Floating Body under Composite External Loads

Study on Motions of a Floating Body under Composite External Loads 137 Study on Motions of a Floating Body under Composite External Loads by Kunihiro Ikegami*, Member Masami Matsuura*, Member Summary In the field of marine engineering, various types of floating bodies

More information

COEFFICIENT OF DYNAMIC HORIZONTAL SUBGRADE REACTION OF PILE FOUNDATIONS ON PROBLEMATIC GROUND IN HOKKAIDO Hirofumi Fukushima 1

COEFFICIENT OF DYNAMIC HORIZONTAL SUBGRADE REACTION OF PILE FOUNDATIONS ON PROBLEMATIC GROUND IN HOKKAIDO Hirofumi Fukushima 1 COEFFICIENT OF DYNAMIC HORIZONTAL SUBGRADE REACTION OF PILE FOUNDATIONS ON PROBLEMATIC GROUND IN HOKKAIDO Hirofumi Fukushima 1 Abstract In this study, static loading tests and dynamic shaking tests of

More information

MEMBRANE TANK LNG VESSELS

MEMBRANE TANK LNG VESSELS Guide for Building and Classing Membrane Tank LNG Vessels GUIDE FOR BUILDING AND CLASSING MEMBRANE TANK LNG VESSELS (HULL STRUCTURAL DESIGN AND ANALYSIS BASED ON THE ABS SAFEHULL APPROACH) OCTOBER 2002

More information

RULES PUBLICATION NO. 18/P ZONE STRENGTH ANALYSIS OF BULK CARRIER HULL STRUCTURE

RULES PUBLICATION NO. 18/P ZONE STRENGTH ANALYSIS OF BULK CARRIER HULL STRUCTURE RULES PUBLICATION NO. 18/P ZONE STRENGTH ANALYSIS OF BULK CARRIER HULL STRUCTURE 1995 Publications P (Additional Rule Requirements), issued by Polski Rejestr Statków, complete or extend the Rules and are

More information

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS ROLLER BEARIG FAILURES I REDUCTIO GEAR CAUSED BY IADEQUATE DAMPIG BY ELASTIC COUPLIGS FOR LOW ORDER EXCITATIOS ~by Herbert Roeser, Trans Marine Propulsion Systems, Inc. Seattle Flexible couplings provide

More information

Motions and Resistance of a Ship in Regular Following Waves

Motions and Resistance of a Ship in Regular Following Waves Reprinted: 01-11-2000 Revised: 03-10-2007 Website: www.shipmotions.nl Report 440, September 1976, Delft University of Technology, Ship Hydromechanics Laboratory, Mekelweg 2, 2628 CD Delft, The Netherlands.

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

THE LINEAR NUMERICAL ANALYSIS OF DISPLACEMENT RESPONSE AMPLITUDE OPERATOR, BASED ON THE HYDROELASTICITY THEORY, FOR A BARGE TEST SHIP

THE LINEAR NUMERICAL ANALYSIS OF DISPLACEMENT RESPONSE AMPLITUDE OPERATOR, BASED ON THE HYDROELASTICITY THEORY, FOR A BARGE TEST SHIP APPIED PHYSICS MECHANICS THE INEAR NUMERICA ANAYSIS OF DISPACEMENT RESPONSE AMPITUDE OPERATOR, BASED ON THE HYDROEASTICITY THEORY, FOR A BARGE TEST SHIP EONARD DOMNIªORU 1, IVIU STOICESCU 1, DANIEA DOMNIªORU

More information

THE LEVEL OF CONFIDENCE FOR A SHIP HULL GIRDER

THE LEVEL OF CONFIDENCE FOR A SHIP HULL GIRDER 94 Paper present at International Conference on Diagnosis and Prediction in Mechanical Engineering Systems (DIPRE 07) 26-27 October 2007, Galati, Romania THE LEVEL OF CONFIDENCE FOR A SHIP HULL GIRDER

More information

Multi Linear Elastic and Plastic Link in SAP2000

Multi Linear Elastic and Plastic Link in SAP2000 26/01/2016 Marco Donà Multi Linear Elastic and Plastic Link in SAP2000 1 General principles Link object connects two joints, i and j, separated by length L, such that specialized structural behaviour may

More information

ASSESSMENT OF STRUCTURE STRENGTH AND PRIMARY PARAMETER ANALYSIS FOR JACK-UP/SHIP COLLISION

ASSESSMENT OF STRUCTURE STRENGTH AND PRIMARY PARAMETER ANALYSIS FOR JACK-UP/SHIP COLLISION ASSESSMENT OF STRUCTURE STRENGTH AND PRIMARY PARAMETER ANALYSIS FOR JACK-UP/SHIP COLLISION 1 HU AN-KANG, 2 JIANG WEI, 3 LIN YI 1 Prof., Harbin Engineering University, China, 150001 2 Ph.D, Harbin Engineering

More information

Nonlinear Time Domain Simulation Technology for Seakeeping and Wave-Load Analysis for Modern Ship Design

Nonlinear Time Domain Simulation Technology for Seakeeping and Wave-Load Analysis for Modern Ship Design ABS TECHNICAL PAPERS 23 Nonlinear Time Domain Simulation Technology for Seakeeping and Wave-Load Analysis for Modern Ship Design Y.S. Shin, Associate Member, American Bureau of Shipping, V.L. Belenky,

More information

NUMERICAL MODELLING AND STUDY OF PARAMETRIC ROLLING FOR C11 CONTAINERSHIP IN REGULAR HEAD SEAS USING CONSISTENT STRIP THEORY

NUMERICAL MODELLING AND STUDY OF PARAMETRIC ROLLING FOR C11 CONTAINERSHIP IN REGULAR HEAD SEAS USING CONSISTENT STRIP THEORY Brodogradnja/Shipbuilding/Open access Volume 68 Number 3, 217 Kaiye HU Rui WANG Shan MA Wenyang DUAN Wenhao XU Rui DENG http://dx.doi.org/1.21278/brod6839 ISSN 7-215X eissn 185-5859 NUMERICAL MODELLING

More information

On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations

On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations Zhe Tian 1,2, Cong Zhang 1, Xinping Yan 1, Yeping Xiong 2 1. School of Energy and Power Engineering Wuhan University of

More information

OMAE MODELLING RISERS WITH PARTIAL STRAKE COVERAGE

OMAE MODELLING RISERS WITH PARTIAL STRAKE COVERAGE Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2011 June July 19-24, 2011, Rotterdam, The Netherlands OMAE2011-49817 MODELLING RISERS WITH PARTIAL

More information

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS DREDGERS AND MUD BARGES CHAPTERS CHAPTERS SCOPE

RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS DREDGERS AND MUD BARGES CHAPTERS CHAPTERS SCOPE PARTE II RULES FOR THE CONSTRUCTION AND CLASSIFICATION OF SHIPS IDENTIFIED BY THEIR MISSIONS TÍTULO 43 DREDGERS AND MUD BARGES SECTION 2 STRUCTURE CHAPTERS SECTION 2 STRUCTURE CHAPTERS A B C SCOPE DOCUMENTS,

More information

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 10 Special requirements. Edition January 2017 DNV GL AS

RULES FOR CLASSIFICATION. Ships. Part 3 Hull Chapter 10 Special requirements. Edition January 2017 DNV GL AS RULES FOR CLASSIFICATION Ships Edition January 2017 Part 3 Hull Chapter 10 The content of this service document is the subject of intellectual property rights reserved by ("DNV GL"). The user accepts that

More information

DREDGING DYNAMICS AND VIBRATION MEASURES

DREDGING DYNAMICS AND VIBRATION MEASURES DREDGING DYNAMICS AND VIBRATION MEASURES C R Barik, K Vijayan, Department of Ocean Engineering and Naval Architecture, IIT Kharagpur, India ABSTRACT The demands for dredging have found a profound increase

More information

Evaluation of Hydrodynamic Performance of a Damaged Ship in Waves

Evaluation of Hydrodynamic Performance of a Damaged Ship in Waves Evaluation of Hydrodynamic Performance of a Damaged Ship in Waves Sa Young Hong, Seok-Kyu Cho, Byoung Wan Kim, Gyeong Jung Lee, Ki-Sup Kim Maritime and Ocean Engineering Research Institute/KORDI, Daejeon,

More information

Numerical simulation of surface ship hull beam whipping response due to submitted underwater explosion

Numerical simulation of surface ship hull beam whipping response due to submitted underwater explosion Numerical simulation of surface ship hull beam whipping response due to submitted underwater explosion Presenter / Ssu-Chieh Tsai Supervisor / Pr. Hervé Le Sourne 1 March 2017, Rostock 1 Motivation UNDEX

More information

Experimental investigation of wave induced vibrations and their effect on the fatigue loading of ships

Experimental investigation of wave induced vibrations and their effect on the fatigue loading of ships Experimental investigation of wave induced vibrations and their effect on the fatigue loading of ships A thesis submitted in partial fulfillment of the requirements for the degree of doktor ingeniør by

More information

A damage-based condensation method to condense wave bins for tendon fatigue analysis

A damage-based condensation method to condense wave bins for tendon fatigue analysis Published by International Association of Ocean Engineers Journal of Offshore Engineering and Technology Available online at www.iaoejoet.org A damage-based condensation method to condense wave bins for

More information

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea Towards Green Marine Technology and Transport Guedes Soares, Dejhalla & Pavleti (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02887-6 Seakeeping characteristics of intact and damaged ship in

More information

Corrigenda 1 to 01 January 2017 version

Corrigenda 1 to 01 January 2017 version Common Structural Rules for Bulk Carriers and Oil Tankers Corrigenda 1 to 01 January 2017 version Note: This Corrigenda enters into force on 1 st July 2017. Copyright in these Common Structural Rules is

More information

BOW FLARE SLAMMING OF CONTAINER SHIPS AND IT'S IMPACT ON OPERATIONAL RELIABILITY

BOW FLARE SLAMMING OF CONTAINER SHIPS AND IT'S IMPACT ON OPERATIONAL RELIABILITY BOW FLARE SLAMMING OF CONTAINER SHIPS AND IT'S IMPACT ON OPERATIONAL RELIABILITY R P Dallinga, Maritime Research Institute Netherlands (MARIN), Wageningen, The Netherlands SUMMARY Because the numerical

More information

Force-based Element vs. Displacement-based Element

Force-based Element vs. Displacement-based Element Force-based Element vs. Displacement-based Element Vesna Terzic UC Berkeley December 211 Agenda Introduction Theory of force-based element (FBE) Theory of displacement-based element (DBE) Examples Summary

More information

Chapter 7 Vibration Measurement and Applications

Chapter 7 Vibration Measurement and Applications Chapter 7 Vibration Measurement and Applications Dr. Tan Wei Hong School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) Pauh Putra Campus ENT 346 Vibration Mechanics Chapter Outline 7.1

More information

Optimal Design of FPSO Vessels

Optimal Design of FPSO Vessels November 2, 201 Optimal Design of FPSO Vessels Ezebuchi Akandu PhD, MTech, BTech, COREN, RINA, MNSE Department of Marine Engineering, Rivers State University, Port Harcourt, Nigeria akandu.ezebuchi@ust.edu.ng

More information

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions

2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions .003 Engineering Dynamics Problem Set 10 with answer to the concept questions Problem 1 Figure 1. Cart with a slender rod A slender rod of length l (m) and mass m (0.5kg)is attached by a frictionless pivot

More information

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE

LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE LECTURE 12. STEADY-STATE RESPONSE DUE TO ROTATING IMBALANCE Figure 3.18 (a) Imbalanced motor with mass supported by a housing mass m, (b) Freebody diagram for, The product is called the imbalance vector.

More information

ID-1307 DYNAMIC RESPONSE OF MARINE COMPOSITES TO SLAMMING LOADS

ID-1307 DYNAMIC RESPONSE OF MARINE COMPOSITES TO SLAMMING LOADS ID-1307 DYNAMIC RESPONSE OF MARINE COMPOSITES TO SLAMMING LOADS Mark Battley and Dan Svensson Engineering Dynamics Department, Industrial Research Limited PO Box 2225, Auckland, New Zealand SUMMARY: Marine

More information

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV Mohansing R. Pardeshi 1, Dr. (Prof.) P. K. Sharma 2, Prof. Amit Singh 1 M.tech Research Scholar, 2 Guide & Head, 3 Co-guide & Assistant

More information

PROPELLER INDUCED STRUCTURAL VIBRATION THROUGH THE THRUST BEARING

PROPELLER INDUCED STRUCTURAL VIBRATION THROUGH THE THRUST BEARING PROPELLER INDUCED TRUCTURAL VIBRATION THROUGH THE THRUT BEARING Jie Pan, Nabil Farag, Terry Lin and Ross Juniper* DEPARTMENT OF MECHANICAL AND MATERIAL ENGINEERING THE UNIVERITY OF WETERN AUTRALIA 35 TIRLING

More information

Machinery Requirements for Polar Class Ships

Machinery Requirements for Polar Class Ships (August 2006) (Rev.1 Jan 2007) (Corr.1 Oct 2007) Machinery Requirements for Polar Class Ships.1 Application * The contents of this Chapter apply to main propulsion, steering gear, emergency and essential

More information

Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load

Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load A. Ravi Kiran, M. K. Agrawal, G. R. Reddy, R. K. Singh, K. K. Vaze, A. K. Ghosh and H. S. Kushwaha Reactor Safety Division, Bhabha

More information

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1 SAMCEF For ROTORS Chapter 1 : Physical Aspects of rotor dynamics This document is the property of SAMTECH S.A. MEF 101-01-A, Page 1 Table of Contents rotor dynamics Introduction Rotating parts Gyroscopic

More information

NONLINEAR DYNAMIC ANALYSIS OF JACKUP PLATFORMS CONSIDERING SOIL STRUCTURE INTERACTION

NONLINEAR DYNAMIC ANALYSIS OF JACKUP PLATFORMS CONSIDERING SOIL STRUCTURE INTERACTION The 212 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-3, 212 NONLINEAR DYNAMIC ANALYSIS OF JACKUP PLATFORMS CONSIDERING SOIL STRUCTURE INTERACTION

More information

Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis

Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis INTRODUCTION Structural vibrations caused by human activities are not known to be particularly damaging or catastrophic.

More information

Emerging Subsea Networks

Emerging Subsea Networks OPTIMIZING DESIGN OF A DYNAMIC FIBER OPTIC RISER CABLE USING CROSS SECTION ANALYSIS Bjørn Konradsen 1 Magnus Komperød 1 Email: bjorn.konradsen@nexans.com 1 Technological Analyses Centre, Nexans Norway

More information