Numerical simulation of surface ship hull beam whipping response due to submitted underwater explosion

Size: px
Start display at page:

Download "Numerical simulation of surface ship hull beam whipping response due to submitted underwater explosion"

Transcription

1 Numerical simulation of surface ship hull beam whipping response due to submitted underwater explosion Presenter / Ssu-Chieh Tsai Supervisor / Pr. Hervé Le Sourne 1 March 2017, Rostock 1

2 Motivation UNDEX Plume Above-Surface Effects 2

3 Background Complete bubble migration process First shock wave (Mauricio,2015) o o o Exponential decay Empirical approach Very short time duration (ms) Bubble oscillation phase o o o o Non-linear Longer time duration Motion of bubble migration Radius and vertical displacement 3

4 Methodology 3 models Waveless model - Consider as an ideal fluid - Without damping effect and the effect of gas bubble pressure inside bubble DAA model (Doubly Asymptotic Approximation) - Considering the interaction between the liquid and gas bubble - Including damping effect in the liquid Empirical model - Peak approximation method - Restricted to experienced coefficients, specific material cases 4

5 Development of Matlab programs Developed code in Matlab Empirical and analytical models Calculate motion of bubble Pressure loads Test program by 3 charge cases 5

6 Comparison on 3 different UNDEX cases The 3 models are tested on: Case 1: Barras Guillaume s Case Case 2: Hunter & Geers Case Case 3: Keith G, Webster s Case Case 1 m c r Case 2 m c Description TNT charge mass, m c = 500 kg Distance from charge to free surface, = 50 m Distance from charge to standoff point, r = 50 m Density of charge, = 1600 kg/m 3 Description TNT charge mass, m c = 0.3 kg Distance from charge to free surface, = 92 m Density of charge, = 1500 kg/m 3 Case 3 m c Description TNT charge mass, m c = 1.45 kg Distance from charge to free surface, = 178 m Density of charge, = 1500 kg/m 3 Radial distance from charge, 6

7 Comparison with experience (Case 1) Experience: Barras Guillaume, Numerical simulation of underwater explosions using an ALE method. The pulsating bubble phenomena. (2012) Case 1 / Radius: a Case 1 / Pressure DAA model is close to Experience model! 7

8 Comparison 3 models for Case 2 & Case 3 Case 2 / Radius: a Without damping Case 2 / Pressure With damping not realistic Case 3 / Radius: a Without damping Case 3 / Pressure With damping not realistic 8

9 Conclusions Analytical models can be used for various charge materials, mass and water depth DAA model is more representative of the reality than waveless model 9

10 Example 1 : Clamped plate model Girder Girder Frame Symmetrical B.C. (Tx, Ry, Rz) Clamped B.C. ( Tx, Ty, Tz, Rx, Ry, Rz) 8.4 m [30 mm] Frame 4.9 m Symmetrical B.C. (Ty, Rx, Rz) 10

11 Results of clamped plate Case1: m c = 500 kg, dd ii = 50 m, ρρ cc = 1600 kg/m 3 The deformation seems to be realistic! 11

12 Example 2 : Semi-cylinder model Charge Case 1: m c = 500 kg, dd ii = 50 m, ρρ cc = 1600 kg/m 3 Length: 150 m, Breadth: 20m, Draft: 8 m S 3 ½ L [10 mm] ¼ L D 1 D 2 S 1 S 2 D 3 [80 mm] 50 m B 1 B 2 B 3 [20 mm] 12

13 Pressure loads for semi-cylinder Charge Case 1: m c = 500 kg, dd ii = 50 m, ρρ cc = 1600 kg/m 3 S 2 B B 2 1 S 1 B 3 S 3 13

14 Results of semi-cylinder model Energy (J) 7.0E E E E E E E E+00 Energies in LS-DYNA Kinetic Energy Internal Energy Total Energy Hourglass Energy External Work High energy High energy Time (s) Nodal Displaceent (m) Z-Displacement (m) Z-displacement on Bottom (LS-DYNA) B1_Elm_9906 B2_Elm_10020 B3_Elm_ Time (s) Difference of Z-Displacement at Bottom of Cylinder (LS-DYNA) UZ (B1-B3) Time (s) The deflection is realistic. 14

15 Analysis process for ANSYS Objective: Convert code from MATLAB to ANSYS language Model Preparation Structural model Fluid field mesh Pressure Calculation Reaction force calculation to nodes Export hull model Constraint DOF to all nodes on hull Static analysis for reaction force Direct Integration Method Transient solution Calculate for all model Time consumption OR Modal Superposition Modal analysis Create modal basis Transient solution 15

16 Example 2: Semi-cylinder model Pressure load calculation is validated in ANSYS program! 16

17 Results of semi-cylinder model Static analysis Transient solution by model superposition o Displacement is should be zero at time 0 o Too high deflection > 14m!!! Modal analysis Deflection is not realistic! B 3 B 1 B 2 17

18 Example 3 : Frigate ship model Length of all: 95.0 m Breadth: 14.0 m Draught: 4.75 m m Charge location Charge location 40 m Case Description SF Shock factor = 0.6 m c r TNT charge mass, m c = 1296 kg Distance from charge to free surface, = m Distance from charge to standoff point, r = 60 m Density of charge, = 1600 kg/m 3 18

19 Results of Example 3 Transient solution by modal superposition Difference of Z-displacement at Bottom (Frigate ship) Nodal Displaceent (m) UZ(B1-B3) Displacement should be zero at time Time (s) Deflection seems to be more realistic 19

20 Conclusion DAA analytical model, representative of the reality, has been chosen Secondary bubble oscillation phase has significant influence on structure Model superposition method leads to unrealistic results This method is suitable only for small displacements (it is not the case here) Direct integration method 20

21 Future work Perform shock response analysis for one or several embarked materials using Dynamic Design Analysis Method (DDAM) Examples : Shaft line or / and pipes line 21

Numerical simulation of surface ship hull beam whipping response due to submitted to underwater explosion

Numerical simulation of surface ship hull beam whipping response due to submitted to underwater explosion Numerical simulation of surface ship hull beam whipping response due to submitted to underwater explosion Ssu-Chieh Tsai Master Thesis presented in partial fulfillment of the requirements for the double

More information

Shock factor investigation in a 3-D finite element model under shock loading

Shock factor investigation in a 3-D finite element model under shock loading 10(2013) 941 952 Shock factor investigation in a 3-D finite element model under shock loading Abstract In this paper, a scaled 3D ship under shock loading is modeled and analyzed by finite element method.

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN ISSN 2229-5518 692 In literature, finite element formulation uses beam element or plate element for structural modelling which has a limitation on transverse displacement. Atkinson and Manrique [1] studied

More information

Vibrationdata FEA Matlab GUI Package User Guide Revision A

Vibrationdata FEA Matlab GUI Package User Guide Revision A Vibrationdata FEA Matlab GUI Package User Guide Revision A By Tom Irvine Email: tom@vibrationdata.com March 25, 2014 Introduction Matlab Script: vibrationdata_fea_preprocessor.zip vibrationdata_fea_preprocessor.m

More information

Research Article Numerical Simulation and Response of Stiffened Plates Subjected to Noncontact Underwater Explosion

Research Article Numerical Simulation and Response of Stiffened Plates Subjected to Noncontact Underwater Explosion Advances in Materials Science and Engineering, Article ID 752586, 17 pages http://dx.doi.org/155/2014/752586 Research Article Numerical Simulation and Response of Stiffened Plates Subjected to Noncontact

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

Aalto University School of Engineering

Aalto University School of Engineering Aalto University School of Engineering Kul-24.4120 Ship Structural Design (P) Lecture 8 - Local and Global Vibratory Response Kul-24.4120 Ship Structures Response Lecture 5: Tertiary Response: Bending

More information

MULTIDISCIPLINARY OPTIMIZATION OF A LIGHTWEIGHT TORPEDO STRUCTURE SUBJECTED TO UNDERWATER EXPLOSION

MULTIDISCIPLINARY OPTIMIZATION OF A LIGHTWEIGHT TORPEDO STRUCTURE SUBJECTED TO UNDERWATER EXPLOSION MULTIDISCIPLINARY OPTIMIZATION OF A LIGHTWEIGHT TORPEDO STRUCTURE SUBJECTED TO UNDERWATER EXPLOSION A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in

More information

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Kauê Werner and Júlio A. Cordioli. Department of Mechanical Engineering Federal University of Santa Catarina

More information

ANSYS Explicit Dynamics Update. Mai Doan

ANSYS Explicit Dynamics Update. Mai Doan ANSYS Explicit Dynamics Update Mai Doan Mai.Doan@ansys.com +1 512 687 9523 1/32 ANSYS Explicit Dynamics Update Outline Introduction Solve Problems that were Difficult or Impossible in the Past Structural

More information

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES 14.1 GENERAL REMARKS In structures where dominant loading is usually static, the most common cause of the collapse is a buckling failure. Buckling may

More information

Aalto University School of Engineering

Aalto University School of Engineering Aalto University School of Engineering Kul-4.4 Ship Structural Design (P) ecture 6 - Response of Web-frames, Girders and Grillages Kul-4.4 Ship Structures Response ecture 5: Tertiary Response: Bending

More information

MEG 795 COURSE PROJECT

MEG 795 COURSE PROJECT MEG 795 COURSE PROJECT Transient dynamic analysis of a 3 Point Impact Hammer Test on a simply supported steel plate using ANSYS and LS-DYNA JAGANNADHA RAO NARAPARAJU DEPARTMENT OF MECHANICAL ENGINEERING

More information

Example 37 - Analytical Beam

Example 37 - Analytical Beam Example 37 - Analytical Beam Summary This example deals with the use of RADIOSS linear and nonlinear solvers. A beam submitted to a concentrated load on one extremity and fixed on the other hand is studied.

More information

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS 1 Macchiavello, Sergio *, 2 Tonelli, Angelo 1 D Appolonia S.p.A., Italy, 2 Rina Services S.p.A., Italy KEYWORDS pleasure vessel, vibration analysis,

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

Solution of Coupled Thermoelasticity Problem In Rotating Disks

Solution of Coupled Thermoelasticity Problem In Rotating Disks Cotutelle Doctoral Program Doctoral Dissertation on Solution of Coupled Thermoelasticity Problem In Rotating Disks by Ayoob Entezari Supervisors: Prof. M. A. Kouchakzadeh¹ and Prof. Erasmo Carrera² Advisor:

More information

Simulation of flow induced vibrations in pipes using the LS-DYNA ICFD solver

Simulation of flow induced vibrations in pipes using the LS-DYNA ICFD solver Simulation of flow induced vibrations in pipes using the LS-DYNA ICFD solver arcus Timgren 1 1 DYNAmore Nordic AB, Linköping, Sweden 1 Introduction Flow-induced vibrations, (FIV), is a terminology that

More information

Linear Static Analysis of a Cantilever Beam (SI Units)

Linear Static Analysis of a Cantilever Beam (SI Units) WORKSHOP 6 Linear Static Analysis of a Cantilever Beam (SI Units) Objectives: Create a geometrical representation of a cantilever beam. Use this geometry model to define an MSC/NASTRAN analysis model comprised

More information

Boundary element methods in the prediction of the acoustic damping of ship whipping vibrations

Boundary element methods in the prediction of the acoustic damping of ship whipping vibrations ANZIAM J. 45 (E) ppc845 C856, 2004 C845 Boundary element methods in the prediction of the acoustic damping of ship whipping vibrations D. S. Holloway G. A. Thomas M. R. Davis (Received 8 August 2003) Abstract

More information

Opto-Mechanical I/F for ANSYS

Opto-Mechanical I/F for ANSYS Opto-Mechanical I/F for ANSYS Victor Genberg, Gregory Michels, Keith Doyle Sigmadyne, Inc. Abstract Thermal and structural output from ANSYS is not in a form useful for optical analysis software. Temperatures,

More information

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib Finite Element Analysis Lecture 1 Dr./ Ahmed Nagib April 30, 2016 Research and Development Mathematical Model Mathematical Model Mathematical Model Finite Element Analysis The linear equation of motion

More information

Random Vibration Analysis in FEMAP An Introduction to the Hows and Whys

Random Vibration Analysis in FEMAP An Introduction to the Hows and Whys Random Vibration Analysis in FEMAP An Introduction to the Hows and Whys Adrian Jensen, PE Senior Staff Mechanical Engineer Kyle Hamilton Staff Mechanical Engineer Table of Contents 1. INTRODUCTION... 4

More information

Experimental studies of springing and whipping of container vessels

Experimental studies of springing and whipping of container vessels Experimental studies of springing and whipping of container vessels Ole Andreas Hermundstad CeSOS Highlights and AMOS Visions Conference 27-29th May 2013 in Trondheim Outline Background and motivation

More information

Design and Dynamic Analysis on Composite Propeller of Ship Using FEA

Design and Dynamic Analysis on Composite Propeller of Ship Using FEA Design and Dynamic Analysis on Composite Propeller of Ship Using FEA Ahmed Abdul Baseer Assistant Professor, Nizam Institute of Engineering and Technology. ABSTRACT: Ships and underwater vehicles like

More information

THE LINEAR NUMERICAL ANALYSIS OF DISPLACEMENT RESPONSE AMPLITUDE OPERATOR, BASED ON THE HYDROELASTICITY THEORY, FOR A BARGE TEST SHIP

THE LINEAR NUMERICAL ANALYSIS OF DISPLACEMENT RESPONSE AMPLITUDE OPERATOR, BASED ON THE HYDROELASTICITY THEORY, FOR A BARGE TEST SHIP APPIED PHYSICS MECHANICS THE INEAR NUMERICA ANAYSIS OF DISPACEMENT RESPONSE AMPITUDE OPERATOR, BASED ON THE HYDROEASTICITY THEORY, FOR A BARGE TEST SHIP EONARD DOMNIªORU 1, IVIU STOICESCU 1, DANIEA DOMNIªORU

More information

Research Activity of LRETC: Structures

Research Activity of LRETC: Structures Research Activity of LRETC: Structures Y. Kim, W.I. Lee, M.H. Cho (MAE) and In-Sik Nho (CNU) Seoul National University The Lloyd s Register Educational Trust (LRET) y g ( ) Marine & Offshore Research Workshop

More information

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP

RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP RULES PUBLICATION NO. 17/P ZONE STRENGTH ANALYSIS OF HULL STRUCTURE OF ROLL ON/ROLL OFF SHIP 1995 Publications P (Additional Rule Requirements), issued by Polski Rejestr Statków, complete or extend the

More information

Dynamic Response Of Laminated Composite Shells Subjected To Impulsive Loads

Dynamic Response Of Laminated Composite Shells Subjected To Impulsive Loads IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 3 Ver. I (May. - June. 2017), PP 108-123 www.iosrjournals.org Dynamic Response Of Laminated

More information

AEROELASTIC ANALYSIS OF COMBINED CONICAL - CYLINDRICAL SHELLS

AEROELASTIC ANALYSIS OF COMBINED CONICAL - CYLINDRICAL SHELLS Proceedings of the 7th International Conference on Mechanics and Materials in Design Albufeira/Portugal 11-15 June 2017. Editors J.F. Silva Gomes and S.A. Meguid. Publ. INEGI/FEUP (2017) PAPER REF: 6642

More information

ID-1307 DYNAMIC RESPONSE OF MARINE COMPOSITES TO SLAMMING LOADS

ID-1307 DYNAMIC RESPONSE OF MARINE COMPOSITES TO SLAMMING LOADS ID-1307 DYNAMIC RESPONSE OF MARINE COMPOSITES TO SLAMMING LOADS Mark Battley and Dan Svensson Engineering Dynamics Department, Industrial Research Limited PO Box 2225, Auckland, New Zealand SUMMARY: Marine

More information

Linear Static Analysis of a Cantilever Beam (CBAR Problem)

Linear Static Analysis of a Cantilever Beam (CBAR Problem) WORKSHOP 17 Linear Static Analysis of a Cantilever Beam (CBAR Problem) Objectives: Create a geometrical representation of a cantilever beam. Use this geometry model to define an MSC.Nastran analysis model

More information

Vibro-acoustic Analysis for Noise Reduction of Electric Machines

Vibro-acoustic Analysis for Noise Reduction of Electric Machines Vibro-acoustic Analysis for Noise Reduction of Electric Machines From Flux to OptiStruct Example : Synchronous Machine Flux 2D coupling to OptiStruct Patrick LOMBARD Application Team Manager Patrick.Lombard@cedrat.com

More information

APPENDIX 4.8.B GSMT IMAGE QUALITY DEGRADATION DUE TO WIND LOAD

APPENDIX 4.8.B GSMT IMAGE QUALITY DEGRADATION DUE TO WIND LOAD APPENDIX 4.8.B GSMT IMAGE QUALITY DEGRADATION DUE TO WIND LOAD Report prepared for the New Initiatives Office, December 2001. GSMT Image Quality Degradation due to Wind Load NIO-TNT-003 Issue 1.B 05-Dec-2001

More information

Chapter 5: Random Vibration. ANSYS Mechanical. Dynamics. 5-1 July ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Chapter 5: Random Vibration. ANSYS Mechanical. Dynamics. 5-1 July ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Chapter 5: Random Vibration ANSYS Mechanical Dynamics 5-1 July 2009 Analysis Random Vibration Analysis Topics covered: Definition and purpose Overview of Workbench capabilities Procedure 5-2 July 2009

More information

FEM Analysis on Circular Stiffened plates using ANSYS

FEM Analysis on Circular Stiffened plates using ANSYS FEM Analysis on Circular Stiffened plates using ANSYS A Thesis Submitted to National Institute of Technology, Rourkela In Partial fulfillment of the requirement for the degree of Bachelor of Technology

More information

AD-AhO1 461 NAVAL SURFACE WEAPONS CENTER SILVER SPRING MD F/ 19/4 COMMENTS ON THE DOUBLY ASYMPTOTIC APPROXIMATION! 1. KINETIC ENE-ECTC(U) MAY 61 D A

AD-AhO1 461 NAVAL SURFACE WEAPONS CENTER SILVER SPRING MD F/ 19/4 COMMENTS ON THE DOUBLY ASYMPTOTIC APPROXIMATION! 1. KINETIC ENE-ECTC(U) MAY 61 D A AD-AhO1 461 NAVAL SURFACE WEAPONS CENTER SILVER SPRING MD F/ 19/4 COMMENTS ON THE DOUBLY ASYMPTOTIC APPROXIMATION! 1. KINETIC ENE-ECTC(U) MAY 61 D A NICHOLSON. M H MARCUS UNCLASSIFIED NSWC/YR-Al 201 NL

More information

Software Verification

Software Verification EXAMPLE 1-026 FRAME MOMENT AND SHEAR HINGES EXAMPLE DESCRIPTION This example uses a horizontal cantilever beam to test the moment and shear hinges in a static nonlinear analysis. The cantilever beam has

More information

Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems

Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems Finite Element Static, Vibration and Impact-Contact Analysis of Micromechanical Systems Alexey I. Borovkov Eugeny V. Pereyaslavets Igor A. Artamonov Computational Mechanics Laboratory, St.Petersburg State

More information

VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD

VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD Proceedings of COBEM 2007 Copyright 2007 by ABCM 19th International Congress of Mechanical Engineering November 5-9, 2007, Brasília, DF VIBRATION ANALYSIS IN SHIP STRUCTURES BY FINITE ELEMENT METHOD Luiz

More information

D && 9.0 DYNAMIC ANALYSIS

D && 9.0 DYNAMIC ANALYSIS 9.0 DYNAMIC ANALYSIS Introduction When a structure has a loading which varies with time, it is reasonable to assume its response will also vary with time. In such cases, a dynamic analysis may have to

More information

Due Tuesday, September 21 st, 12:00 midnight

Due Tuesday, September 21 st, 12:00 midnight Due Tuesday, September 21 st, 12:00 midnight The first problem discusses a plane truss with inclined supports. You will need to modify the MatLab software from homework 1. The next 4 problems consider

More information

PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS

PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS FONDATĂ 1976 THE ANNALS OF DUNAREA DE JOS UNIVERSITY OF GALATI. FASCICLE IX. METALLURGY AND MATERIALS SCIENCE N 0. 007, ISSN 15 08X PREDICTION OF BUCKLING AND POSTBUCKLING BEHAVIOUR OF COMPOSITE SHIP PANELS

More information

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric

More information

A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel Current Wires

A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel Current Wires 13 th International LS-DYNA Users Conference Session: Electromagnetic A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel

More information

DYNAMIC FAILURE ANALYSIS OF LAMINATED COMPOSITE PLATES

DYNAMIC FAILURE ANALYSIS OF LAMINATED COMPOSITE PLATES Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC:669.1-419:628.183=20 DYNAMIC FAILURE ANALYSIS OF LAMINATED COMPOSITE PLATES J. ESKANDARI JAM 1 and N. GARSHASBI NIA 2 1- Aerospace

More information

P-I diagrams for linear-elastic cantilevered Timoshenko beams including higher modes of vibration

P-I diagrams for linear-elastic cantilevered Timoshenko beams including higher modes of vibration P-I diagrams for linear-elastic cantilevered Timoshenko beams including higher modes of vibration L. J. van der Meer, J. G. M. Kerstens and M. C. M. Bakker Faculty of Architecture, Building and Planning,

More information

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL SREELATHA P.R * M.Tech. Student, Computer Aided Structural Engineering, M A College of Engineering, Kothamangalam 686 666,

More information

Workshop 8. Lateral Buckling

Workshop 8. Lateral Buckling Workshop 8 Lateral Buckling cross section A transversely loaded member that is bent about its major axis may buckle sideways if its compression flange is not laterally supported. The reason buckling occurs

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

Dynamic Analysis of Composite Propeller of Ship using FEA P. NARASAIAH 1, PROF. S.S. BASARKOD 2

Dynamic Analysis of Composite Propeller of Ship using FEA P. NARASAIAH 1, PROF. S.S. BASARKOD 2 ISSN 2319-8885 Vol.03,Issue.27 September-2014, Pages:5467-5472 www.ijsetr.com Dynamic Analysis of Composite Propeller of Ship using FEA P. NARASAIAH 1, PROF. S.S. BASARKOD 2 Abstract: Ships and under water

More information

Making FEA Results Useful in Optical Analysis Victor Genberg, Gregory Michels Sigmadyne, Inc. Rochester, NY

Making FEA Results Useful in Optical Analysis Victor Genberg, Gregory Michels Sigmadyne, Inc. Rochester, NY Making FEA Results Useful in Optical Analysis Victor Genberg, Gregory Michels Sigmadyne, Inc. Rochester, NY Keith Doyle Optical Research Associates,Westborough, MA ABSTRACT Thermal and structural output

More information

STRUCTURAL DYNAMICS BASICS:

STRUCTURAL DYNAMICS BASICS: BASICS: STRUCTURAL DYNAMICS Real-life structures are subjected to loads which vary with time Except self weight of the structure, all other loads vary with time In many cases, this variation of the load

More information

CAEFEM v9.5 Information

CAEFEM v9.5 Information CAEFEM v9.5 Information Concurrent Analysis Corporation, 50 Via Ricardo, Thousand Oaks, CA 91320 USA Tel. (805) 375 1060, Fax (805) 375 1061 email: info@caefem.com or support@caefem.com Web: http://www.caefem.com

More information

ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT

ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT Ing. Gergely TAKÁCS, PhD.* * Institute of Automation, Measurement and Applied Informatics Faculty of Mechanical Engineering Slovak

More information

Nonlinear Buckling Prediction in ANSYS. August 2009

Nonlinear Buckling Prediction in ANSYS. August 2009 Nonlinear Buckling Prediction in ANSYS August 2009 Buckling Overview Prediction of buckling of engineering structures is a challenging problem for several reasons: A real structure contains imperfections

More information

Slamming and Whipping Analysis in Preliminary Structural Design

Slamming and Whipping Analysis in Preliminary Structural Design Slamming and Whipping Analysis in Preliminary Structural Design Bruce L. Hutchison, P.E., (FSNAME, The Glosten Associates, Inc.) Justin M. Morgan, P.E., (MSNAME, The Glosten Associates, Inc.) Low-order

More information

a) Find the equation of motion of the system and write it in matrix form.

a) Find the equation of motion of the system and write it in matrix form. .003 Engineering Dynamics Problem Set Problem : Torsional Oscillator Two disks of radius r and r and mass m and m are mounted in series with steel shafts. The shaft between the base and m has length L

More information

Comparison of LS-DYNA and NISA in Solving Dynamic Pulse Buckling Problems in Laminated Composite Beams

Comparison of LS-DYNA and NISA in Solving Dynamic Pulse Buckling Problems in Laminated Composite Beams 9 th International LS-DYNA Users Conference Simulation Technology (1) Comparison of LS-DYNA and NISA in Solving Dynamic Pulse Buckling Problems in Laminated Composite Beams Haipeng Han and Farid Taheri

More information

EXTENDED ABSTRACT. Dynamic analysis of elastic solids by the finite element method. Vítor Hugo Amaral Carreiro

EXTENDED ABSTRACT. Dynamic analysis of elastic solids by the finite element method. Vítor Hugo Amaral Carreiro EXTENDED ABSTRACT Dynamic analysis of elastic solids by the finite element method Vítor Hugo Amaral Carreiro Supervisor: Professor Fernando Manuel Fernandes Simões June 2009 Summary The finite element

More information

FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS

FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS J. Kandasamy 1, M. Madhavi 2, N. Haritha 3 1 Corresponding author Department of Mechanical

More information

Modeling and Performance Analysis of a Flywheel Energy Storage System Prince Owusu-Ansah, 1, Hu Yefa, 1, Philip Agyeman, 1 Adam Misbawu 2

Modeling and Performance Analysis of a Flywheel Energy Storage System Prince Owusu-Ansah, 1, Hu Yefa, 1, Philip Agyeman, 1 Adam Misbawu 2 International Conference on Electromechanical Control Technology and Transportation (ICECTT 2015) Modeling and Performance Analysis of a Flywheel Energy Storage System Prince Owusu-Ansah, 1, Hu Yefa, 1,

More information

STRUCTURAL ANALYSIS OF A WESTFALL 2800 MIXER, BETA = 0.8 GFS R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY

STRUCTURAL ANALYSIS OF A WESTFALL 2800 MIXER, BETA = 0.8 GFS R1. By Kimbal A. Hall, PE. Submitted to: WESTFALL MANUFACTURING COMPANY STRUCTURAL ANALYSIS OF A WESTFALL 2800 MIXER, BETA = 0.8 GFS-411519-1R1 By Kimbal A. Hall, PE Submitted to: WESTFALL MANUFACTURING COMPANY OCTOBER 2011 ALDEN RESEARCH LABORATORY, INC. 30 Shrewsbury Street

More information

On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations

On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations Zhe Tian 1,2, Cong Zhang 1, Xinping Yan 1, Yeping Xiong 2 1. School of Energy and Power Engineering Wuhan University of

More information

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads Qianwen HUANG 1 ; Jia LIU 1 ; Cong ZHANG 1,2 ; inping YAN 1,2 1 Reliability Engineering Institute,

More information

Validation of LS-DYNA MMALE with Blast Experiments

Validation of LS-DYNA MMALE with Blast Experiments 12 th International LS-DYNA Users Conference Blast/Impact(3) Validation of LS-DYNA MMALE with Blast Experiments Yuli Huang and Michael R. Willford Arup, San Francisco, CA 94116 Leonard E. Schwer Schwer

More information

APPENDIX 4.4.A STRAWMAN STRUCTURAL DESIGN OF A 30-M GSMT

APPENDIX 4.4.A STRAWMAN STRUCTURAL DESIGN OF A 30-M GSMT APPENDIX 4.4.A STRAWMAN STRUCTURAL DESIGN OF A 30-M GSMT Report prepared for the New Initiatives Office by Simpson Gumpertz & Heger Inc., January 2001. Strawman Structural Design of a 30-m Giant Segmented

More information

Experimental Study and Analysis of Flow Induced Vibration in a pipeline

Experimental Study and Analysis of Flow Induced Vibration in a pipeline Experimental Study and Analysis of Flow Induced Vibration in a pipeline R.Veerapandi a G. Karthikeyan b Dr. G. R.Jinu c R. Kannaiah d a Final Year M.E(CAD),Regional Centre of Anna University,Tirunelveli-629004

More information

DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD

DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD P. WŁUKA, M. URBANIAK, T. KUBIAK Department of Strength of Materials, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź,

More information

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen Steps in the Finite Element Method Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen General Idea Engineers are interested in evaluating effects such as deformations, stresses,

More information

Structural Optimization. for Acoustic Disciplines

Structural Optimization. for Acoustic Disciplines Optimization for Acoustic Disciplines 4. Norddeutschen Simulationsforum 26 May Hamburg, Germany Claus B.W. Pedersen (claus.pedersen@fe-design.com) Peter M. Clausen, Peter Allinger, Jens Harder FE-Design

More information

EXAM 1 PHYS 103 FALL 2011 A NAME: SECTION

EXAM 1 PHYS 103 FALL 2011 A NAME: SECTION EXAM 1 PHYS 103 FALL 2011 A NAME: SECTION As a student at NJIT I, will conduct myself in a professional manner and will comply with the provisions of the NJIT Academic Honor Code. I also understand that

More information

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis Rotating Machinery, 10(4): 283 291, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print / 1542-3034 online DOI: 10.1080/10236210490447728 Deflections and Strains in Cracked Shafts due to Rotating

More information

Drop Test Simulation of a BGA Package: Methods & Experimental Comparison

Drop Test Simulation of a BGA Package: Methods & Experimental Comparison Drop Test Simulation of a BGA Package: Methods & Experimental Comparison Chris Cowan, Ozen Engineering, Inc. Harvey Tran, Intel Corporation Nghia Le, Intel Corporation Metin Ozen, Ozen Engineering, Inc.

More information

Modeling Mechanical Systems

Modeling Mechanical Systems Modeling Mechanical Systems Mechanical systems can be either translational or rotational. Although the fundamental relationships for both types are derived from Newton s law, they are different enough

More information

Optical Interface for MSC.Nastran

Optical Interface for MSC.Nastran Optical Interface for MSC.Nastran Victor Genberg, Keith Doyle, Gregory Michels Sigmadyne, Inc., 803 West Ave, Rochester, NY 14611 genberg@sigmadyne.com Abstract Thermal and structural output from MSC.Nastran

More information

The 10 th international Energy Conference (IEC 2014)

The 10 th international Energy Conference (IEC 2014) Ultimate Limit State Assessments of Steel Plates for Spar-Type Floating Offshore Wind Turbines 1. Sajad Rahmdel 1) 2. Hyerin Kwon 2) 3. Seonghun Park 3) 1), 2), 3) School of Mechanical Engineering, Pusan

More information

Code_Aster. SHLL100 - Harmonic response of a bar per dynamic substructuring

Code_Aster. SHLL100 - Harmonic response of a bar per dynamic substructuring Titre : SHLL100 - Réponse harmonique d'une barre par sous-[...] Date : 03/08/2011 Page : 1/5 SHLL100 - Harmonic response of a bar per dynamic substructuring Abstract: The scope of application of this test

More information

Transient Thermal Analysis of a Fin

Transient Thermal Analysis of a Fin Transient Thermal Analysis of a Fin A cylindrical copper fin conducts heat away from its base at 100 0 C and transfers it to a surrounding fluid at 25 0 C through convection. The convection heat transfer

More information

Dynamic Analysis in FEMAP. May 24 th, presented by Philippe Tremblay Marc Lafontaine

Dynamic Analysis in FEMAP. May 24 th, presented by Philippe Tremblay Marc Lafontaine Dynamic Analysis in FEMAP presented by Philippe Tremblay Marc Lafontaine marc.lafontaine@mayasim.com 514-951-3429 date May 24 th, 2016 Agenda NX Nastran Transient, frequency response, random, response

More information

PREDICTIVE SIMULATION OF UNDERWATER IMPLOSION: Coupling Multi-Material Compressible Fluids with Cracking Structures

PREDICTIVE SIMULATION OF UNDERWATER IMPLOSION: Coupling Multi-Material Compressible Fluids with Cracking Structures PREDICTIVE SIMULATION OF UNDERWATER IMPLOSION: Coupling Multi-Material Compressible Fluids with Cracking Structures Kevin G. Wang Virginia Tech Patrick Lea, Alex Main, Charbel Farhat Stanford University

More information

The Effect of Distribution for a Moving Force

The Effect of Distribution for a Moving Force Paper Number 66, Proceedings of ACOUSTICS 2011 2-4 November 2011, Gold Coast, Australia The Effect of Distribution for a Moving Force Ahmed M. Reda (1,2), Gareth L. Forbes (2) (1) Atkins, Perth, Australia

More information

SHOCK FOCUSING IN WATER IN A CONVERGENT CARBON FIBER COMPOSITE STRUCTURE

SHOCK FOCUSING IN WATER IN A CONVERGENT CARBON FIBER COMPOSITE STRUCTURE THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS SHOCK FOCUSING IN WATER IN A CONVERGENT CARBON FIBER COMPOSITE STRUCTURE C. Wang 1, V. Eliasson 2 * 1 Department of Physics, University of Southern

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

Particle Blast Method (PBM) for the Simulation of Blast Loading

Particle Blast Method (PBM) for the Simulation of Blast Loading Particle Blast Method (PBM) for the Simulation of Blast Loading Hailong Teng, Jason Wang Livermore Software Technology Corporation Abstract This paper presents a particle blast method (PBM) to describe

More information

Thomas Johansson DYNAmore Nordic AB. Drop Test Simulation

Thomas Johansson DYNAmore Nordic AB. Drop Test Simulation Thomas Johansson DYNAmore Nordic AB Drop Test Simulation Plastic Work Displacement LS-DYNA solve all your applications One Code for Multi-Physics Solutions Thermal Solver Implicit Double precision EM Solver

More information

NUMERICAL INVESTIGATION OF A THREE-DIMENSIONAL DISC-PAD MODEL WITH AND WITHOUT THERMAL EFFECTS

NUMERICAL INVESTIGATION OF A THREE-DIMENSIONAL DISC-PAD MODEL WITH AND WITHOUT THERMAL EFFECTS THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 2195-2204 2195 NUMERICAL INVESTIGATION OF A THREE-DIMENSIONAL DISC-PAD MODEL WITH AND WITHOUT THERMAL EFFECTS by Ali BELHOCINE * Faculty of Mechanical Engineering,

More information

IDENTIFICATION OF SHIP PROPELLER TORSIONAL VIBRATIONS

IDENTIFICATION OF SHIP PROPELLER TORSIONAL VIBRATIONS Journal of KONES Powertrain and Transport, Vol., No. 015 IDENTIFICATION OF SHIP PROPELLER TORSIONAL VIBRATIONS Jan Rosłanowski Gdynia Maritime University, Faculty of Marine Engineering Morska Street 81-87,

More information

IDENTIFICATION OF FRICTION ENERGY DISSIPATION USING FREE VIBRATION VELOCITY: MEASUREMENT AND MODELING

IDENTIFICATION OF FRICTION ENERGY DISSIPATION USING FREE VIBRATION VELOCITY: MEASUREMENT AND MODELING IDENTIFICATION OF FRICTION ENERGY DISSIPATION USING FREE VIBRATION VELOCITY: MEASUREMENT AND MODELING Christoph A. Kossack, Tony L. Schmitz, and John C. Ziegert Department of Mechanical Engineering and

More information

DISPENSA FEM in MSC. Nastran

DISPENSA FEM in MSC. Nastran DISPENSA FEM in MSC. Nastran preprocessing: mesh generation material definitions definition of loads and boundary conditions solving: solving the (linear) set of equations components postprocessing: visualisation

More information

CHENDU COLLEGE OF ENGINEERING &TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE2351-STRUCTURAL ANALYSIS-II UNIT-1 FLEXIBILITY

CHENDU COLLEGE OF ENGINEERING &TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE2351-STRUCTURAL ANALYSIS-II UNIT-1 FLEXIBILITY CHENDU COLLEGE OF ENGINEERING &TECHNOLOGY DEPARTMENT OF CIVIL ENGINEERING SUB CODE & SUB NAME : CE2351-STRUCTURAL ANALYSIS-II UNIT-1 FLEXIBILITY METHOD FOR INDETERMINATE FRAMES PART-A(2MARKS) 1. What is

More information

Finite Element Modeling for Transient Thermal- Structural Coupled Field Analysis of a Pipe Joint

Finite Element Modeling for Transient Thermal- Structural Coupled Field Analysis of a Pipe Joint International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies 88 Finite Element Modeling for Transient Thermal- Structural Coupled Field

More information

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran

Response Spectrum Analysis Shock and Seismic. FEMAP & NX Nastran Response Spectrum Analysis Shock and Seismic FEMAP & NX Nastran Table of Contents 1. INTRODUCTION... 3 2. THE ACCELEROGRAM... 4 3. CREATING A RESPONSE SPECTRUM... 5 4. NX NASTRAN METHOD... 8 5. RESPONSE

More information

ACOUSTIC NOISE AND VIBRATIONS DUE TO MAGNETIC FORCES IN ROTATING ELECTRICAL MACHINES

ACOUSTIC NOISE AND VIBRATIONS DUE TO MAGNETIC FORCES IN ROTATING ELECTRICAL MACHINES TECHNICAL TRAINING TTR01 ACOUSTIC NOISE AND VIBRATIONS DUE TO MAGNETIC FORCES IN ROTATING ELECTRICAL MACHINES 1 OBJECTIVES The objectives of the technical training are the followings: understand the phenomenon

More information

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

FREE VIBRATIONS OF FRAMED STRUCTURES WITH INCLINED MEMBERS

FREE VIBRATIONS OF FRAMED STRUCTURES WITH INCLINED MEMBERS FREE VIBRATIONS OF FRAMED STRUCTURES WITH INCLINED MEMBERS A Thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology in Civil Engineering By JYOTI PRAKASH SAMAL

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

4.4 1) 단순지지된깊은보 선형동적해석검증예제 ANALYSIS REFERENCE. REFERENCE NAFEMS 1 Beam elements, solid elements

4.4 1) 단순지지된깊은보 선형동적해석검증예제 ANALYSIS REFERENCE. REFERENCE NAFEMS 1 Beam elements, solid elements 그림 5.4.3 가진방향에따른응답변화예시 Reaction Sum. Total Strain Energy 0 30 60 90 120 150 180 Excitation ngle 4.4 선형동적해석검증예제 1) 단순지지된깊은보 REFERENCE NFEMS 1 ELEMENTS Beam elements, solid elements MODEL FILENME LinearDynamic01.mpb

More information

A Repeated Dynamic Impact Analysis for 7x7 Spacer Grids by using ABAQUS/ Standard and Explicit

A Repeated Dynamic Impact Analysis for 7x7 Spacer Grids by using ABAQUS/ Standard and Explicit A Repeated Dynamic Impact Analysis for 7x7 Spacer Grids by using ABAQUS/ Standard and Explicit Kim, Jae-Yong, and Yoon, Kyung-Ho* * Korea Atomic Energy Research Institute ABSTRACT Spacer grids(sg) are

More information