Microwave Integrated Retrieval System (MIRS)

Size: px
Start display at page:

Download "Microwave Integrated Retrieval System (MIRS)"

Transcription

1 Microwave Integrated Retrieva System (MIRS) Fuzhong Weng, Mitch Godberg, Mark Liu, Sid Boukabara, Raph Ferraro and Tony Reae Office of Research Appications NOAA/NESDIS The 14 th Internationa TOVS Study Conference, Beijing, China May 25-31, 25

2 NESDIS Pan on ATOVS System MIRS AMSU A/B(MHS) ATMS CMIS Integrated Vaidation System INFRARED Sounder/Imager HIRS, AIRS, IASI, CriS,HES AVHRR, MODIS, VIIRS,ABI

3 NESDIS ATOVS Pan Use MIRS as front end MIRS provides microwave-ony retrieva, and wi become an operationa product MIRS microwave retrieva is first guess for HIRS. HIRS processing software ca a function which returns the required microwave information from the MIRS. HIRS information is used to derive couds, OLR, ozone and for cear fovs improved temperature and moisture profies (for temperature improvement is in ower troposphere)

4 AIRS, CrIS, and IASI Continue deveopment of a singe software processing system for a three instrument. The processing system incorporates microwave information from AMSU and ATMS and imager information from MODIS, VIIRS and AVHRR. Use of MIRS is desirabe as front-end. (Microwave agorithms are embedded within AIRS processing system, - so software modues from MIRS wi need to be embedded)

5 Enhance Microwave Surface and Precipitation Products System (MSPPS) Performance Provide front-end retrievas for the robust first guess to infrared sounding system (HIRS, hyperspectra) MIRS Objectives AMSU Coud Liquid Water Path (3/24, 21) Profie temperature, water vapor and coud water from microwave instrument under a weather conditions Improve profiing ower troposphere by using more surface viewing channes in retrieva agorithm Weng et a. (Radio Science, 23) Microwave surface Emissivity at 37 GHz Integrate the state-of-the-art radiative transfer mode components from JCSDA into MIRS Prepare for future microwave sounding system (e.g. ATMS, CMIS, SSMIS, Geo- MW)

6 Microwave Products from NPOESS CMIS EDR Tite Atmospheric Vertica Moisture Profie (surf to 6mb) Sea Surface Winds (Speed) Soi Moisture Atmospheric Vertica Moisture Profie (6 to 1mb) Atmospheric Vertica Temperature Profie Coud Ice Water Path Coud Liquid Water Ice Surface Temperature Land Surface Temperature Precipitation Precipitabe Water Sea Ice Age and Sea Ice Edge Motion Sea Surface Temperature Sea Surface Winds (Direction) Tota Water Content Coud Base Height Fresh Water Ice Imagery Pressure Profie Snow Cover / Depth Surface Wind Stress Vegetation / Surface Type Category IA IA IA IIA IIA IIA IIA IIB IIB IIA IIA IIB IIA IIA IIA IIIB IIIB IIIB IIIB III B/A IIIB IIIB The highighted are operationa EDRS derived from POES AMSU

7 ER-2/DC-8 Measurements during TOGA/CORE (1/2) Weng and Grody (2, JAS)

8 ER-2/DC-8 Measurements during TOGA/CORE (2/2)

9 Couds Modify AMSU Weighting Function / /-.217 pressure ( hpa) pressure (hpa) coud weighting function Cear condition weighting function Incude two separated coud ayers at 61 and 84 hpa with.5 g m -3 iquid water.

10 Microwave Integrated Retrieva System Fowchart Fast scattering/poarimetric radiative transfer mode/jacobian for a atmospheric conditions Surface emissivity/refectivity modes (soi, vegetation, snow/sea ice, water) Fast variationa minimization agorithm NWP forecast outputs, cimatoogy, regressions as first guess Temperature, water vapor and coud and rain water profies Fexibe channe seection/sensor geometry and noise Liu and Weng (25, IEEE)

11 Cost Function: Agorithm Theoretica Basis (1/9) J = ( ) ( ) [ ] [ ] b T 1 b o T o x x B x x + I( x) I ( E+ F) I( x) I where x b is background vector x is state vector to be retrieved I is the radiance vector B is the error covariance matrix of background E is the observation error covariance matrix F is the radiative transfer mode error matrix

12 Agorithm Theoretica Basis (2/9) Retrievas are made at vertica pressure eves (.1 to surface, maximum eves of 42) Surface pressure from GDAS 6-hour forecasts Background state variabes from cimatoogy which is atitude-dependent First guess is from regression (coud be the same as background) No background information needed for coud water Bias correction for forward modes, residuas wi be observationa error covariance

13 Agorithm Theoretica Basis (3/9) JCSDA Community Radiative Transfer Mode Atmospheric State Vectors Surface State Vectors Aeroso and Coud Optica Mode Atmospheric Spectroscopy Mode Forward Radiative Transfer Schemes Surface Emissivity, Refectivity Modes Receiver and Antenna Transfer Functions Jacobian (Adjoint) Mode

14 Agorithm Theoretica Basis (4/9) Radiative Transfer Mode: di(, Ω) µ d = I(, Ω) + ω 4π 4π ' ' ' ωf M(, Ω, Ω ) I(, Ω ) dω + (1 ω) B + exp( / µ ) S 4π Radiative transfer scheme incuding four Stokes components is based on VDISORT (Weng, JQRST, 1992) Accuracies on various transfer probems incuding moecuar scattering, L13 aerosos and microwave poarimetry are discussed (Schuz et a., JQSRT, 1999, Weng, J. Eec&App., 22 ) Jacobians incuding coud iquid and ice water are derived using VDISORT soutions (Weng and Liu, JAS, 23) Surface emissivity and bi-directiona refectivity modes are integrated (Weng et a., JGR, 21)

15 Agorithm Theoretica Basis (5/9) Jacobians Incuding Scattering: Vector DIScrete Ordinate Radiative (VDISORT) Soution: Ψ E A Ξ Ξ A Ξ s s c A I ) / exp( ] [ )] ) ( ( ) ( ) ( ) ( [ ) ( ) ( )] ( exp[ ) ( µ π ϖ µ µ δ = + = F B B B m j N N j L k N N j j k k k x j x x j x } )] ( exp[ ){, ( ) ( } )) ( ) ( ( ){, ( ) ( c A K s s s K I µ µ δ µ µ = = = = = + = (Weng and Liu, JAS, 23)

16 Agorithm Theoretica Basis (6/9) Emissivity Mode: Surface Emissivity Spectra (θ=53 ) Open water two-scae roughness theory Sea ice Coherent refection Canopy Four ayer custering scattering Bare soi Coherent refection and surface roughness Snow/desert Random media Weng et a (21, JGR) Emissivity at H-Poarization Emissivity at V-Poarization Frequency (GHz) Surface Emissivity Spectra (θ=53 ) Frequency (GHz) Snow Canopy Bare Soi Wet Land Desert Ocean Snow Canopy Bare Soi Wet Land Desert Ocean

17 Snow Emissivity: Agorithm Theoretica Basis (7/9)

18 Agorithm Theoretica Basis (8/9)

19 Advanced Microwave Sounding Unit Fown on NOAA-15 (May 1998), NOAA-16 (Sept. 2) and NOAA-17 (June 22) sateites Contains 2 channes: AMSU-A 15 channes GHz AMSU-B 5 channes GHz 4-hour tempora samping: 13, 73, 13, 133, 193, 223 LST

20 Advanced Microwave Sounding Unit AMSU measurement at each sounding channe responds primariy to emitted radiation within a ayer, indicated by its weighting function The vertica resoution of sounding is dependent on the number of independent channe measurements Lower tropospheric channes are aso affected by the surface radiation which is highy variabe over and

21 Water Vapor and Coud Water Profies P ressure ( hpa) TPW=74.56 kg/m2 TPW=73.1 kg/m2 retrieved origina P ressure ( hpa) LWP=.416 kg/m2 LWP=.492 kg/m2 origina retrieved water vapor mixing ratio (kg/kg) coud water mixing ratio (kg/kg) Standard atmosphere and coudy ayers between 8 and 95 hpa Retrievas is based on simuated AMSU brightness temperatures at nadir

22 Verticay Integrated Water Vapor TPW (mm, 1dvar) Match-up TPW from radiosondes and AMSU retrieva in N=618, NOAA-16 bias=.12 mm, rms=2.28 mm TPW (mm, radiosonde) TPW (mm, 1dvar) TPW (mm, 1dvar) N=585, NOAA-15 bias=.28 mm, rms=2.7 mm TPW (mm, radiosonde) N=679, NOAA-17 bias=.7 mm, rms=2.52 mm TPW (mm, radiosonde)

23 TPW Vaidation (NOAA-17) TPW (GDAS, mm) rms=6.2 mm (15%) Ocean TPW (MSPPS, mm std=4.7mm (11%) Ocean, NOAA-17 TPW (retrived, mm std=3.3 mm (8%) Ocean, NOAA TPW (radiosonde, mm) TPW (radiosonde, mm) TPW (radiosonde, mm) In comparison to radiosonde measurements, MSPPS TPW product gives accuracy better than GDAS but is sighty biased. MIRS TPW is the best (no priori information).

24 TPW Vaidation (NOAA-15) TPW (GDAS, mm std=6.1 mm (15%) Ocean TPW (MSPPS, mm std=4.8mm (12%) Ocean, NOAA-15 TPW (retrived, mm std=3.5 mm (9%) Ocean, NOAA TPW (radiosonde, mm) TPW (radiosonde, mm) TPW (radiosonde, mm)

25 Retrieva Bias vs. Viewing Anges TPW bias (mm) Match-up TPW from radiosondes and AMSU retrieva in 22. Bias variation to viewing anges. Bias = radiosonde AMSU 4 NOAA-16, bias=radiosonde-retrieva dvar 1 MSPPS viewing ange TPW bias (mm) TPW bias (mm) 6 NOAA-15, bias = radiosonde - retrieva viewing ange (degree) 7 NOAA-17, bias-radiosonde-retrieva viewing ange (degree) 1 dvar MSPPS 1 dvar MSPPS

26 Temperature Vaidation (NOAA-17) Comparison of temperature to radiosondes ocean, NOAA-17 retrieved vs radiosondes temperature ocean, NOAA-17 P ressure (hp a) retrieved, cear GDAS P ressure ( hpa) cear + coudy + precipitation standard deviation (K) standard deviation (K) GDAS (1 x 1 deg) and radiosondes agree we. Couds degrade the retrieva accuracy sighty. Cear sampes = 357, cear+coud sampes = 51, cear+coud+precipitation=552

27 Temperature Vaidation (NOAA-17) retrieved vs radiosondes temperature ocean, NOAA-17 retrieved vs radiosondes temperature ocean, NOAA-15 P r essur e ( hpa) cear + coudy + precipitation P ressure ( hpa) cear + coudy + precipitation bias (K) bias (K)

28 Temperature Vaidation (NOAA-15) Comparison of temperature to radiosondes ocean, NOAA-15 retrieved vs radiosondes temperature ocean, NOAA-15 P ressure ( hpa) retrieved, cear GDAS P ressure ( hpa) cear + coudy + precipitation standard deviation (K) standard deviation (K) GDAS (1 x 1 deg) and radiosondes agree we. Couds degrade the retrieva accuracy sighty. Cear sampes = 278, cear+coud sampes = 386, cear+coud+precipitation=416

29 Temperature Accuracy (Nadir vs. off-nadir) Comparison of temperature to radiosonde ocean, NOAA-15 Comparison of temperature to radiosonde ocean, NOAA-17 P r essur e ( hpa) < 15 degree > 45 degree P ressure (hp a) < 15 degree > 45 degree standard deviation (K) standard deviation (K)

30 Vaidation for Water Vapor Profie retrieved vs radiosondes water vapor profie ocean, NOAA-17 retrieved vs radiosondes water vapor profie ocean, NOAA-17 P r e s s u r e ( h P a ) RMS water vapor (%) cear + coudy + precipitation P r e s s u r e ( h P a ) cear + coudy + precipitation bias water vapor (%)

31 Coud Liquid Water (MIRS vs. MSPPS)

32 Precipitation (MIRS vs. MSPPS)

33 Temperature at 85 hpa (MIRS vs. GDAS)

34 Temperature at 5 hpa (MIRS vs. GDAS)

35 Tota Precipitabe Water (MIRS vs. MSPPS)

36 Water Vapor at 5 hpa (MIRS vs. GDAS)

37 Water Vapor, Coud Water and Rain Rate TPW CLW Rain Rate IWP

38 Impacts of Forward Modes T(85hPa) Scattering T(85hPa) Emission ony T(2hPa) Scattering T(2hPa) Emission ony

39 Temperature Anomay Vertica cross section of temperature anomaies at 6: UTC 9/12/23. Left pane: west-east cross section aong 22EN, and right pane: south-north cross section aong 56EW for Hurricane Isabe t d d d S I M I I ) (1 ), ( ),, ( 4 ), ( ), ( ' 4 ' ' ω Ω Ω Ω Ω π ω Ω Ω µ π + + = With Coud/Precipitation Scattering

40 Temperature Anomay Without Coud/Precipitation Scattering Vertica cross section of temperature anomaies at 6: UTC 9/12/23. Left pane: west-east cross section aong 22EN, and right pane: south-north cross section aong 56EW for Hurricane Isabe di(, Ω) µ = I(, Ω) + (1 ω ) S d t

41 Improved 3DVAR Anaysis with AMSU Without AMSU Coudy Radiances With AMSU Coudy Radiances

42 Summary and Concusions Integrated uses of microwave imager and sounder data can significanty improve temperature profiing in ower troposphere Advanced radiative transfer modes incuding coud/precipitation scattering are vita for improving profiing capabiity in severe weather conditions such as hurricanes MIRS with bias corrections to radiative transfer modes produces improved performance from AMSU and makes the retrieva errors ess dependent on scan ange MIRS retrievas are being vaidated against variabe independent sources. Overa performances are very encouraging. The system is of great potentias for NPOESS ATMS, CMIS appications MIRS has a ot of room to improve and incorporate more variabes in the processing.

43 Open Issues Refine the retrievas for better regiona performance (e.g. high terrains, deserts, snow/sea ice cover, coast conditions) Bias corrections for water vapor sounding channes are highy required. Aternativey, the retrievas wi be aso tested with imb-adjusted AMSU measurements Investigate non-convergent behaviors over particuar regions (scattering RT mode vs. abnorma observations) in the ast retrieva process when AMSU-B water vapor sounding channes are incuded Test the system for SSMIS appications

A New Microwave Snow Emissivity Model

A New Microwave Snow Emissivity Model A New Microwave Snow Emissivity Model Fuzhong Weng 1,2 1. Joint Center for Satellite Data Assimilation 2. NOAA/NESDIS/Office of Research and Applications Banghua Yan DSTI. Inc The 13 th International TOVS

More information

Introducing NOAA s Microwave Integrated Retrieval System (MIRS)

Introducing NOAA s Microwave Integrated Retrieval System (MIRS) Introducing NOAA s Microwave Integrated Retrieval System (MIRS) S-A. Boukabara, F. Weng, R. Ferraro, L. Zhao, Q. Liu, B. Yan, A. Li, W. Chen, N. Sun, H. Meng, T. Kleespies, C. Kongoli, Y. Han, P. Van Delst,

More information

Atmospheric Profiles Over Land and Ocean from AMSU

Atmospheric Profiles Over Land and Ocean from AMSU P1.18 Atmospheric Profiles Over Land and Ocean from AMSU John M. Forsythe, Kevin M. Donofrio, Ron W. Kessler, Andrew S. Jones, Cynthia L. Combs, Phil Shott and Thomas H. Vonder Haar DoD Center for Geosciences

More information

THE Advance Microwave Sounding Unit (AMSU) measurements

THE Advance Microwave Sounding Unit (AMSU) measurements IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 5, MAY 2005 1087 One-Dimensional Variational Retrieval Algorithm of Temperature, Water Vapor, and Cloud Water Profiles From Advanced Microwave

More information

Atmospheric Soundings of Temperature, Moisture and Ozone from AIRS

Atmospheric Soundings of Temperature, Moisture and Ozone from AIRS Atmospheric Soundings of Temperature, Moisture and Ozone from AIRS M.D. Goldberg, W. Wolf, L. Zhou, M. Divakarla,, C.D. Barnet, L. McMillin, NOAA/NESDIS/ORA Oct 31, 2003 Presented at ITSC-13 Risk Reduction

More information

Application of PCRTM to Hyperspectral Data

Application of PCRTM to Hyperspectral Data Appication of PCTM to Hyperspectra Data Xu Liu NASA Langey esearch Center, Hampton, VA 23681 Xu.Liu-1@nasa.gov W. L. Smith, D. K. Zhou, A. M. Larar, P. Schuesser, M. Godberg,. Sauders, P. D. Giroamo, A.

More information

MOISTURE PROFILE RETRIEVALS FROM SATELLITE MICROWAVE SOUNDERS FOR WEATHER ANALYSIS OVER LAND AND OCEAN

MOISTURE PROFILE RETRIEVALS FROM SATELLITE MICROWAVE SOUNDERS FOR WEATHER ANALYSIS OVER LAND AND OCEAN MOISTURE PROFILE RETRIEVALS FROM SATELLITE MICROWAVE SOUNDERS FOR WEATHER ANALYSIS OVER LAND AND OCEAN John M. Forsythe, Stanley Q. Kidder, Andrew S. Jones and Thomas H. Vonder Haar Cooperative Institute

More information

NOAA Report. Mitch Goldberg. NOAA/NESDIS Center for Satellite Applications and Research

NOAA Report. Mitch Goldberg. NOAA/NESDIS Center for Satellite Applications and Research NOAA Report Mitch Goldberg NOAA/NESDIS Center for Satellite Applications and Research NOAA JOINT POLAR SATELLITE PROGRAM Mission Support to NOAA Programs Ecosystems NOAA CoastWatch Program Real-time distribution

More information

High Spectral Resolution Infrared Radiance Modeling Using Optimal Spectral Sampling (OSS) Method

High Spectral Resolution Infrared Radiance Modeling Using Optimal Spectral Sampling (OSS) Method High Spectra Resoution Infrared Radiance Modeing Using Optima Spectra Samping (OSS) Method J.-L. Moncet and G. Uymin Background Optima Spectra Samping (OSS) method is a fast and accurate monochromatic

More information

Variational Inversion of Hydrometeors Using Passive Microwave Sensors

Variational Inversion of Hydrometeors Using Passive Microwave Sensors Variational Inversion of Hydrometeors Using Passive Microwave Sensors -Application to AMSU/MHS, SSMIS and ATMS- S.-A. Boukabara, F. Iturbide-Sanchez, R. Chen, W. Chen, K. Garrett, C. Grassotti F. Weng

More information

Retrieval of upper tropospheric humidity from AMSU data. Viju Oommen John, Stefan Buehler, and Mashrab Kuvatov

Retrieval of upper tropospheric humidity from AMSU data. Viju Oommen John, Stefan Buehler, and Mashrab Kuvatov Retrieval of upper tropospheric humidity from AMSU data Viju Oommen John, Stefan Buehler, and Mashrab Kuvatov Institute of Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, 2839 Bremen, Germany.

More information

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK Ju-Hye Kim 1, Jeon-Ho Kang 1, Hyoung-Wook Chun 1, and Sihye Lee 1 (1) Korea Institute of Atmospheric

More information

The Use of ATOVS Microwave Data in the Grapes-3Dvar System

The Use of ATOVS Microwave Data in the Grapes-3Dvar System The Use of ATOVS Microwave Data in the Grapes-3Dvar System Peiming Dong 1 Zhiquan Liu 2 Jishan Xue 1 Guofu Zhu 1 Shiyu Zhuang 1 Yan Liu 1 1 Chinese Academy of Meteorological Sciences, Beijing, China 2

More information

JCSDA Community Radiative Transfer Model (CRTM)

JCSDA Community Radiative Transfer Model (CRTM) JCSDA Community Radiative Transfer Model (CRTM) Fuzhong Weng 1, Yong Han 1,2, Paul van Delst 2,3, Quanhua Liu 2,4, Tom Kleespies 1, Banghua Yan 2,4 and J. Le Marshall 2 1. NOAA/NESDIS/Office of Research

More information

An Effort toward Assimilation of F16 SSMIS UPP Data in NCEP Global Forecast System (GFS)

An Effort toward Assimilation of F16 SSMIS UPP Data in NCEP Global Forecast System (GFS) An Effort toward Assimilation of F16 SSMIS UPP Data in NCEP Global Forecast System (GFS) Banghua Yan 1,4, Fuzhong Weng 2, John Derber 3 1. Joint Center for Satellite Data Assimilation 2. NOAA/NESDIS/Center

More information

Satellite data assimilation for Numerical Weather Prediction II

Satellite data assimilation for Numerical Weather Prediction II Satellite data assimilation for Numerical Weather Prediction II Niels Bormann European Centre for Medium-range Weather Forecasts (ECMWF) (with contributions from Tony McNally, Jean-Noël Thépaut, Slide

More information

The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean

The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean Chun-Chieh Chao, 1 Chien-Ben Chou 2 and Huei-Ping Huang 3 1Meteorological Informatics Business Division,

More information

Uncertainty of Atmospheric Temperature Trends Derived from Satellite Microwave Sounding Data

Uncertainty of Atmospheric Temperature Trends Derived from Satellite Microwave Sounding Data Uncertainty of Atmospheric Temperature Trends Derived from Satellite Microwave Sounding Data Fuzhong Weng NOAA Center for Satellite Applications and Research and Xiaolei Zou University of University November

More information

Retrieval of Surface Properties Based on Microwave Emissivity Spectra

Retrieval of Surface Properties Based on Microwave Emissivity Spectra Retrieval of Surface Properties Based on Microwave Emissivity Spectra S-A. Boukabara, W. Chen, C. Kongoli, C. Grassotti and K. Garrett NOAA/NESDIS/STAR & JCSDA Camp Springs, Maryland, USA 2nd Workshop

More information

A Microwave Snow Emissivity Model

A Microwave Snow Emissivity Model A Microwave Snow Emissivity Model Fuzhong Weng Joint Center for Satellite Data Assimilation NOAA/NESDIS/Office of Research and Applications, Camp Springs, Maryland and Banghua Yan Decision Systems Technologies

More information

Retrieval Algorithm Using Super channels

Retrieval Algorithm Using Super channels Retrieval Algorithm Using Super channels Xu Liu NASA Langley Research Center, Hampton VA 23662 D. K. Zhou, A. M. Larar (NASA LaRC) W. L. Smith (HU and UW) P. Schluessel (EUMETSAT) Hank Revercomb (UW) Jonathan

More information

Towards a better use of AMSU over land at ECMWF

Towards a better use of AMSU over land at ECMWF Towards a better use of AMSU over land at ECMWF Blazej Krzeminski 1), Niels Bormann 1), Fatima Karbou 2) and Peter Bauer 1) 1) European Centre for Medium-range Weather Forecasts (ECMWF), Shinfield Park,

More information

NOAA Report. Hal Bloom Mitch Goldberg NOAA/NESDIS

NOAA Report. Hal Bloom Mitch Goldberg NOAA/NESDIS NOAA Report Hal Bloom Mitch Goldberg NOAA/NESDIS Summary of Major Events at NESDIS (of interest to ITSC) NOAA/NASA addressing NPOESS Climate Sensors Letter of agreement signed with JAXA on GCOM interagency

More information

Cloudy Radiance Data Assimilation

Cloudy Radiance Data Assimilation Cloudy Radiance Data Assimilation Andrew Collard Environmental Modeling Center NCEP/NWS/NOAA Based on the work of: Min-Jeong Kim, Emily Liu, Yanqiu Zhu, John Derber Outline Why are clouds important? Why

More information

Instrumentation planned for MetOp-SG

Instrumentation planned for MetOp-SG Instrumentation planned for MetOp-SG Bill Bell Satellite Radiance Assimilation Group Met Office Crown copyright Met Office Outline Background - the MetOp-SG programme The MetOp-SG instruments Summary Acknowledgements:

More information

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system Li Bi James Jung John Le Marshall 16 April 2008 Outline WindSat overview and working

More information

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms Fuzhong Weng Environmental Model and Data Optima Inc., Laurel, MD 21 st International TOV

More information

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season.

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. Izabela Dyras, Bożena Łapeta, Danuta Serafin-Rek Satellite Research Department, Institute of Meteorology and

More information

GIFTS SOUNDING RETRIEVAL ALGORITHM DEVELOPMENT

GIFTS SOUNDING RETRIEVAL ALGORITHM DEVELOPMENT P2.32 GIFTS SOUNDING RETRIEVAL ALGORITHM DEVELOPMENT Jun Li, Fengying Sun, Suzanne Seemann, Elisabeth Weisz, and Hung-Lung Huang Cooperative Institute for Meteorological Satellite Studies (CIMSS) University

More information

THE STATUS OF THE NOAA/NESDIS OPERATIONAL AMSU PRECIPITATION ALGORITHM

THE STATUS OF THE NOAA/NESDIS OPERATIONAL AMSU PRECIPITATION ALGORITHM THE STATUS OF THE NOAA/NESDIS OPERATIONAL AMSU PRECIPITATION ALGORITHM R.R. Ferraro NOAA/NESDIS Cooperative Institute for Climate Studies (CICS)/ESSIC 2207 Computer and Space Sciences Building Univerisity

More information

Satellite data assimilation for Numerical Weather Prediction (NWP)

Satellite data assimilation for Numerical Weather Prediction (NWP) Satellite data assimilation for Numerical Weather Prediction (NWP Niels Bormann European Centre for Medium-range Weather Forecasts (ECMWF (with contributions from Tony McNally, Slide 1 Jean-Noël Thépaut,

More information

for the Global Precipitation Mission

for the Global Precipitation Mission A Physically based Rainfall Rate Algorithm for the Global Precipitation Mission Kevin Garrett 1, Leslie Moy 1, Flavio Iturbide Sanchez 1, and Sid Ahmed Boukabara 2 5 th IPWG Workshop Hamburg, Germany October

More information

Assimilation of Cloud-Affected Infrared Radiances at Environment-Canada

Assimilation of Cloud-Affected Infrared Radiances at Environment-Canada Assimilation of Cloud-Affected Infrared Radiances at Environment-Canada ECMWF-JCSDA Workshop on Assimilating Satellite Observations of Clouds and Precipitation into NWP models ECMWF, Reading (UK) Sylvain

More information

Development of 3D Variational Assimilation System for ATOVS Data in China

Development of 3D Variational Assimilation System for ATOVS Data in China Development of 3D Variational Assimilation System for ATOVS Data in China Xue Jishan, Zhang Hua, Zhu Guofu, Zhuang Shiyu 1) Zhang Wenjian, Liu Zhiquan, Wu Xuebao, Zhang Fenyin. 2) 1) Chinese Academy of

More information

Satellite Assimilation Activities for the NRL Atmospheric Variational Data Assimilation (NAVDAS) and NAVDAS- AR (Accelerated Representer) Systems

Satellite Assimilation Activities for the NRL Atmospheric Variational Data Assimilation (NAVDAS) and NAVDAS- AR (Accelerated Representer) Systems Satellite Assimilation Activities for the NRL Atmospheric Variational Data Assimilation (NAVDAS) and NAVDAS- AR (Accelerated Representer) Systems Marine Meteorology Division, NRL Monterey Nancy Baker,

More information

An Introduction to the JCSDA Community Radiative Transfer Model (CRTM) Yong Han NOAA/NESDIS JCSDA

An Introduction to the JCSDA Community Radiative Transfer Model (CRTM) Yong Han NOAA/NESDIS JCSDA An Introduction to the JCSDA Community Radiative Transfer Mode CRTM Yong Han NOAA/NESDIS JCSDA Outine The roe of a fast radiative transfer mode in sateite data assimiation CRTM main modues Radiative transfer

More information

Direct assimilation of all-sky microwave radiances at ECMWF

Direct assimilation of all-sky microwave radiances at ECMWF Direct assimilation of all-sky microwave radiances at ECMWF Peter Bauer, Alan Geer, Philippe Lopez, Deborah Salmond European Centre for Medium-Range Weather Forecasts Reading, Berkshire, UK Slide 1 17

More information

CIMSS Hyperspectral IR Sounding Retrieval (CHISR) Processing & Applications

CIMSS Hyperspectral IR Sounding Retrieval (CHISR) Processing & Applications CIMSS Hyperspectral IR Sounding Retrieval (CHISR) Processing & Applications Jun Li @, Elisabeth Weisz @, Jinlong Li @, Hui Liu #, Timothy J. Schmit &, Jason Otkin @ and many other CIMSS collaborators @Cooperative

More information

Bias correction of satellite data at the Met Office

Bias correction of satellite data at the Met Office Bias correction of satellite data at the Met Office Nigel Atkinson, James Cameron, Brett Candy and Stephen English Met Office, Fitzroy Road, Exeter, EX1 3PB, United Kingdom 1. Introduction At the Met Office,

More information

Satellite data assimilation for NWP: II

Satellite data assimilation for NWP: II Satellite data assimilation for NWP: II Jean-Noël Thépaut European Centre for Medium-range Weather Forecasts (ECMWF) with contributions from many ECMWF colleagues Slide 1 Special thanks to: Tony McNally,

More information

Fast passive microwave radiative transfer in precipitating clouds: Towards direct radiance assimliation

Fast passive microwave radiative transfer in precipitating clouds: Towards direct radiance assimliation Fast passive microwave radiative transfer in precipitating clouds: Towards direct radiance assimliation Ralf Bennartz *, Thomas Greenwald, Chris O Dell University of Wisconsin-Madison Andrew Heidinger

More information

Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting

Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting Award Number: NA10NES4400010 Award Period: 06/01/2010-05/31/2014 Program Office: NESDIS

More information

Review of Microwave Integrated Retrieval System (MiRS) Improvements and Integration within CSPP

Review of Microwave Integrated Retrieval System (MiRS) Improvements and Integration within CSPP Review of Microwave Integrated Retrieval System (MiRS) Improvements and Integration within CSPP Chris Grassotti 1, Xiwu Zhan 1, Sid Boukabara 2, Jim Davies 3 1 NOAA/NESDIS/STAR 2 NOAA/JCSDA 3 U. Wisconsin/SSEC

More information

ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1. Stephen English, Una O Keeffe and Martin Sharpe

ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1. Stephen English, Una O Keeffe and Martin Sharpe ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1 Stephen English, Una O Keeffe and Martin Sharpe Met Office, FitzRoy Road, Exeter, EX1 3PB Abstract The assimilation of cloud-affected satellite

More information

Meteorological Products Generation Using Combined Analysis of NOAA AVHRR and ATOVS Data.

Meteorological Products Generation Using Combined Analysis of NOAA AVHRR and ATOVS Data. Meteorological Products Generation Using Combined Analysis of NOAA AVHRR and ATOVS Data. Izabela Dyras, Danuta Serafin-Rek, Zofia Adamczyk Institute of Meteorology and Water Management, P. Borowego 14,

More information

Cloud Scattering and Surface Emission in (CRTM)

Cloud Scattering and Surface Emission in (CRTM) Cloud Scattering and Surface Emission in (CRTM) Fuzhong Weng NOAA Center for Satellite Applications and Research and Joint Center for Satellite Data Assimilation Outline Latest Updates on CRTM Microwave

More information

Assessment of AHI Level-1 Data for HWRF Assimilation

Assessment of AHI Level-1 Data for HWRF Assimilation Assessment of AHI Level-1 Data for HWRF Assimilation Xiaolei Zou 1 and Fuzhong Weng 2 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 2 Satellite Meteorology

More information

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA Huan Meng 1, Ralph Ferraro 1, Banghua Yan 2 1 NOAA/NESDIS/STAR, 5200 Auth Road Room 701, Camp Spring, MD, USA 20746 2 Perot Systems Government

More information

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation Interpretation of Polar-orbiting Satellite Observations Outline Polar-Orbiting Observations: Review of Polar-Orbiting Satellite Systems Overview of Currently Active Satellites / Sensors Overview of Sensor

More information

SSMIS 1D-VAR RETRIEVALS. Godelieve Deblonde

SSMIS 1D-VAR RETRIEVALS. Godelieve Deblonde SSMIS 1D-VAR RETRIEVALS Godelieve Deblonde Meteorological Service of Canada, Dorval, Québec, Canada Summary Retrievals using synthetic background fields and observations for the SSMIS (Special Sensor Microwave

More information

Global Soundings of the Atmosphere from ATOVS Measurements: The Algorithm and Validation

Global Soundings of the Atmosphere from ATOVS Measurements: The Algorithm and Validation 1248 JOURNAL OF APPLIED METEOROLOGY Global Soundings of the Atmosphere from ATOVS Measurements: The Algorithm and Validation JUN LI ANDWALTER W. WOLF Cooperative Institute for Meteorological Satellite

More information

All-sky assimilation of MHS and HIRS sounder radiances

All-sky assimilation of MHS and HIRS sounder radiances All-sky assimilation of MHS and HIRS sounder radiances Alan Geer 1, Fabrizio Baordo 2, Niels Bormann 1, Stephen English 1 1 ECMWF 2 Now at Bureau of Meteorology, Australia All-sky assimilation at ECMWF

More information

Snowfall Detection and Rate Retrieval from ATMS

Snowfall Detection and Rate Retrieval from ATMS Snowfall Detection and Rate Retrieval from ATMS Jun Dong 1, Huan Meng 2, Cezar Kongoli 1, Ralph Ferraro 2, Banghua Yan 2, Nai-Yu Wang 1, Bradley Zavodsky 3 1 University of Maryland/ESSIC/Cooperative Institute

More information

https://doi.org/ /epjconf/

https://doi.org/ /epjconf/ HOW TO APPLY THE OPTIMAL ESTIMATION METHOD TO YOUR LIDAR MEASUREMENTS FOR IMPROVED RETRIEVALS OF TEMPERATURE AND COMPOSITION R. J. Sica 1,2,*, A. Haefee 2,1, A. Jaai 1, S. Gamage 1 and G. Farhani 1 1 Department

More information

NWP SAF. Quantitative precipitation estimation from satellite data. Satellite Application Facility for Numerical Weather Prediction

NWP SAF. Quantitative precipitation estimation from satellite data. Satellite Application Facility for Numerical Weather Prediction NWP SAF Satellite Application Facility for Numerical Weather Prediction Document NWPSAF-MO-VS-011 Version 1.0 15 April 2006 Quantitative precipitation estimation from satellite data Sante Laviola University

More information

Bias correction of satellite data at the Met Office

Bias correction of satellite data at the Met Office Bias correction of satellite data at the Met Office Nigel Atkinson, James Cameron, Brett Candy and Steve English ECMWF/EUMETSAT NWP-SAF Workshop on Bias estimation and correction in data assimilation,

More information

Introduction to Data Assimilation

Introduction to Data Assimilation Introduction to Data Assimilation Alan O Neill Data Assimilation Research Centre University of Reading What is data assimilation? Data assimilation is the technique whereby observational data are combined

More information

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada Abstract David Anselmo and Godelieve Deblonde Meteorological Service of Canada, Dorval,

More information

Cloud detection for IASI/AIRS using imagery

Cloud detection for IASI/AIRS using imagery Cloud detection for IASI/AIRS using imagery Lydie Lavanant* Mohamed Dahoui** Florence Rabier***, Thomas Auligné*** * Météo-France/DP/CMS/R&D ** Moroccan Meterological Service. NWPSAF Visiting Scientist

More information

International TOVS Study Conference-XV Proceedings

International TOVS Study Conference-XV Proceedings Relative Information Content of the Advanced Technology Microwave Sounder, the Advanced Microwave Sounding Unit and the Microwave Humidity Sounder Suite Motivation Thomas J. Kleespies National Oceanic

More information

Extending the use of surface-sensitive microwave channels in the ECMWF system

Extending the use of surface-sensitive microwave channels in the ECMWF system Extending the use of surface-sensitive microwave channels in the ECMWF system Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United

More information

Initial results from using ATMS and CrIS data at ECMWF

Initial results from using ATMS and CrIS data at ECMWF Initial results from using ATMS and CrIS data at ECMWF Niels Bormann 1, William Bell 1, Anne Fouilloux 1, Tony McNally 1, Ioannis Mallas 1, Nigel Atkinson 2, Steve Swadley 3 Slide 1 1 ECMWF, 2 Met Office,

More information

The impact of upgrading the background covariance matrices in NOAA Microwave Integrated Retrieval System (MiRS)

The impact of upgrading the background covariance matrices in NOAA Microwave Integrated Retrieval System (MiRS) The impact of upgrading the background covariance matrices in NOAA Microwave Integrated Retrieval System (MiRS) Junye Chen a, Quanhua Liu b, Mohar Chattopadhyay c, Kevin Garrett d, Christopher Grassotti

More information

Retrieval of sea surface wind vectors from simulated satellite microwave polarimetric measurements

Retrieval of sea surface wind vectors from simulated satellite microwave polarimetric measurements RADIO SCIENCE, VOL. 38, NO. 4, 8078, doi:10.1029/2002rs002729, 2003 Retrieval of sea surface wind vectors from simulated satellite microwave polarimetric measurements Quanhua Liu 1 Cooperative Institute

More information

F O U N D A T I O N A L C O U R S E

F O U N D A T I O N A L C O U R S E F O U N D A T I O N A L C O U R S E December 6, 2018 Satellite Foundational Course for JPSS (SatFC-J) F O U N D A T I O N A L C O U R S E Introduction to Microwave Remote Sensing (with a focus on passive

More information

The Status of NOAA/NESDIS Precipitation Algorithms and Products

The Status of NOAA/NESDIS Precipitation Algorithms and Products The Status of NOAA/NESDIS Precipitation Algorithms and Products Ralph Ferraro NOAA/NESDIS College Park, MD USA S. Boukabara, E. Ebert, K. Gopalan, J. Janowiak, S. Kidder, R. Kuligowski, H. Meng, M. Sapiano,

More information

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels MET 4994 Remote Sensing: Radar and Satellite Meteorology MET 5994 Remote Sensing in Meteorology Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels Before you use data from any

More information

Overview: Scope and Goals

Overview: Scope and Goals Overview: Scope and Goals Current operational NOAA instruments: AVHRR, HIRS, SBUV, GOES Imagers/Sounders; Non-NOAA satellites/sensors; Future: MetOP and NPP/NPOESS; GOES-R Assure Functionality of Current/Near-Future

More information

The Use of Hyperspectral Infrared Radiances In Numerical Weather Prediction

The Use of Hyperspectral Infrared Radiances In Numerical Weather Prediction The Use of Hyperspectral Infrared Radiances In Numerical Weather Prediction J. Le Marshall 1, J. Jung 1, J. Derber 1, T. Zapotocny 2, W. L. Smith 3, D. Zhou 4, R. Treadon 1, S. Lord 1, M. Goldberg 1 and

More information

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency Development of an all-sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system Masahiro Kazumori, Takashi Kadowaki Numerical

More information

Bias Correction of Satellite Data at NCEP

Bias Correction of Satellite Data at NCEP Bias Correction of Satellite Data at NCEP Paul van Delst 1, John Derber 2, Russ Treadon 2, Kozo Okamoto 3 and Wan-Shu Wu 2 1 CIMSS @ NOAA/NWS/NCEP/EMC, 2 NOAA/NWS/NCEP/EMC 3 JMA visiting scientist @ NOAA/NWS/NCEP/EMC

More information

Impact of assimilating the VIIRS-based CrIS cloudcleared radiances on hurricane forecasts

Impact of assimilating the VIIRS-based CrIS cloudcleared radiances on hurricane forecasts Impact of assimilating the VIIRS-based CrIS cloudcleared radiances on hurricane forecasts Jun Li @, Pei Wang @, Jinlong Li @, Zhenglong Li @, Jung-Rim Lee &, Agnes Lim @, Timothy J. Schmit #, and Mitch

More information

Lidar activities at CEReS Center for Environmental Remote Sensing (CEReS), Chiba University Hiroaki Kuze

Lidar activities at CEReS Center for Environmental Remote Sensing (CEReS), Chiba University Hiroaki Kuze Lidar activities at CEReS Center for Environmenta Remote Sensing (CEReS), Chiba University Hiroaki Kuze hkuze@facuty.chiba-u.jp Lidar activities at CEReS Portabe Automated Lidar (PAL) Micro Puse Lidar

More information

Jun Mitch Goldberg %, Pei Timothy J. Schmit &, Jinlong Zhenglong and Agnes

Jun Mitch Goldberg %, Pei Timothy J. Schmit &, Jinlong Zhenglong and Agnes Progress on the assimilation of advanced IR sounder radiances in cloudy skies Jun Li @, Mitch Goldberg %, Pei Wang @#, Timothy J. Schmit &, Jinlong Li @, Zhenglong Li @, and Agnes Lim @ @CIMSS, University

More information

Aircraft Validation of Infrared Emissivity derived from Advanced InfraRed Sounder Satellite Observations

Aircraft Validation of Infrared Emissivity derived from Advanced InfraRed Sounder Satellite Observations Aircraft Validation of Infrared Emissivity derived from Advanced InfraRed Sounder Satellite Observations Robert Knuteson, Fred Best, Steve Dutcher, Ray Garcia, Chris Moeller, Szu Chia Moeller, Henry Revercomb,

More information

Remote sensing with FAAM to evaluate model performance

Remote sensing with FAAM to evaluate model performance Remote sensing with FAAM to evaluate model performance YOPP-UK Workshop Chawn Harlow, Exeter 10 November 2015 Contents This presentation covers the following areas Introduce myself Focus of radiation research

More information

Improving Tropical Cyclone Forecasts by Assimilating Microwave Sounder Cloud-Screened Radiances and GPM precipitation measurements

Improving Tropical Cyclone Forecasts by Assimilating Microwave Sounder Cloud-Screened Radiances and GPM precipitation measurements Improving Tropical Cyclone Forecasts by Assimilating Microwave Sounder Cloud-Screened Radiances and GPM precipitation measurements Hyojin Han a, Jun Li a, Mitch Goldberg b, Pei Wang a,c, Jinlong Li a,

More information

Toward assimilation of CrIS and ATMS in the NCEP Global Model

Toward assimilation of CrIS and ATMS in the NCEP Global Model Toward assimilation of CrIS and ATMS in the NCEP Global Model Andrew Collard 1, John Derber 2, Russ Treadon 2, Nigel Atkinson 3, Jim Jung 4 and Kevin Garrett 5 1 IMSG at NOAA/NCEP/EMC 2 NOAA/NCEP/EMC 3

More information

Assimilation of Satellite Cloud and Precipitation Observations in NWP Models: Report of a Workshop

Assimilation of Satellite Cloud and Precipitation Observations in NWP Models: Report of a Workshop Assimilation of Satellite Cloud and Precipitation Observations in NWP Models: Report of a Workshop George Ohring and Fuzhong Weng Joint Center for Satellite Data Assimilation Ron Errico NASA/GSFC Global

More information

Fine atmospheric structure retrieved from IASI and AIRS under all weather conditions

Fine atmospheric structure retrieved from IASI and AIRS under all weather conditions Fine atmospheric structure retrieved from IASI and AIRS under all weather conditions Daniel K. Zhou 1, William L. Smith 2,3, Allen M. Larar 1, Xu Liu 1, Jonathan P. Taylor 4, Peter Schlüssel 5, L. Larrabee

More information

Hurricane Sandy warm-core structure observed from advanced Technology Microwave Sounder

Hurricane Sandy warm-core structure observed from advanced Technology Microwave Sounder GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 3325 3330, doi:10.1002/grl.50626, 2013 Hurricane Sandy warm-core structure observed from advanced Technology Microwave Sounder Tong Zhu 1,2 and Fuzhong Weng 3 Received

More information

Application of PCA to IASI: An NWP Perspective. Andrew Collard, ECMWF. Acknowledgements to Tony McNally, Jean-Noel Thépaut

Application of PCA to IASI: An NWP Perspective. Andrew Collard, ECMWF. Acknowledgements to Tony McNally, Jean-Noel Thépaut Application of PCA to IASI: An NWP Perspective Andrew Collard, ECMWF Acknowledgements to Tony McNally, Jean-Noel Thépaut Overview Introduction Why use PCA/RR? Expected performance of PCA/RR for IASI Assimilation

More information

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform Robert Knuteson, Steve Ackerman, Hank Revercomb, Dave Tobin University of Wisconsin-Madison

More information

OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS

OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United Kingdom Abstract

More information

Improvements to the NCEP Global and Regional Data Assimilation Systems

Improvements to the NCEP Global and Regional Data Assimilation Systems Improvements to the NCEP Global and Regional Data Assimilation Systems Stephen J. Lord Director NCEP Environmental Modeling Center EMC Staff NCEP: where America s climate, weather, and ocean services begin

More information

Parameterization of the surface emissivity at microwaves to submillimeter waves

Parameterization of the surface emissivity at microwaves to submillimeter waves Parameterization of the surface emissivity at microwaves to submillimeter waves Catherine Prigent, Filipe Aires, Observatoire de Paris and Estellus Lise Kilic, Die Wang, Observatoire de Paris with contributions

More information

EPS-SG Candidate Observation Missions

EPS-SG Candidate Observation Missions EPS-SG Candidate Observation Missions 3 rd Post-EPS User Consultation Workshop Peter Schlüssel Slide: 1 EPS-SG benefits to activities of NMSs Main Payload High-Resolution Infrared Sounding Microwave Sounding

More information

Satellite Radiance Data Assimilation at the Met Office

Satellite Radiance Data Assimilation at the Met Office Satellite Radiance Data Assimilation at the Met Office Ed Pavelin, Stephen English, Brett Candy, Fiona Hilton Outline Summary of satellite data used in the Met Office NWP system Processing and quality

More information

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre) WORLD METEOROLOGICAL ORGANIZATION Distr.: RESTRICTED CBS/OPAG-IOS (ODRRGOS-5)/Doc.5, Add.5 (11.VI.2002) COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS ITEM: 4 EXPERT

More information

JCSDA EXPERIMENTS IN THE USE OF RADIANCES IN NUMERICAL WEATHER PREDICTION

JCSDA EXPERIMENTS IN THE USE OF RADIANCES IN NUMERICAL WEATHER PREDICTION JCSDA EXPERIMENTS IN THE USE OF RADIANCES IN NUMERICAL WEATHER PREDICTION J. Le Marshall, J. Jung, T. Zapotocny, W. L. Smith, D. Zhou, J. Derber, R. Treadon, S. Lord, M. Goldberg and W. Wolf JCSDA Partners

More information

Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office

Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office Ed Pavelin and Stephen English Met Office, Exeter, UK Abstract A practical approach to the assimilation of cloud-affected

More information

Microwave-TC intensity estimation. Ryo Oyama Meteorological Research Institute Japan Meteorological Agency

Microwave-TC intensity estimation. Ryo Oyama Meteorological Research Institute Japan Meteorological Agency Microwave-TC intensity estimation Ryo Oyama Meteorological Research Institute Japan Meteorological Agency Contents 1. Introduction 2. Estimation of TC Maximum Sustained Wind (MSW) using TRMM Microwave

More information

4/23/2014. Radio Occultation as a Gap Filler for Infrared and Microwave Sounders Richard Anthes Presentation to Joshua Leiling and Shawn Ward, GAO

4/23/2014. Radio Occultation as a Gap Filler for Infrared and Microwave Sounders Richard Anthes Presentation to Joshua Leiling and Shawn Ward, GAO Radio Occultation as a Gap Filler for Infrared and Microwave Sounders Richard Anthes Presentation to Joshua Leiling and Shawn Ward, GAO 1 RICHARD ANTHES is President Emeritus of the University Corporation

More information

Effects of Possible Scan Geometries on the Accuracy of Satellite Measurements of Water Vapor

Effects of Possible Scan Geometries on the Accuracy of Satellite Measurements of Water Vapor 1710 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 16 Effects of Possible Scan Geometries on the Accuracy of Satellite Measurements of Water Vapor LARRY M. MCMILLIN National Environmental Satellite,

More information

Observations 3: Data Assimilation of Water Vapour Observations at NWP Centres

Observations 3: Data Assimilation of Water Vapour Observations at NWP Centres Observations 3: Data Assimilation of Water Vapour Observations at NWP Centres OUTLINE: Data Assimilation A simple analogy: data fitting 4D-Var The observation operator : RT modelling Review of Radiative

More information

Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval

Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval Christophe Accadia, Sabatino Di Michele, Vinia Mattioli, Jörg Ackermann, Sreerekha Thonipparambil,

More information

Impact Analysis of LEO Hyperspectral Sensor IFOV size on the next generation NWP model forecast performance

Impact Analysis of LEO Hyperspectral Sensor IFOV size on the next generation NWP model forecast performance Impact Analysis of LEO Hyperspectral Sensor IFOV size on the next generation NWP model forecast performance Agnes Lim 1, Zhenglong Li 1, James Jung 1, Allen Huang 1, Jack Woollen 2, FW Nagle 1, Greg Quinn

More information

JPSS GEONETCAST REQUIREMENTS DISCUSSION

JPSS GEONETCAST REQUIREMENTS DISCUSSION Joint Polar Satellite System (JPSS) JPSS GEONETCAST REQUIREMENTS DISCUSSION Mitch Goldberg Program Scientist Joint Polar Satellite System National Environmental Satellite, Data, and Information Service

More information

Data assimilation of IASI radiances over land.

Data assimilation of IASI radiances over land. Data assimilation of IASI radiances over land. PhD supervised by Nadia Fourrié, Florence Rabier and Vincent Guidard. 18th International TOVS Study Conference 21-27 March 2012, Toulouse Contents 1. IASI

More information

Ryo Oyama Meteorological Research Institute, Japan Meteorological Agency. Abstract

Ryo Oyama Meteorological Research Institute, Japan Meteorological Agency. Abstract Algorithm and validation of a tropical cyclone central pressure estimation method based on warm core intensity as observed using the Advanced Microwave Sounding Unit-A (AMSU-A) Ryo Oyama Meteorological

More information