INTRODUCTION AND APPLICATIONS. Johan Bijnens Lund University. bijnens

Size: px
Start display at page:

Download "INTRODUCTION AND APPLICATIONS. Johan Bijnens Lund University. bijnens"

Transcription

1 EFFECTIVE FIELD THEORY: lavi net INTRODUCTION AND APPLICATIONS Johan Bijnens Lund University bijnens Various ChPT: bijnens/chpt.html Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.1/103

2 Overview What is effective field theory? Introduction to ChPT including possible problems Results for two-flavour ChPT Results for three flavour ChPT Partial quenching and ChPT η 3π Some comments about Higgs sector and ChPT Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.2/103

3 Wikipedia Effective_field_theory In physics, an effective field theory is an approximate theory (usually a quantum field theory) that contains the appropriate degrees of freedom to describe physical phenomena occurring at a chosen length scale, but ignores the substructure and the degrees of freedom at shorter distances (or, equivalently, higher energies). Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.3/103

4 Wikipedia Chiral_perturbation_theory Chiral perturbation theory (ChPT) is an effective field theory constructed with a Lagrangian consistent with the (approximate) chiral symmetry of quantum chromodynamics (QCD), as well as the other symmetries of parity and charge conjugation. ChPT is a theory which allows one to study the low-energy dynamics of QCD. As QCD becomes non-perturbative at low energy, it is impossible to use perturbative methods to extract information from the partition function of QCD. Lattice QCD is one alternative method that has proved successful in extracting non-perturbative information. Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.4/103

5 Effective Field Theory Main Ideas: Use right degrees of freedom : essence of (most) physics If mass-gap in the excitation spectrum: neglect degrees of freedom above the gap. Examples: Solid state physics: conductors: neglect the empty bands above the partially filled one Atomic physics: Blue sky: neglect atomic structure Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.5/103

6 Power Counting gap in the spectrum = separation of scales with the lower degrees of freedom, build the most general effective Lagrangian Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.6/103

7 Power Counting gap in the spectrum = separation of scales with the lower degrees of freedom, build the most general effective Lagrangian # parameters Where did my predictivity go? Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.6/103

8 Power Counting gap in the spectrum = separation of scales with the lower degrees of freedom, build the most general effective Lagrangian # parameters Where did my predictivity go? = Need some ordering principle: power counting Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.6/103

9 Power Counting gap in the spectrum = separation of scales with the lower degrees of freedom, build the most general effective Lagrangian # parameters Where did my predictivity go? = Need some ordering principle: power counting Taylor series expansion does not work (convergence radius is zero) Continuum of excitation states need to be taken into account Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.6/103

10 Why is the sky blue? System: Photons of visible light and neutral atoms Length scales: a few 1000 Å versus 1 Å Atomic excitations suppressed by 10 3 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.7/103

11 Why is the sky blue? System: Photons of visible light and neutral atoms Length scales: a few 1000 Å versus 1 Å Atomic excitations suppressed by 10 3 L A = Φ v t Φ v +... L γa = GF 2 µνφ vφ v +... Units with h/ = c = 1: G energy dimension 3: Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.7/103

12 Why is the sky blue? System: Photons of visible light and neutral atoms Length scales: a few 1000 Å versus 1 Å Atomic excitations suppressed by 10 3 L A = Φ v t Φ v +... L γa = GF 2 µνφ vφ v +... Units with h/ = c = 1: G energy dimension 3: σ G 2 E 4 γ Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.7/103

13 Why is the sky blue? System: Photons of visible light and neutral atoms Length scales: a few 1000 Å versus 1 Å Atomic excitations suppressed by 10 3 L A = Φ v t Φ v +... L γa = GF 2 µνφ vφ v +... Units with h/ = c = 1: G energy dimension 3: σ G 2 E 4 γ blue light scatters a lot more than red Higher orders suppressed by 1 Å/λ γ. { = red sunsets = blue sky Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.7/103

14 Why Field Theory? Only known way to combine QM and special relativity Off-shell effects: there as new free parameters Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.8/103

15 Why Field Theory? Only known way to combine QM and special relativity Off-shell effects: there as new free parameters Drawbacks Many parameters (but finite number at any order) any model has few parameters but model-space is large expansion: it might not converge or only badly Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.8/103

16 Why Field Theory? Only known way to combine QM and special relativity Off-shell effects: there as new free parameters Drawbacks Many parameters (but finite number at any order) any model has few parameters but model-space is large expansion: it might not converge or only badly Advantages Calculations are (relatively) simple It is general: model-independent Theory = errors can be estimated Systematic: ALL effects at a given order can be included Even if no convergence: classification of models often useful Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.8/103

17 Examples of EFT Fermi theory of the weak interaction Chiral Perturbation Theory: hadronic physics NRQCD SCET General relativity as an EFT 2,3,4 nucleon systems from EFT point of view Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.9/103

18 references A. Manohar, Effective Field Theories (Schladming lectures), hep-ph/ I. Rothstein, Lectures on Effective Field Theories (TASI lectures), hep-ph/ G. Ecker, Effective field theories, Encyclopedia of Mathematical Physics, hep-ph/ D.B. Kaplan, Five lectures on effective field theory, nucl-th/ A. Pich, Les Houches Lectures, hep-ph/ S. Scherer, Introduction to chiral perturbation theory, hep-ph/ J. Donoghue, Introduction to the Effective Field Theory Description of Gravity, gr-qc/ Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.10/103

19 School PSI Zuoz Summer School on Particle Physics Effective Theories in Particle Physics, July 16-22, previous_summerschools/zuoz2006/index.html R. Barbieri: Effective Theories for Physics beyond the Standard Model M. Beneke: Concept of Effective Theories, Heavy Quark Effective Theory and Soft-Collinear Effective Theory G. Colangelo: Chiral Perturbation Theory U. Langenegger: B Physics and Quarkonia H. Leutwyler: Historical and Other Remarks on Effective Theories A. Manohar: Nonrelativistic QCD L. Simons: Pion-Nucleon Interaction M. Sozzi: Kaon Physics Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.11/103

20 Chiral Perturbation Theory Exploring the consequences of the chiral symmetry of QCD and its spontaneous breaking using effective field theory techniques Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.12/103

21 Chiral Perturbation Theory Exploring the consequences of the chiral symmetry of QCD and its spontaneous breaking using effective field theory techniques Derivation from QCD: H. Leutwyler, On The Foundations Of Chiral Perturbation Theory, Ann. Phys. 235 (1994) 165 [hep-ph/ ] Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.12/103

22 The mass gap: Goldstone Modes UNBROKEN: V (φ) BROKEN: V (φ) Only massive modes around lowest energy state (=vacuum) Need to pick a vacuum φ 0: Breaks symmetry No parity doublets Massless mode along bottom For more complicated symmetries: need to describe the bottom mathematically: G H = G/H (explain) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.13/103

23 The two symmetry modes compared Wigner-Eckart mode Nambu-Goldstone mode Symmetry group G Vacuum state unique Massive Excitations States fall in multiplets of G Wigner Eckart theorem for G G spontaneously broken to subgroup H Vacuum state degenerate Existence of a massless mode States fall in multiplets of H Wigner Eckart theorem for H Broken part leads to low-energy theorems Symmetry linearly realized Full Symmetry, G, nonlinearly realized unbroken part, H, linearly realized Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.14/103

24 Some clarifications φ(x): orientation of vacuum in every space-time point Examples: spin waves, phonons Nonlinear: acting by a broken symmetry operator changes the vacuum, φ(x) φ(x) + α The precise form of φ is not important but it must describe the space of vacua (field transformations possible) In gauge theories: the local symmetry allows the vacua to be different in every point, hence the Goldstone Boson must not be observable as a massless degree of freedom. Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.15/103

25 The power counting Very important: Low energy theorems: Goldstone bosons do not interact at zero momentum Heuristic proof: Which vacuum does not matter, choices related by symmetry φ(x) φ(x) + α should not matter Each term in L must contain at least one µ φ Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.16/103

26 Chiral Perturbation Theory Degrees of freedom: Goldstone Bosons from Chiral Symmetry Spontaneous Breakdown Power counting: Dimensional counting Expected breakdown scale: Resonances, so M ρ or higher depending on the channel Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.17/103

27 Chiral Perturbation Theory Degrees of freedom: Goldstone Bosons from Chiral Symmetry Spontaneous Breakdown Power counting: Dimensional counting Expected breakdown scale: Resonances, so M ρ or higher depending on the channel Chiral Symmetry QCD: 3 light quarks: equal mass: interchange: SU(3) V But L QCD = [i q L D/q L + i q R D/q R m q ( q R q L + q L q R )] q=u,d,s So if m q = 0 then SU(3) L SU(3) R. Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.17/103

28 Chiral Perturbation Theory Degrees of freedom: Goldstone Bosons from Chiral Symmetry Spontaneous Breakdown Power counting: Dimensional counting Expected breakdown scale: Resonances, so M ρ or higher depending on the channel Chiral Symmetry QCD: 3 light quarks: equal mass: interchange: SU(3) V But L QCD = [i q L D/q L + i q R D/q R m q ( q R q L + q L q R )] q=u,d,s So if m q = 0 then SU(3) L SU(3) R. Can also see that via v < c, m q 0 = v = c, m q = 0 = / Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.17/103

29 Chiral Perturbation Theory qq = q L q R + q R q L 0 SU(3) L SU(3) R broken spontaneously to SU(3) V 8 generators broken = 8 massless degrees of freedom and interaction vanishes at zero momentum Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.18/103

30 Chiral Perturbation Theory qq = q L q R + q R q L 0 SU(3) L SU(3) R broken spontaneously to SU(3) V 8 generators broken = 8 massless degrees of freedom and interaction vanishes at zero momentum Power counting in momenta: (explain) p 2 (p 2 ) 2 (1/p 2 ) 2 p 4 = p 4 1/p 2 d 4 p p 4 (p 2 ) (1/p 2 )p 4 = p 4 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.18/103

31 Chiral Perturbation Theory Large subject: Steven Weinberg, Physica A96:327,1979: 1789 citations Juerg Gasser and Heiri Leutwyler, Nucl.Phys.B250:465,1985: 2290 citations Juerg Gasser and Heiri Leutwyler, Annals Phys.158:142,1984: 2254 citations Sum: 3777 Checked on 18/2/2007 in SPIRES For lectures, review articles: see bijnens/chpt.html Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.19/103

32 Chiral Perturbation Theories Baryons Heavy Quarks Vector Mesons (and other resonances) Structure Functions and Related Quantities Light Pseudoscalar Mesons Two or Three (or even more) Flavours Strong interaction and couplings to external currents/densities Including electromagnetism Including weak nonleptonic interactions Treating kaon as heavy Many similarities with strongly interacting Higgs Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.20/103

33 Lagrangians U(φ) = exp(i 2Φ/F 0 ) parametrizes Goldstone Bosons Φ(x) = 0 π η 8 6 π + K + π π0 2 + η 8 6 K 0 K K 0 2 η C A LO Lagrangian: L 2 = F { D µ U D µ U + χ U + χu }, D µ U = µ U ir µ U + iul µ, left and right external currents: r(l) µ = v µ + ( )a µ Scalar and pseudoscalar external densities: χ = 2B 0 (s + ip) quark masses via scalar density: s = M + A = Tr F (A) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.21/103

34 External currents? in QCD Green functions derived as functional derivatives w.r.t. external fields Green functions are the objects that satisfy Ward identities By introducing a local Chiral Symmetry, Ward identities are automatically satisfied (great improvement over current algebra) QCD Green functions form a connection QCD ChPT [dgdqdq]e i R d 4 xl QCD (q,q,g,l,r,s,p) [du]e i R d 4 xl ChP T (U,l,r,s,p) so also functional derivatives are equal Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.22/103

35 Lagrangians L 4 = L 1 D µ U D µ U 2 + L 2 D µ U D ν U D µ U D ν U +L 3 D µ U D µ UD ν U D ν U + L 4 D µ U D µ U χ U + χu +L 5 D µ U D µ U(χ U + U χ) + L 6 χ U + χu 2 +L 7 χ U χu 2 + L 8 χ Uχ U + χu χu il 9 F R µν Dµ UD ν U + F L µν Dµ U D ν U +L 10 U F R µνuf Lµν + H 1 F R µνf Rµν + F L µνf Lµν + H 2 χ χ L i : Low-energy-constants (LECs) H i : Values depend on definition of currents/densities These absorb the divergences of loop diagrams: L i L r i Renormalization: order by order in the powercounting Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.23/103

36 Lagrangians Lagrangian Structure: 2 flavour 3 flavour 3+3 PQChPT p 2 F,B 2 F 0,B 0 2 F 0,B 0 2 p 4 li r,hr i 7+3 L r i,hr i 10+2 ˆL r i,ĥr i 11+2 p 6 c r i 52+4 Ci r 90+4 Ki r p 2 : Weinberg 1966 p 4 : Gasser, Leutwyler 84,85 p 6 : JB, Colangelo, Ecker 99,00 replica method = PQ obtained from N F flavour All infinities known 3 flavour special case of 3+3 PQ: ˆL r i,kr i Lr i,cr i arxiv: [hep-ph] Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.24/103

37 Chiral Logarithms The main predictions of ChPT: Relates processes with different numbers of pseudoscalars Chiral logarithms m 2 π = 2B ˆm + ( 2B ˆm F ) 2 [ ] 1 (2B ˆm) 32π2log µ 2 + 2l3(µ) r + M 2 = 2B ˆm B B 0, F F 0 (two versus three-flavour) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.25/103

38 LECs and µ l r 3(µ) li = 32π2 li r (µ) log M2 π γ i µ 2. Independent of the scale µ. For 3 and more flavours, some of the γ i = 0: L r i (µ) µ : m π, m K : chiral logs vanish pick larger scale 1 GeV then L r 5 (µ) 0 large N c arguments???? compromise: µ = m ρ = 0.77 GeV Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.26/103

39 Expand in what quantities? Expansion is in momenta and masses But is not unique: relations between masses (Gell-Mann Okubo) exists Express orders in terms of physical masses and quantities (F π, F K )? Express orders in terms of lowest order masses? E.g. s + t + u = 2m 2 π + 2m 2 K See e.g. Descotes-Genon talk I prefer physical masses Thresholds correct in πk scattering Chiral logs are from physical particles propagating Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.27/103

40 An example m π = m a m0 f0 f π = f b m0 f0 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.28/103

41 An example m π = m a m0 f0 f π = f b m0 f0 m π = m 0 a m2 0 + a 2m3 0 f 0 f0 2 + ( f π = f 0 1 b m 0 + b 2m2 0 f 0 f0 2 + ) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.28/103

42 An example m π = m a m0 f0 f π = f b m0 f0 m π = m 0 a m2 0 + a 2m3 0 f 0 f0 2 + ( f π = f 0 1 b m 0 + b 2m2 0 f 0 f0 2 + ) m π = m 0 a m2 π f π + a(b a) m3 π f 2 π m π = m 0 ( 1 a m π f π + ab m2 π f 2 π + ) + f π = f 0 ( 1 b m π f π + b(2b a) m2 π f 2 π + ) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.28/103

43 An example m π = m a m0 f0 f π = f b m0 f0 m π = m 0 a m2 0 + a 2m3 0 f 0 f0 2 + ( f π = f 0 1 b m 0 + b 2m2 0 f 0 f0 2 + ) m π = m 0 a m2 π f π + a(b a) m3 π f 2 π m π = m 0 ( 1 a m π f π + ab m2 π f 2 π + ) + f π = f 0 ( 1 b m π f π + b(2b a) m2 π f 2 π a = 1 b = 0.5 f 0 = 1 + ) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.28/103

44 An example: m 0 /f m π LO NLO NNLO m π m 0 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.29/103

45 An example: m π /f π m π LO NLOp NNLOp m π m 0 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.30/103

46 Two-loop Two-flavour Review paper on Two-Loops: JB, hep-ph/ Prog. Part. Nucl. Phys. 58 (2007) 521 Dispersive Calculation of the nonpolynomial part in q 2,s,t,u Gasser-Meißner: F V, F S : 1991 numerical Knecht-Moussallam-Stern-Fuchs: ππ: 1995 analytical Colangelo-Finkemeier-Urech: F V, F S : 1996 analytical Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.31/103

47 Two-Loop Two-flavour Bellucci-Gasser-Sainio: γγ π 0 π 0 : 1994 Bürgi: γγ π + π, F π, m π : 1996 JB-Colangelo-Ecker-Gasser-Sainio: ππ, F π, m π : JB-Colangelo-Talavera: F V π (t), F Sπ : 1998 JB-Talavera: π lνγ: 1997 Gasser-Ivanov-Sainio: γγ π 0 π 0, γγ π + π : m π, F π, F V, F S, ππ: simple analytical forms Colangelo-(Dürr-)Haefeli: Finite volume F π,m π Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.32/103

48 LECs l1 to l 4 : ChPT at order p 6 and the Roy equation analysis in ππ and F S Colangelo, Gasser and Leutwyler, Nucl. Phys. B 603 (2001) 125 [hep-ph/ ] l5 and l 6 : from F V and π lνγ JB,(Colangelo,)Talavera l1 = 0.4 ± 0.6, l2 = 4.3 ± 0.1, l3 = 2.9 ± 2.4, l4 = 4.4 ± 0.2, l6 l 5 = 3.0 ± 0.3, l6 = 16.0 ± 0.5 ± 0.7. l from π 0 -η mixing Gasser, Leutwyler 1984 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.33/103

49 LECs Some combinations of order p 6 LECs are known as well: curvature of the scalar and vector formfactor, two more combinations from ππ scattering (implicit in b 5 and b 6 ) Note: c r i for m π, f π, ππ: small effect c r i (770MeV ) = 0 for plots shown expansion in m 2 π/f 2 π shown General observation: Obtainable from kinematical dependences: known Only via quark-mass dependence: poorely known Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.34/103

50 m 2 π LO NLO NNLO m π M 2 [GeV 2 ] Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.35/103

51 m 2 π ( l 3 = 0) m π LO NLO NNLO M 2 [GeV 2 ] Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.36/103

52 F π F π [GeV] LO NLO NNLO M 2 [GeV 2 ] Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.37/103

53 Two-loop Three-flavour, 2001 Π V V π, Π V V η, Π V V K Kambor, Golowich; Kambor, Dürr; Amorós, JB, Talavera Π V V ρω Π AAπ, Π AAη, F π, F η, m π, m η Maltman Kambor, Golowich; Amorós, JB, Talavera Π SS Moussallam L r 4,Lr 6 Π V V K, Π AAK, F K, m K Amorós, JB, Talavera K l4, qq Amorós, JB, Talavera L r 1,Lr 2,Lr 3 F M, m M, qq (m u m d ) Amorós, JB, Talavera L r 5,7,8,m u/m d Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.38/103

54 Two-loop Three-flavour, 2001 F V π, F V K +, F V K 0 Post, Schilcher; JB, Talavera L r 9 K l3 Post, Schilcher; JB, Talavera V us F Sπ, F SK (includes σ-terms) JB, Dhonte L r 4,Lr 6 K,π lνγ Geng, Ho, Wu L r 10 ππ πk relation li r and Lr i,cr i Finite volume qq JB,Dhonte,Talavera JB,Dhonte,Talavera Gasser,Haefeli,Ivanov,Schmid JB,Ghorbani Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.39/103

55 Two-loop Three-flavour Known to be in progress η 3π: being written up K l3 iso: preliminary results available JB,Ghorbani JB,Ghorbani Finite Volume: sunsetintegrals being written up JB,Lähde relation c r i and Lr i,cr i Gasser,Haefeli,Ivanov,Schmid Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.40/103

56 C r i Most analysis use: Ci r from (single) resonance approximation π π ρ,s q 2 π π q 2 << m 2 ρ, m 2 = S C r i Motivated by large N c : large effort goes in this Ananthanarayan, JB, Cirigliano, Donoghue, Ecker, Gamiz, Golterman, Kaiser, Knecht, Peris, Pich, Prades, Portoles, de Rafael,... Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.41/103

57 C r i L V = 1 4 V µνv µν m2 V V µv µ f V 2 2 V µνf µν + ig V 2 2 V µν[u µ, u ν ] + f χ V µ [u µ, χ ] L A = 1 4 A µνa µν m2 A A µa µ f A 2 2 A µνf µν L S = 1 2 µ S µ S M 2 S S2 + c d Su µ u µ + c m Sχ + L η = 1 2 µp 1 µ P M2 η P i d m P 1 χ. f V = 0.20, f χ = 0.025, g V = 0.09, c m = 42 MeV, c d = 32 MeV, dm = 20 MeV, m V = m ρ = 0.77 GeV, m A = m a1 = 1.23 GeV, m S = 0.98 GeV, m P1 = GeV f V, g V, f χ, f A : experiment c m and c d from resonance saturation at O(p 4 ) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.42/103

58 C r i Problems: Weakest point in the numerics However not all results presented depend on this Unknown so far: Ci r in the masses/decay constants and how these effects correlate into the rest No µ dependence: obviously only estimate Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.43/103

59 C r i Problems: Weakest point in the numerics However not all results presented depend on this Unknown so far: Ci r in the masses/decay constants and how these effects correlate into the rest No µ dependence: obviously only estimate What we did about it: Vary resonance estimate by factor of two Vary the scale µ at which it applies: MeV Check the estimates for the measured ones Again: kinematic can be had, quark-mass dependence difficult Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.43/103

60 Inputs K l4 : F(0), G(0), λ m 2 π 0, m 2 η, m 2 K +, m 2 K 0 E865 BNL em with Dashen violation F π + F K +/F π + m s / ˆm 24 (26) ˆm = (m u + m d )/2 L r 4,Lr 6 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.44/103

61 Outputs: I fit 10 same p 4 fit B fit D 10 3 L r ± L r ± L r ± L r L r ± L r L r ± L r ± errors are very correlated µ = 770 MeV; 550 or 1000 within errors varying Ci r factor 2 about errors L r 4, L r 6 0.3,..., OK fit B: small corrections to pion sigma term, fit scalar radius fit D: fit ππ and πk thresholds Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.45/103

62 Correlations L 2 r (older fit) 10 3 L r 1 = 0.52 ± L r 2 = 0.72 ± L r 3 = 2.70 ± L 3 r L 1 r Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.46/103

63 Outputs: II fit 10 same p 4 fit B fit D 2B 0 ˆm/m 2 π m 2 π: p 4, p , , , ,0.133 m 2 K : p4, p , , , ,0.201 m 2 η: p 4, p , , , ,0.197 m u /m d 0.45± F 0 [MeV] F K Fπ : p 4, p , , , ,0.061 m u = 0 always very far from the fits F 0 : pion decay constant in the chiral limit Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.47/103

64 ππ p 4 p 6 p 4 p 6 a 0 0 a r L r L r L r L a 0 0 = ± 0.005, a2 0 Colangelo, Gasser, Leutwyler = ± a 0 0 = a2 0 = at order p2 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.48/103

65 ππ and πk 0.6 ππ constraints 0.6 πk constraints C + 10 a 0 3/2 C 1 a L 6 r L 6 r a 2 0 C 1 a 0 3/2 C r L r L 4 preferred region: fit D: 10 3 L r 4 0.2, 103 L r General fitting needs more work and systematic studies Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.49/103

66 Quark mass dependences Updates of plots in Amorós, JB and Talavera, hep-ph/ , Nucl. Phys. B585 (2000) 293 Some new ones Procedure: calculate a consistent set of m π,m K,m η,f π with the given input values (done iteratively) vary m s /(m s ) phys, keep m s / ˆm = 24 m 2 π, m 2 K, F π, F K vary m s /(m s ) phys keep ˆm fixed m 2 π, F π vary m π, keep m K fixed f + (0): the formfactor in K l3 decays f + (0),f + (0)/ ( m 2 K m2 π ) 2 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.50/103

67 m 2 π fit 10 m π 2 [GeV 2 ] LO NLO NNLO m s /(m s ) phys Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.51/103

68 m 2 π fit D m π 2 [GeV 2 ] LO NLO NNLO m s /(m s ) phys Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.52/103

69 m 2 K fit LO NLO NNLO m K 2 [GeV 2 ] m s /(m s ) phys Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.53/103

70 m 2 K fit D LO NLO NNLO m K 2 [GeV 2 ] m s /(m s ) phys Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.54/103

71 F π fit LO NLO NNLO F π [GeV] m s /(m s ) phys Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.55/103

72 F K fit F K [GeV] LO NLO NNLO m s /(m s ) phys Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.56/103

73 F K /F π fit F K /F π NLO NNLO m s /(m s ) phys Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.57/103

74 m 2 π fit 10, fixed ˆm m π 2 [GeV 2 ] LO NLO NNLO m s /(m s ) phys Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.58/103

75 F π fit 10, fixed ˆm LO NLO NNLO F π [GeV] m s /(m s ) phys Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.59/103

76 f + (0) fit 10, fixed m K correction to f + (0) sum p 4 p 6 2-loops p 6 L i r m π 2 /(mk 2 )phys Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.60/103

77 (f + (0))/ ( m 2 K m2 π) 2 fit 10, fixed mk 0.3 (correction to f + (0))/(m K 2 mπ 2 ) 2 [GeV 4 ] m π 2 /(mk 2 )phys sum p 4 p 6 2-loops p 6 L i r Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.61/103

78 f 0 (t) in K l3 Main Result: JB,Talavera f 0 (t) = 1 8 F 4 π +8 t F 4 π 8 F 4 π (C12 r + C34) r ( m 2 K ) 2 m2 π (2C12 r + C34) r ( m 2 K + ) t m2 π + m 2 K m2 π t 2 C r 12 + (t) + (0). (F K /F π 1) (t) and (0) contain NO C r i and only depend on the Lr i at order p 6 = All needed parameters can be determined experimentally (0) = ± [loops] ± [L r i]. Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.62/103

79 3-flavour: PQChPT Essentially all manipulations from ChPT go through to PQChPT when changing trace to supertrace and adding fermionic variables Exceptions: baryons and Cayley-Hamilton relations So Luckily: can use the n flavour work in ChPT at two loop order to obtain for PQChPT: Lagrangians and infinities Very important note: ChPT is a limit of PQChPT = LECs from ChPT are linear combinations of LECs of PQChPT with the same number of sea quarks. E.g. L r 1 = L r(3pq) 0 /2 + L r(3pq) 1 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.63/103

80 PQChPT One-loop: Bernard, Golterman, Sharpe, Shoresh, Pallante,... with electromagnetism: JB,Danielsson, hep-lat/ Two loops: m 2 π + simplest mass case: JB,Danielsson,Lähde, hep-lat/ F π +: JB,Lähde, hep-lat/ F π +, m 2 π + two sea quarks: JB,Lähde, hep-lat/ m 2 π + : JB,Danielsson,Lähde, hep-lat/ Neutral masses: JB,Danielsson, hep-lat/ Lattice data: a and L extrapolations needed Programs available from me (Fortran) Formulas: bijnens/chpt.html Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.64/103

81 Partial Quenching and ChPT Mesons Quark Flow Valence Quark Flow Sea = + + Lattice QCD: Valence is easy to deal with, Sea very difficult They can be treated separately: i.e. different quark masses Partially Quenched QCD and ChPT (PQChPT) One Loop or p 4 : Bernard, Golterman, Pallante, Sharpe, Shoresh,... Two Loops or p 6 : This talk JB, Niclas Danielsson, Timo Lähde Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.65/103

82 PQChPT at Two Loops: General Add ghost quarks: remove the unwanted free valence loops Mesons Quark Flow Valence Quark Flow Valence Quark Flow Sea Quark Flow Ghost = Possible problem: QCD = ChPT relies heavily on unitarity Partially quenched: at least one dynamical sea quark = Φ 0 is heavy: remove from PQChPT Symmetry group becomes SU(n v + n s n v ) SU(n v + n s n v ) (approximately) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.66/103

83 PQChPT at Two Loops: General Essentially all manipulations from ChPT go through to PQChPT when changing trace to supertrace and adding fermionic variables Exceptions: baryons and Cayley-Hamilton relations So Luckily: can use the n flavour work in ChPT at two loop order to obtain for PQChPT: Lagrangians and infinities Very important note: ChPT is a limit of PQChPT = LECs from ChPT are linear combinations of LECs of PQChPT with the same number of sea quarks. E.g. L r 1 = L r(3pq) 0 /2 + L r(3pq) 1 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.67/103

84 PQChPT at Two Loop: Papers valence equal mass, 3 sea equal mass: m 2 π + : JB,Danielsson,Lähde, hep-lat/ Other mass combinations: F 2 π + : JB,Lähde, hep-lat/ F 2 π +, m 2 π + two sea quarks: JB,Lähde, hep-lat/ In progress: the other charged masses Actual Calculations: heavy use of FORM Vermaseren Main problem: sheer size of the expressions No fits to lattice data (yet): a and L extrapolations needed Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.68/103

85 Long Expressions = Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.69/103

86 Long Expressions δ (6)22 loops = π16 L r [ 0 4/9 χηχ4 1/2 χ1χ3 + χ 2 ] 13 13/3 χ1χ13 35/18 χ2 2 π16 L r 1 χ 2 13 π16 L r [ 2 11/3 χηχ4 + χ /3 ] χ2 + π16 L r [ 3 4/9 χηχ4 7/12 χ1χ3 + 11/6 χ /6 χ1χ13 43/36 ] χ2 + π16 2 [ 15/64 χηχ4 59/384 χ1χ3 + 65/384 χ /2 χ1χ13 43/128 ] χ2 48 L r 4 L r 5 χ1χ13 72 Lr2 4 χ2 1 8 L r2 5 χ [ Ā(χp)π16 1/24 χp + 1/48 χ1 1/8 χ1 Rqη p + 1/16 χ1 Rc p 1/48 Rp qη χp 1/16 Rp qη χq + 1/48 Rpp η χη + 1/16 Rp c χ13] + Ā(χp)L r [ 0 8/3 R p qη χp + 2/3 Rp c χp + 2/3 Rp d ] + Ā(χp)L r [ 3 2/3 R p qη χp + 5/3 Rp c χp + 5/3 p] Rd + Ā(χp)L r [ 4 2 χ1 χ pp ηη0 2 χ1 Rp qη + 3 p] χ1 Rc + Ā(χp)L r [ 5 2/3 χ pp ηη1 Rp qη χp + 1/3 Rqη p χq + 1/2 Rp c χp 1/6 Rp c ] χq + Ā(χp) 2 [ 1/16 + 1/72 (Rqη) p 2 1/72 RqηR p p c + 1/288 (Rp) c 2] + Ā(χp)Ā(χps) [ 1/36 Rqη p 5/72 Rp sη + 7/144 p] Rc Ā(χp)Ā(χqs) [ 1/36 Rqη p + 1/24 Rp sη + 1/48 ] Rc p + Ā(χp)Ā(χη) [ 1/72 Rqη p Rv η13 + 1/144 Rc p η13] Rv + 1/8 Ā(χp)Ā(χ13) + 1/12 Ā(χp)Ā(χ46)Rη pp + Ā(χp) B(χp, χp; 0) [ 1/4 χp 1/18 RqηR p p c χp 1/72 RqηR p p d + 1/18 (Rp) c 2 χp + 1/144 RpR c p d ] + Ā(χp) B(χp, χη; 0) [ 1/18 Rpp η Rc p χp 1/18 ] Rη 13 Rc p χp + Ā(χp) B(χq, χq; 0) [ 1/72 Rqη p Rd q + 1/144 ] Rc p Rd q = 1/12 Ā(χp) B(χps, χps; 0)Rsη p χps 1/18 Ā(χp) B(χ1, χ3; 0)RpηR q p c χp + 1/18 Ā(χp) C(χp, χp, χp; 0)Rp c Rd p χp + Ā(χp; [ ε)π16 1/8 χ1r qη p 1/16 χ1 Rc p 1/16 Rc p χp 1/16 ] Rd p + Ā(χps)π16 [1/16 χps 3/16 χqs 3/16 χ1] 2 Ā(χps)Lr 0 χps 5 Ā(χps)Lr 3 χps 3 Ā(χps)Lr 4 χ1 + Ā(χps)Lr 5 χ13 + Ā(χps)Ā(χη) [ 7/144 Rpp η 5/72 Rps η 1/48 Rqq η + 5/72 Rqs η 1/36 R η ] 13 + Ā(χps) B(χp, χp; 0) [ 1/24 R p sη χp 5/24 Rp sη χps ] + Ā(χps) B(χp, χη; 0) [ 1/18 R η ps Rz qpη χp 1/9 R η ps Rz qpη χps ] 1/48 Ā(χps) B(χq, χq; 0)R d q + 1/18 Ā(χps) B(χ1, χ3; 0)R q sη χs + 1/9 Ā(χps) B(χ1, χ3; 0, k)rsη q + 3/16 Ā(χps; ε)π16 [χs + χ1] 1/8 Ā(χp4)2 1/8 Ā(χp4)Ā(χp6) + 1/8 Ā(χp4)Ā(χq6) 1/32 [ Ā(χp6)2 + Ā(χη)π16 1/16 χ1 Rη13 v 1/48 Rη13 v χη + 1/16 Rη13 v ] χ13 [ + Ā(χη)Lr 0 4R η 13 χη + 2/3 ] Rv η13 χη 8 Ā(χη)L r 1 χη 2 Ā(χη)Lr 2 χη + [ Ā(χη)Lr 3 4R η 13 χη + 5/3 ] Rv η13 [ χη + Ā(χη)Lr 4 4 χη + χ1 Rη13 v ] Ā(χη)L r [ 5 1/6 R η pp χq + R η 13 χ13 + 1/6 Rv η13 χη] + 1/288 Ā(χη) 2 (Rη13) v 2 + 1/12 Ā(χη)Ā(χ46)Rv η13 + Ā(χη) B(χp, χp; 0) [ 1/36 χ ppη ηη1 1/18 Rp qηrpp η χp + 1/18 RppR η p c χp + 1/144 RpR d η13 v ] + Ā(χη) B(χp, χη; 0) [ 1/18 χ ηpη pη1 + 1/18 χηpη qη1 + 1/18 (Rη pp) 2 Rqpη z ] χp 1/12 Ā(χη) B(χps, χps; 0)Rps η χps Ā(χη) B(χη, χη; 0) [ 1/216 Rη13 v χ4 + 1/27 ] Rv η13 χ6 1/18 Ā(χη) B(χ1, χ3; 0)RηηR 1 ηη 3 χη + 1/18 Ā(χη) C(χp, χp, χp; 0)RppR η p d χp + Ā(χη; ε)π16 [1/8 χη 1/16 χ1 Rη13 v 1/8 Rη 13 χη 1/16 ] Rv η13 χη + Ā(χ1)Ā(χ3)[ 1/72 Rqη p Rc q + 1/36 R1 3η R3 1η + 1/144 ] Rc 1 Rc 3 4 Ā(χ13)Lr 1 χ13 10 Ā(χ13)Lr 2 χ13 + 1/8 Ā(χ13)2 1/2 Ā(χ13) B(χ1, χ3; 0, k) + 1/4 Ā(χ13; ε)π16 χ13 + 1/4 Ā(χ14)Ā(χ34) + 1/16 Ā(χ16)Ā(χ36) 24 Ā(χ4)Lr 1 χ4 6 Ā(χ4)Lr 2 χ Ā(χ4)Lr 4 χ4 + 1/12 Ā(χ4) B(χp, χp; 0)(R p 4η )2 χ4 + 1/6 Ā(χ4) B(χp, χη; 0) [ R p 4η Rη p4 χ4 Rp 4η Rη q4 χ4 ] 1/24 Ā(χ4) B(χη, χη; 0)Rη13 v χ4 1/6 Ā(χ4) B(χ1, χ3; 0)R4η 1 R3 4η χ4 + 3/8 Ā(χ4; ε)π16 χ4 32 Ā(χ46)Lr 1 χ46 8 Ā(χ46)Lr 2 χ Ā(χ46)Lr 4 χ46 + Ā(χ46) B(χp, χp; 0) [ 1/9 χ46 + 1/12 R η pp χp + 1/36 R η pp χ4 + 1/9 R η p4 χ6 ] + Ā(χ46) B(χp, χη; 0) [ 1/18 R η pp χ4 1/9 R η p4 χ6 + 1/9 Rη q4 χ6 + 1/18 Rη 13 χ4 ] 1/6 Ā(χ46) B(χp, χη; 0, k) [ R η pp R η 13] + 1/9 Ā(χ46) B(χη, χη; 0)R v η13 χ46 Ā(χ46) B(χ1, χ3; 0) [2/9 χ46 + 1/9 R η p4 χ6 + 1/18 Rη 13 χ4] 1/6 Ā(χ46) B(χ1, χ3; 0, k)r η /2 Ā(χ46; ε)π16 χ46 + B(χp, [ χp; 0)π16 1/16 χ1 Rp d + 1/96 Rd p χp + 1/32 ] Rd p χq + 2/3 B(χp, χp; 0)L r 0 Rd p χp + 5/3 B(χp, χp; 0)L r 3 Rp d χp + B(χp, χp; 0)L r [ 4 2 χ1 χ pp ηη0 χp 4 χ1rp qη χp + 4 χ1r p c χp + 3 χ1r p d ] + B(χp, χp; 0)L r [ 5 2/3 χ pp ηη1 χp 4/3 Rp qη χ2 p + 4/3 Rc p χ2 p + 1/2 Rd p χp 1/6 ] Rd p χq + B(χp, χp; 0)L r [ 6 4 χ1 χ pp ηη1 + 8 χ1rp qη χp 8 ] χ1rc p χp + 4 B(χp, χp; 0)L r 7 (Rd p )2 + B(χp, χp; 0)L r [ 8 4/3 χ pp ηη2 + 8/3 Rp qη χ 2 p 8/3 Rp c χ 2 p] + B(χp, χp; 0) 2 [ 1/18 RqηR p p d χp + 1/18 RpR c p d χp + 1/288 (Rp d )2] + 1/18 B(χp, χp; 0) B(χp, χη; 0) [ Rpp η Rd p χp ] Rη 13 Rd p χp plus several more pages Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.69/103

87 Why so long expressions Many different quark and meson masses (χ ij ) Charged propagators: ig c ij (k) = ǫ j k 2 χ ij +iε (i j) Neutral propagators: G n ij (k) = Gc ij (k)δ ij 1 n sea G q ij (k) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.70/103

88 Why so long expressions Many different quark and meson masses (χ ij ) Charged propagators: ig c ij (k) = ǫ j k 2 χ ij +iε (i j) Neutral propagators: G n ij (k) = Gc ij (k)δ ij 1 n sea G q ij (k) ig q ii (k) = R d i (k 2 χ i +iε) 2 + R c i k 2 χ i +iε + Rπ ηii k 2 χ π +iε + Rη πii k 2 χ η +iε R i jkl = Rz i456jkl, Rd i = Rz i456πη, R c i = Ri 4πη + Ri 5πη + Ri 6πη Ri πηη R i ππη R z ab = χ a χ b, R z abcdefg = (χ a χ b )(χ a χ c )(χ a χ d ) (χ a χ e )(χ a χ f )(χ a χ g ) R z abc = χ a χ b χ a χ c, R z abcd = (χ a χ b )(χ a χ c ) χ a χ d Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.70/103

89 Why so long expressions Many different quark and meson masses (χ ij ) Charged propagators: ig c ij (k) = ǫ j k 2 χ ij +iε (i j) Neutral propagators: G n ij (k) = Gc ij (k)δ ij 1 n sea G q ij (k) ig q ii (k) = R d i (k 2 χ i +iε) 2 + R c i k 2 χ i +iε + Rπ ηii k 2 χ π +iε + Rη πii k 2 χ η +iε R i jkl = Rz i456jkl, Rd i = Rz i456πη, R c i = Ri 4πη + Ri 5πη + Ri 6πη Ri πηη R i ππη R z ab = χ a χ b, R z abcdefg = (χ a χ b )(χ a χ c )(χ a χ d ) (χ a χ e )(χ a χ f )(χ a χ g ) R z abc = χ a χ b χ a χ c, R z abcd = (χ a χ b )(χ a χ c ) χ a χ d Relations = order of magnitude smaller Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.70/103

90 PQChPT at Two Loop Problem: Plotting with many input parameters Plot masses as a function of lowest order mass squared I.e. of quark mass: χ i = 2B 0 m i = m 2(0) M Remember: χ i 0.3 GeV 2 (550 MeV ) 2 border ChPT Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.71/103

91 PQChPT at Two Loop Problem: Plotting with many input parameters Plot masses as a function of lowest order mass squared I.e. of quark mass: χ i = 2B 0 m i = m 2(0) M Remember: χ i 0.3 GeV 2 (550 MeV ) 2 border ChPT 1+1 case: Valence: χ 1 = χ 2 = χ 3 Sea: χ 4 = χ 5 = χ 6 Plot along curves: χ 4 = tanθ χ 1 or χ 4 constant Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.71/103

92 PQChPT: 1+1 case, 3 sea quarks Sea χ 4 [GeV 2 ] o 60 o 45 o 30 o A o Valence χ 1 [GeV 2 ] Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.72/103

93 PQChPT: 1+1 case, 3 sea quarks A Sea χ 4 [GeV 2 ] o o 45 o o A o Valence χ 1 [GeV 2 ] δ (4) /F o 0 60 o o 30 o o p 4 mass χ 1 [GeV 2 ] Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.72/103

94 PQChPT: 1+1 case, 3 sea quarks A Sea χ 4 [GeV 2 ] o o 45 o o A o Valence χ 1 [GeV 2 ] δ (4) /F o 0 60 o o 30 o o p 4 mass χ 1 [GeV 2 ] Notice the Quenched Chiral Logs: m2 π χ 1 = 1+ α F 2χ 4 log χ 1 + Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.72/103

95 PQChPT: 1+1 case, 3 sea quarks o 60 o 45 o δ (4) /F 0 2 +δ (6) /F A 30 o o χ 1 [GeV 2 ] p 4 + p 6 relative correction mass Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.73/103

96 PQChPT: 1+1 case, 3 sea quarks o 60 o 45 o o 15 o A δ (4) /F 0 2 +δ (6) /F A 30 o 15 o δ (4) /F 0 2 +δ (6) /F o 60 o 45 o χ 1 [GeV 2 ] χ 1 [GeV 2 ] p 4 + p 6 relative correction mass decay constant Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.73/103

97 PQChPT: 1+1 case, 2 sea quarks 0.4 M χ 3 [GeV 2 ] χ 1 [GeV 2 ] Relative Correction: Mass χ 1 : valence mass, χ 3 : sea mass Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.74/103

98 PQChPT: 1+1 case, 2 sea quarks 0.4 M 0.4 F χ 3 [GeV 2 ] χ 3 [GeV 2 ] χ 1 [GeV 2 ] χ 1 [GeV 2 ] Relative Correction: Mass Decay Constant χ 1 : valence mass, χ 3 : sea mass Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.74/103

99 PQChPT: 2 sea quarks χ 3 = χ 1 tan(θ) χ 4 = z χ 3 θ = 70 o z = 0.4 z = M n f = 2 d val = 1 d sea = 2 z = 0.8 z = 1.0 z = 1.2 z = χ 1 [GeV 2 ] Relative Correction: Mass 1+2 case Valence: χ 1 χ 2 Sea: χ 3 = χ 4 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.75/103

100 PQChPT: 2 sea quarks χ 3 = χ 1 tan(θ) χ 4 = z χ 3 θ = 70 o z = 0.4 z = χ 3 = χ 1 tan(θ) χ 2 = x χ 1 θ = 70 o x = 1.8 x = M 0 M n f = 2 d val = 1 d sea = 2 z = 0.8 z = 1.0 z = 1.2 z = χ 1 [GeV 2 ] Relative Correction: Mass 1+2 case Valence: χ 1 χ 2 Sea: χ 3 = χ n f = 2 d val = 2 d sea = 1 x = 1.4 x = 1.2 x = 1.0 x = χ 1 [GeV 2 ] Mass 2+1 case Valence: χ 1 = χ 2 Sea: χ 3 χ 4 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.75/103

101 PQChPT: Fitting Strategy For masses and Decay constants At order p 4 : L r 4,Lr 5,Lr 6,Lr 8 At order p 6 : all allowed quadratic quark mass combinations show up Problem: Need L r 0,Lr 1,Lr 2,Lr 3 only to order p 4 from ππ,πk scattering but Nonanalytic structure at p 6 given (only one included in numerics shown) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.76/103

102 Conclusions PQChPT Part All relevant mass combinations for masses and decay constants for charged pseudoscalar mesons now known to two loops Decay constants and masses for two sea quarks converge nicely Masses for three sea quarks convergence slower Looking forward to getting lattice data to fit Expressions available from bijnens/chpt.html For the numerical programs contact the authors Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.77/103

103 Wishing list General: Quark-mass dependences everywhere Not only fits but also continuum infinite volume results at a given quark-mass (so we can also fit ourselves for studying other inputs) More use of the existing two-loop calculations Analytical NNLO only: not really fewer parameters Only more in LECs: p 4 scattering LECs also in masses/decay constants I.e. l1 r,lr 2 (n F = 2), L r 1,Lr 2,Lr 3 (n F = 3), ˆL r i, i = 0, 1, 2, 3 (PQChPT) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.78/103

104 Wishing list: Two-flavour (with input from Gasser et al.) l3 and errors l4 : from F π (m q ) and scalar radius: can lattice check this relation a 2 0 accurately predicted in terms of scalar radius: can lattice check this Isospin breaking in ππ scattering (important for CP violation in K ππ) l5 l 6 Needed for π lνγ, can be had from Π AA Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.79/103

105 Wishing list: 3-flavour Ideas on how to make all those calculations usable for you Three and more flavour: typically slow numerically large N c suppressed couplings: i.e. m s dependence of m π,f π L r 4, Lr 6 sigma terms and scalar radii Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.80/103

106 Conclusions and final comments Lots of analytical work done in ChPT Use the correct ChPT 2-flavour for varying ˆm and possible for N f = 2 and N f = at fixed m s (but have different LECs) otherwise 3-flavour the various partially quenched versions Remember at which order in ChPT you compare things Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.81/103

107 Conclusions and final comments Lots of analytical work done in ChPT Use the correct ChPT 2-flavour for varying ˆm and possible for N f = 2 and N f = at fixed m s (but have different LECs) otherwise 3-flavour the various partially quenched versions Remember at which order in ChPT you compare things Seen a lot of lattice work, looking forward to seeing more LECs in many talks: Boyle, Matsufuru, Urbach, Kuramashi and many parallel session talks Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.81/103

108 η 3π Reviews: JB, Gasser, Phys.Scripta T99(2002)34 [hep-ph/ ] JB, Acta Phys. Slov. 56(2005)305 [hep-ph/ ] η pη π+ p π+ π p π π 0 p π 0 s = (p π + + p π ) 2 = (p η p π 0) 2 t = (p π + p π 0) 2 = (p η p π +) 2 u = (p π + + p π 0) 2 = (p η p π ) 2 s + t + u = m 2 η + 2m 2 π + m 2 + π 3s 0 0. π 0 π + π out η = i (2π) 4 δ 4 (p η p π + p π p π 0) A(s,t,u). π 0 π 0 π 0 out η = i (2π) 4 δ 4 (p η p 1 p 2 p 3 ) A(s 1,s 2,s 3 ) A(s 1,s 2,s 3 ) = A(s 1,s 2,s 3 ) + A(s 2,s 3,s 1 ) + A(s 3,s 1,s 2 ), Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.82/103

109 η 3π: Lowest order (LO) Pions are in I = 1 state = A (m u m d ) or α em α em effect is small (but large via m π + m π 0) η π + π π 0 γ needs to be included directly Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.83/103

110 η 3π: Lowest order (LO) Pions are in I = 1 state = A (m u m d ) or α em ChPT:Cronin 67: A(s,t,u) = B 0(m u m d ) 3 3F 2 π { 1 + 3(s s } 0) m 2 η m 2 π Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.83/103

111 η 3π: Lowest order (LO) Pions are in I = 1 state = A (m u m d ) or α em ChPT:Cronin 67: A(s,t,u) = B 0(m u m d ) 3 3F 2 π { 1 + 3(s s } 0) m 2 η m 2 π with Q 2 m2 s ˆm 2 m 2 d m2 u or R m s ˆm m d m u ˆm = 1 2 (m u + m d ) A(s,t,u) = 1 Q 2 m 2 K m 2 π (m 2 π m 2 K ) M(s,t,u) 3 3F 2 π, A(s,t,u) = 3 4R M(s,t,u) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.83/103

112 η 3π: Lowest order (LO) Pions are in I = 1 state = A (m u m d ) or α em ChPT:Cronin 67: A(s,t,u) = B 0(m u m d ) 3 3F 2 π { 1 + 3(s s } 0) m 2 η m 2 π with Q 2 m2 s ˆm 2 m 2 d m2 u or R m s ˆm m d m u ˆm = 1 2 (m u + m d ) A(s,t,u) = 1 Q 2 m 2 K m 2 π (m 2 π m 2 K ) M(s,t,u) 3 3F 2 π, A(s,t,u) = 3 4R M(s,t,u) LO: M(s,t,u) = 3s 4m2 π m 2 η m 2 π M(s,t,u) = 1 F 2 π ( ) 4 3 m2 π s Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.83/103

113 η 3π beyond p 4 : p 2 and p 4 Γ(η 3π) A 2 Q 4 allows a PRECISE measurement Q 24 gives lowest order Γ(η π + π π 0 ) 66 ev. Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.84/103

114 η 3π beyond p 4 : p 2 and p 4 Γ(η 3π) A 2 Q 4 allows a PRECISE measurement Q 24 gives lowest order Γ(η π + π π 0 ) 66 ev. Other Source from m 2 K + m 2 K 0 Q 2 = Q = 20.0 ± 1.5 Lowest order prediction Γ(η π + π π 0 ) 140 ev. Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.84/103

115 η 3π beyond p 4 : p 2 and p 4 Γ(η 3π) A 2 Q 4 allows a PRECISE measurement Q 24 gives lowest order Γ(η π + π π 0 ) 66 ev. Other Source from m 2 K + m 2 K 0 Q 2 = Q = 20.0 ± 1.5 Lowest order prediction Γ(η π + π π 0 ) 140 ev. dlips A 2 + A 4 2 At order p 4 Gasser-Leutwyler 1985: = 2.4, dlips A 2 2 (LIPS=Lorentz invariant phase-space) Major source: large S-wave final state rescattering Experiment: 295 ± 17 ev (PDG 2006) Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.84/103

116 η 3π beyond p 4 : Dispersive Try to resum the S-wave rescattering: Anisovich-Leutwyler (AL), Kambor,Wiesendanger,Wyler (KWW) Different method but similar approximations Here: simplified version of AL Up to p 8 : No absorptive parts from l 2 = M(s,t,u) = M 0 (s)+(s u)m 1 (t)+(s t)m 1 (t)+m 2 (t)+m 2 (u) 2 3 M 2(s) M I : roughly contributions with isospin 0,1,2 Odense 19-20/2/2008 Effective Field Theory: Introduction and Applications Johan Bijnens p.85/103

PHOTONS and PARTIAL QUENCHING η 3π AT TWO LOOPS: STATUS and PRELIMINARY RESULTS

PHOTONS and PARTIAL QUENCHING η 3π AT TWO LOOPS: STATUS and PRELIMINARY RESULTS lavi net PHOTONS and PARTIAL QUENCHING η 3π AT TWO LOOPS: STATUS and PRELIMINARY RESULTS Johan Bijnens Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Various ChPT: http://www.thep.lu.se/

More information

CHIRAL SYMMETRY AT HIGH ENERGIES: HARD PION CHIRAL PERTURBATION THEORY

CHIRAL SYMMETRY AT HIGH ENERGIES: HARD PION CHIRAL PERTURBATION THEORY CHIRAL SYMMETRY AT HIGH ENERGIES: HARD PION CHIRAL PERTURBATION THEORY Johan Bijnens Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Various ChPT: http://www.thep.lu.se/ bijnens/chpt.html

More information

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results E-mail: bijnens@thep.lu.se Niclas Danielsson and Division of Mathematical Physics, LTH, Lund University, Box 118, S 221

More information

HARD PION CHIRAL PERTURBATION THEORY

HARD PION CHIRAL PERTURBATION THEORY HARD PION CHIRAL PERTURBATION THEORY Johan Bijnens Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Various ChPT: http://www.thep.lu.se/ bijnens/chpt.html Bonn 11/10/2011 Hard Pion Chiral

More information

CHIRAL PERTURBATION THEORY IN THE MESON SECTOR

CHIRAL PERTURBATION THEORY IN THE MESON SECTOR CHIRAL PERTURBATION THEORY IN THE MESON SECTOR Johan Bijnens Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Various ChPT: http://www.thep.lu.se/ bijnens/chpt.html Chiral Dynamics 7/7/2009

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

HADRONS, FLAVOURS AND EFFECTIVE THEORIES

HADRONS, FLAVOURS AND EFFECTIVE THEORIES HADRONS, FLAVOURS AND EFFECTIVE THEORIES Johan Bijnens Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Various ChPT: http://www.thep.lu.se/ bijnens/chpt.html Lund 14/4/2010 Hadrons, Flavours

More information

LEADING LOGARITHMS FOR THE NUCLEON MASS

LEADING LOGARITHMS FOR THE NUCLEON MASS /9 LEADING LOGARITHMS FOR THE NUCLEON MASS O(N + ) Lund University bijnens@thep.lu.se http://thep.lu.se/ bijnens http://thep.lu.se/ bijnens/chpt/ QNP5 - Universidad Técnica Federico Santa María UTFSMXI

More information

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics

More information

Effective Field Theories for lattice QCD

Effective Field Theories for lattice QCD Effective Field Theories for lattice QCD Stephen R. Sharpe University of Washington S. Sharpe, EFT for LQCD: Lecture 1 3/21/12 @ New horizons in lattice field theory, Natal, Brazil 1 Outline of Lectures

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

The Hadronic Decay Ratios of η 5π at NLO in χpt

The Hadronic Decay Ratios of η 5π at NLO in χpt EJTP 11, No. 1 (2014) 11 140 Electronic Journal of Theoretical Physics The Hadronic Decay Ratios of η 5π at NLO in χpt M. Goodarzi and H. Sadeghi Department of Physics, Faculty of Science, Arak University,

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Lectures on Chiral Perturbation Theory

Lectures on Chiral Perturbation Theory Lectures on Chiral Perturbation Theory I. Foundations II. Lattice Applications III. Baryons IV. Convergence Brian Tiburzi RIKEN BNL Research Center Chiral Perturbation Theory I. Foundations Low-energy

More information

Overview of low energy NN interaction and few nucleon systems

Overview of low energy NN interaction and few nucleon systems 1 Overview of low energy NN interaction and few nucleon systems Renato Higa Theory Group, Jefferson Lab Cebaf Center, A3 (ext6363) higa@jlaborg Lecture II Basics on chiral EFT π EFT Chiral effective field

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 28.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Introduction & first look into ChPT EFTs for two nucleons Chiral Perturbation Theory

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

η 3π and light quark masses

η 3π and light quark masses η 3π and light quark masses Theoretical Division Los Alamos National Laboratory Jefferson Laboratory, Newport News November 5, 013 In collaboration with G. Colangelo, H. Leutwyler and S. Lanz (ITP-Bern)

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

arxiv:hep-ph/ v2 22 Feb 1996

arxiv:hep-ph/ v2 22 Feb 1996 ZU-TH /95 TTP95-31 February 1, 008 arxiv:hep-ph/9508393v Feb 1996 On the Corrections to Dashen s Theorem Robert Baur Institut für Theoretische Physik, Universität Zürich CH-8057 Zürich, Switzerland Res

More information

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations

How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations How far can you go? Surprises & pitfalls in three-flavour chiral extrapolations Sébastien Descotes-Genon Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France July 31 2007

More information

in Lattice QCD Abstract

in Lattice QCD Abstract FERMILAB-PUB-96/016-T January, 1996 Electromagnetic Splittings and Light Quark Masses arxiv:hep-lat/9602005v1 6 Feb 1996 in Lattice QCD A. Duncan 1, E. Eichten 2 and H. Thacker 3 1 Dept. of Physics and

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

Is the up-quark massless? Hartmut Wittig DESY

Is the up-quark massless? Hartmut Wittig DESY Is the up-quark massless? Hartmut Wittig DESY Wuppertal, 5 November 2001 Quark mass ratios in Chiral Perturbation Theory Leutwyler s ellipse: ( mu m d ) 2 + 1 Q 2 ( ms m d ) 2 = 1 25 m s m d 38 R 44 0

More information

Chiral perturbation theory with physical-mass ensembles

Chiral perturbation theory with physical-mass ensembles Chiral perturbation theory with physical-mass ensembles Steve Sharpe University of Washington S. Sharpe, Future of ChPT for LQCD 5/19/16 @ TUM-IAS EFT workshop 1 /35 ChPT for LQCD: Does it have a future?

More information

Donoghue, Golowich, Holstein Chapter 4, 6

Donoghue, Golowich, Holstein Chapter 4, 6 1 Week 7: Non linear sigma models and pion lagrangians Reading material from the books Burgess-Moore, Chapter 9.3 Donoghue, Golowich, Holstein Chapter 4, 6 Weinberg, Chap. 19 1 Goldstone boson lagrangians

More information

Cusp effects in meson decays

Cusp effects in meson decays Cusp effects in meson decays Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universität Bonn, Germany Few-Body 2009 Bonn, 3/9/2009 B. Kubis,

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

MILC results and the convergence of the chiral expansion

MILC results and the convergence of the chiral expansion MILC results and the convergence of the chiral expansion MILC Collaboration + (for part) HPQCD, UKQCD Collaborations Benasque Center for Science, July 27, 2004 p.1 Collaborators MILC Collaboration: C.

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

arxiv: v1 [hep-ph] 31 Jul 2009

arxiv: v1 [hep-ph] 31 Jul 2009 arxiv:0907.5540v1 [hep-ph] 31 Jul 2009 Frascati Physics Series Vol. XLVIII (2009), pp. 19-24 Young Researchers Workshop: Physics Challenges in the LHC Era Frascati, May 11 and 14, 2009 HADRONIC τ DECAYS

More information

CHIRAL PERTURBATION THEORY AND MESONS

CHIRAL PERTURBATION THEORY AND MESONS /79 CHIRAL PERTURBATION THEORY AND MESONS Lund University bijnens@thep.lu.se http://thep.lu.se/ bijnens http://thep.lu.se/ bijnens/chpt.html and Dynamics Jefferson Lab 6 August /79 Joaquim (Ximo) Prades

More information

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn Evgeny Epelbaum KHuK Jahrestagung, GSI, 25.10.2007 Evgeny Epelbaum Forschungszentrum Jülich & Universität Bonn Outline Motivation & Introduction Few nucleons in chiral EFT: where do we stand Work in progress:

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

arxiv: v1 [hep-lat] 3 Nov 2009

arxiv: v1 [hep-lat] 3 Nov 2009 SU(2 chiral fits to light pseudoscalar masses and decay constants arxiv:0911.0472v1 [hep-lat] 3 Nov 2009 The MILC Collaboration: A. Bazavov, W. Freeman and D. Toussaint Department of Physics, University

More information

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Igor Danilkin (collaborators: Matthias F. M. Lutz, Stefan Leupold, Carla Terschlüsen,

More information

arxiv: v1 [hep-ph] 12 Mar 2008

arxiv: v1 [hep-ph] 12 Mar 2008 PSI-PR-08-04 Renormalization of tensor self-energy in Resonance Chiral Theory Karol Kampf, 1, Jiři Novotný, 1 and Jaroslav Trnka 1 1 Institute of Particle and Nuclear Physics, Charles University, arxiv:080.171v1

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

LOW-ENERGY QCD and STRANGENESS in the NUCLEON

LOW-ENERGY QCD and STRANGENESS in the NUCLEON PAVI 09 Bar Harbor, Maine, June 009 LOW-ENERGY QCD and STRANGENESS in the NUCLEON Wolfram Weise Strategies in Low-Energy QCD: Lattice QCD and Chiral Effective Field Theory Scalar Sector: Nucleon Mass and

More information

Renormalization group methods in nuclear few- and many-body problems

Renormalization group methods in nuclear few- and many-body problems Renormalization group methods in nuclear few- and many-body problems Lecture 2 S.K. Bogner (NSCL/MSU) 2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill Lecture 2 outline

More information

PoS(EPS-HEP 2009)048. QCD tests at NA48/2 experiment. Gianluca Lamanna Scuola Normale Superiore & INFN Pisa - Italy

PoS(EPS-HEP 2009)048. QCD tests at NA48/2 experiment. Gianluca Lamanna Scuola Normale Superiore & INFN Pisa - Italy experiment Scuola Normale Superiore & INFN Pisa - Italy E-mail: gianluca.lamanna@cern.ch The main goal of the NA48/2 experiment was to measure the CP violating asymmetry in the charged kaon decay in three

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

Viability of strongly coupled scenarios with a light Higgs like boson

Viability of strongly coupled scenarios with a light Higgs like boson Beijing IHEP, January 8 th 2013 Viability of strongly coupled scenarios with a light Higgs like boson J.J. Sanz Cillero (PKU visitor) A. Pich, I. Rosell and JJ SC [arxiv:1212.6769 [hep ph]] OUTLINE 1)

More information

arxiv: v1 [hep-ph] 13 Nov 2013

arxiv: v1 [hep-ph] 13 Nov 2013 euniversityofmanchester November 14, 2013 arxiv:1311.3203v1 [hep-ph] 13 Nov 2013 Odd- and even-parity charmed mesons revisited in heavy hadron chiral perturbation theory Mohammad Alhakami 1 School of Physics

More information

Johan Bijnens. Lund University. bijnens bijnens/chpt.html

Johan Bijnens. Lund University.  bijnens  bijnens/chpt.html 1/28 Lund University bijnens@thep.lu.se http://thep.lu.se/ bijnens http://thep.lu.se/ bijnens/chpt.html Workshop on at CLAS Jefferson Lab 5 August 2012 2/28 Outline 1 2 3 4 5 6 7 3/28 The big picture This

More information

Pion-nucleon sigma-term - a review

Pion-nucleon sigma-term - a review Pion-nucleon sigma-term - a review M.E. Sainio Helsinki Institute of Physics, and Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland (Received: December 5, 2001) A brief

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Lecture 10. September 28, 2017

Lecture 10. September 28, 2017 Lecture 10 September 28, 2017 The Standard Model s QCD theory Comments on QED calculations Ø The general approach using Feynman diagrams Ø Example of a LO calculation Ø Higher order calculations and running

More information

ACTA UNIVERSITATIS UPSALIENSIS Uppsala Dissertations from the Faculty of Science and Technology 118

ACTA UNIVERSITATIS UPSALIENSIS Uppsala Dissertations from the Faculty of Science and Technology 118 ACTA UNIVERSITATIS UPSALIENSIS Uppsala Dissertations from the Faculty of Science and Technology 118 Measurement of the Dalitz Plot Distribution for η π + π π with KLOE Li Caldeira Balkeståhl Dissertation

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Baryon Electric Dipole Moments from Strong CP Violation

Baryon Electric Dipole Moments from Strong CP Violation Baryon Electric Dipole Moments from Strong CP Violation Feng-Kun Guo Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn IHEP, Beijing, April 11, 2013 Ottnad, Kubis, Meißner, Guo, PLB687(2010)42;

More information

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner Lecture 3 Pions as Goldstone Bosons of Chiral Symmetry Breaking Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and

More information

PoS(CD12)117. Precision Measurement of η γγ Decay Width via the Primakoff Effect. Liping Gan

PoS(CD12)117. Precision Measurement of η γγ Decay Width via the Primakoff Effect. Liping Gan Precision Measurement of via the Primakoff Effect University of North Carolina Wilmington, NC, USA E-mail: ganl@uncw.edu A precision measurement of the η γγ decay width via the Primakoff effect is underway

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Double poles in Lattice QCD with mixed actions

Double poles in Lattice QCD with mixed actions San Francisco State University E-mail: maarten@stars.sfsu.edu Taku Izubuchi Kanazawa University and Brookhaven National Laboratory E-mail: izubuchi@quark.phy.bnl.gov Yigal Shamir Tel Aviv University E-mail:

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1-55 Cracow School of Theoretical Physics 20 28/6/2015, Zakopane, Poland Outline The Lagrangian of QCD and its symmetries

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA with η condensation Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 66-85, Japan E-mail: saoki@yukawa.kyoto-u.ac.jp Michael CREUTZ Physics Department

More information

arxiv: v2 [hep-ph] 5 Jan 2013

arxiv: v2 [hep-ph] 5 Jan 2013 Scalar susceptibilities and four-quark condensates in the meson gas within Chiral Perturbation Theory A. Gómez Nicola, J.R. Peláez, and J. Ruiz de Elvira Departamento de Física Teórica II. Universidad

More information

Octet Baryon Charge Radii, Chiral Symmetry and Decuplet Intermediate States. Abstract

Octet Baryon Charge Radii, Chiral Symmetry and Decuplet Intermediate States. Abstract Octet Baryon Charge Radii, Chiral Symmetry and Decuplet Intermediate States S.J. Puglia a M.J. Ramsey-Musolf a,b Shi-Lin Zhu a a Department of Physics, University of Connecticut, Storrs, CT 06269 USA b

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-090 Wien, Austria Leading Logarithms in the Massive O(N) Nonlinear Sigma Model Johan Bijnens Lisa Carloni Vienna,

More information

RECENT DEVELOPMENTS IN CHIRAL PERTURBATION THEORY *

RECENT DEVELOPMENTS IN CHIRAL PERTURBATION THEORY * RECENT DEVELOPMENTS IN CHIRAL PERTURBATION THEORY * Ulf-G. Meißner Universität Bern, Institut für Theoretische Physik Sidlerstr. 5, CH 3012 Bern, Switzerland Abstract: I review recent developments in chiral

More information

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where PHY 396 K. Solutions for problem set #11. Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where Ĥ 0 = Ĥfree Φ + Ĥfree

More information

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center 2014 National Nuclear Physics Summer School Lectures on Effective Field Theory I. Removing heavy particles II. Removing large scales III. Describing Goldstone bosons IV. Interacting with Goldstone bosons

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

arxiv:hep-ph/ v2 24 Sep 1996

arxiv:hep-ph/ v2 24 Sep 1996 NUC MINN 96/11 T A New Approach to Chiral Perturbation Theory with Matter Fields Hua-Bin Tang arxiv:hep-ph/9607436v 4 Sep 1996 School of Physics and Astronomy University of Minnesota, Minneapolis, MN 55455

More information

Symmetries in Effective Field Theory

Symmetries in Effective Field Theory Symmetries in Effective Field Theory Sourendu Gupta SERC Main School 2014, BITS Pilani Goa, India Effective Field Theories December, 2014 Outline Outline Symmetries in EFTs Softly broken symmetries in

More information

arxiv: v4 [hep-lat] 6 May 2010

arxiv: v4 [hep-lat] 6 May 2010 Applications of chiral perturbation theory to lattice QCD Maarten Golterman arxiv:0912.4042v4 [hep-lat] 6 May 2010 Department of Physics and Astronomy San Francisco State University, San Francisco, CA

More information

WG1: KAON PHYSICS. Johan Bijnens Lund University. bijnens

WG1: KAON PHYSICS. Johan Bijnens Lund University.   bijnens lavi net WG1: KAON PHYSICS Johan Bijnens Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Various ChPT: http://www.thep.lu.se/ bijnens/chpt.html Euroflavour07 WG1:Kaon physics Johan Bijnens

More information

arxiv: v1 [hep-ph] 18 Oct 2017

arxiv: v1 [hep-ph] 18 Oct 2017 Tracks of resonances in electroweak effective Lagrangians arxiv:1710.06622v1 [hep-ph] 18 Oct 2017 Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities,

More information

η-η mixing in large-n c chiral perturbation theory: discussion, phenomenology, and prospects

η-η mixing in large-n c chiral perturbation theory: discussion, phenomenology, and prospects η-η mixing in large-n c chiral perturbation theory: discussion, phenomenology, and prospects Patricia Bickert PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg-Universität Mainz,

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

η ηππ in unitarized Resonance Chiral Theory

η ηππ in unitarized Resonance Chiral Theory η η in unitarized Resonance Chiral Theory Sergi Gonzàlez-Solís 1 Emilie Passemar 2 1 Institute of Theoretical Physics (Beijing) Chinese Academy of Sciences 2 Indiana University JLab (USA), 7 may 2018 Outline

More information

Decay pi(0)->gamma gamma to next to leading order in chiral perturbation theory

Decay pi(0)->gamma gamma to next to leading order in chiral perturbation theory University of Massachusetts Amherst ScholarWorks@UMass Amherst Physics Department Faculty Publication Series Physics 2002 Decay pi(0)->gamma gamma to next to leading order in chiral perturbation theory

More information

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY

PoS(STORI11)050. The η π + π π 0 decay with WASA-at-COSY The η π + π π 0 decay with WASA-at-COSY Institute for Physics and Astronomy, Uppsala University E-mail: patrik.adlarson@physics.uu.se Recently, a large statistics sample of approximately 3 10 7 decays

More information

Charged Pion Polarizability & Muon g-2

Charged Pion Polarizability & Muon g-2 Charged Pion Polarizability & Muon g-2 M.J. Ramsey-Musolf U Mass Amherst Amherst Center for Fundamental Interactions http://www.physics.umass.edu/acfi/ ACFI-J Lab Workshop! March 2014! 1 Outline I. Intro

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

Fun with the S parameter on the lattice

Fun with the S parameter on the lattice Fun with the S parameter on the lattice David Schaich (Boston Colorado Syracuse) from work with the LSD Collaboration and USQCD BSM community arxiv:1009.5967 & arxiv:1111.4993 Origin of Mass 2013 Lattice

More information

The Quest for Light Scalar Quarkonia from elsm

The Quest for Light Scalar Quarkonia from elsm Institut für Theoretische Physik Goethe-Universität Frankfurt am Main The Quest for Light calar Quarkonia from elm Denis Parganlija [Based on arxiv: 5.3647] In collaboration with Francesco Giacosa and

More information

Applications of QCD Sum Rules to Heavy Quark Physics

Applications of QCD Sum Rules to Heavy Quark Physics Applications of QCD Sum Rules to Heavy Quark Physics Alexander Khodjamirian UNIVERSITÄT SIEGEN Theoretische Physik 1 RESEARCH UNIT q et f 3 lectures at Helmholtz International School "Physics of Heavy

More information

Modern Theory of Nuclear Forces

Modern Theory of Nuclear Forces Evgeny Epelbaum, FZ Jülich & University Bonn Lacanau, 29.09.2009 Modern Theory of Nuclear Forces Lecture 1: Lecture 2: Lecture 3: Introduction & first look into ChPT EFTs for two nucleons Nuclear forces

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

Effects of Quenching and Partial Quenching on Penguin Matrix Elements

Effects of Quenching and Partial Quenching on Penguin Matrix Elements Effects of Quenching and Partial Quenching on Penguin Matrix Elements Maarten Golterman 1 Department of Physics, Washington University, St. Louis, MO 63130, USA Elisabetta Pallante SISSA, Via Beirut 4,

More information

Symmetries in Effective Field Theory

Symmetries in Effective Field Theory Symmetries in Effective Field Theory Sourendu Gupta Mini School 2016, IACS Kolkata, India Effective Field Theories 29 February 4 March, 2016 Outline Outline Symmetries in EFTs Softly broken symmetries

More information

Expected precision in future lattice calculations p.1

Expected precision in future lattice calculations p.1 Expected precision in future lattice calculations Shoji Hashimoto (KEK) shoji.hashimoto@kek.jp Super-B Workshop, at University of Hawaii, Jan 19 22, 2004 Expected precision in future lattice calculations

More information

Recent advances on chiral partners and patterns and the thermal f 0 (500) in chiral restoration

Recent advances on chiral partners and patterns and the thermal f 0 (500) in chiral restoration and the thermal f 0 (500) in chiral restoration Departamento de Física Teórica and UPARCOS. Univ. Complutense. 28040 Madrid. Spain E-mail: gomez@ucm.es Jacobo Ruiz de Elvira Albert Einstein Center for

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

PrimEx Experiments and the Prospects of Rare η Decays at GlueX

PrimEx Experiments and the Prospects of Rare η Decays at GlueX PrimEx Experiments and the Prospects of Rare η Decays at GlueX Outline Liping Gan University of North Carolina Wilmington Challenges in Physics Precision tests of continuous symmetries of confinement QCD

More information

arxiv: v1 [hep-lat] 24 Dec 2008

arxiv: v1 [hep-lat] 24 Dec 2008 of hadrons from improved staggered quarks in full QCD arxiv:081.4486v1 [hep-lat] 4 Dec 008, a A. Bazavov, b C. Bernard, c C. DeTar, d W. Freeman, b Steven Gottlieb, a U.M. Heller, e J.E. Hetrick, f J.

More information

Electric Dipole Moments and the strong CP problem

Electric Dipole Moments and the strong CP problem Electric Dipole Moments and the strong CP problem We finally understand CP viola3on.. QCD theta term Jordy de Vries, Nikhef, Amsterdam Topical Lectures on electric dipole moments, Dec. 14-16 Introductory

More information

Elementary Particles, Flavour Physics and all that...

Elementary Particles, Flavour Physics and all that... Elementary Particles, Flavour Physics and all that... 1 Flavour Physics The term Flavour physics was coined in 1971 by Murray Gell-Mann and his student at the time, Harald Fritzsch, at a Baskin-Robbins

More information

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013 Particle Physics Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013 Lecture 12: Mesons and Baryons Mesons and baryons Strong isospin and strong hypercharge SU(3) flavour symmetry Heavy quark states

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information